
1324
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

PAPER IEICE/IEEE Joint Special Issue on Autonomous Decentralized Systems and Systems’ Assurance

A Commitment-Based Approach for Business Process

Interoperation

Jie XING†, Student Member, Feng WAN†, Sudhir Kumar RUSTOGI†,
and Munindar P. SINGH†, Nonmembers

SUMMARY Successful e-commerce presupposes techniques
by which autonomous trading entities can interoperate. Although
progress has been made on data exchange and payment protocols,
interoperation in the face of autonomy is still inadequately un-
derstood. Current techniques, designed for closed environments,
support only the simplest interactions. We develop a multiagent
approach for interoperation of business process in e-commerce.
This approach consists of (1) a behavioral model to specify au-
tonomous, heterogeneous agents representing different trading
entities (businesses, consumers, brokers), (2) a metamodel that
provides a language (based on XML) for specifying a variety of
service agreements and accommodating exceptions and revisions,
and (3) an execution architecture that supports persistent and
dynamic (re)execution.
key words: commitments, statecharts, business process, inter-
operation, e-commerce

1. Introduction

The study of autonomous, decentralized systems gains
importance with the expansion of business-to-business
(B2B) electronic commerce. We would like autonomous
businesses to be able to operate together logically with-
out being subject to central control. This means we
should be able to specify and obtain the correct inter-
operation of their processes.

Current software technology, based on distributed
computing and databases and dealing exclusively with
low-level abstractions, is inadequate for the proper
treatment of interoperation. This is because the as-
sociated abstractions—remote methods and distributed
transactions—address only the simpler challenges in in-
tegrating heterogeneous systems. Remote methods of-
fer no conceptual abstractions for composing activities,
whereas transactions require a tighter coupling of ac-
tivities than is appropriate. Even the extended trans-
action models require the specification of compensatory
methods or transactions, which are usually impossible
to guarantee. The following major challenges are not
properly addressed by existing approaches:

• Autonomy. In e-commerce, the interacting parties
are autonomous and must retain their autonomy,
limited only by their contracts.

Manuscript received April 6, 2001.
Manuscript revised May 29, 2001.

†The authors are with the Department of Computer Sci-
ence, North Carolina State University, Raleigh, NC 27695-
7535, USA.

• Heterogeneity. In e-commerce, the interacting soft-
ware may be of any internal design and construc-
tion, and may be upgraded at different times.

• Exceptions. Because e-commerce presupposes
autonomy and heterogeneity, interoperation fre-
quently runs into exceptions, which (because of
autonomy and decentralization of the participants)
are notoriously difficult to handle.

• Revisions. Because e-commerce interactions can
be long-lived, potentially lasting forever, they must
release their results prematurely or send in cor-
rections as a consequence of handling exceptions.
This means that results ought to be able to be re-
vised.

Workflow tools emphasize ways of structuring activities
by specifying sequencing or concurrency requirements
on tasks. Specifications of data resources and human
actors are less important. Most importantly, however,
workflow tools lack the abstractions for addressing the
above challenges.
Our Approach, Conceptually. We apply agents to
process interoperation in a way that naturally addresses
the above challenges. We rely on two crucial proper-
ties of agents. First, the agents must interact at a high
level by forming and managing commitments to one
another. These commitments are about the informa-
tion they exchange, about changes to that information,
and about each other’s needs. For example, an agent
would not only send results to others, but may commit
to notifying its consumers if it modifies those results or
to satisfying its consumers with respect to a predicate.
Second, the agents must be persistent. This is essential
so the agents may form, manage, and act according to
their commitments. For example, an agent may retry
a task until it obtains results acceptable to it and to
its peers. The agent would receive updates and send
updated results to its consumers. If the agents didn’t
outlast their tasks, such actions would be impossible.

The agents reason about the formation and ma-
nipulation (including revocation) of social commit-
ments. The manipulation of commitments is con-
strained through specified metacommitments. Our
metamodel includes a small set of carefully engineered
metacommitment patterns through which a given inter-
action can be structured. The metacommitment pat-



XING et al.: A COMMITMENT-BASED APPROACH FOR BUSINESS PROCESS INTEROPERATION
1325

terns are given a formal operational semantics based
on statecharts [6] and translated into rules that can be
executed by different agents.
Contributions. We develop a technically well-
founded metamodel for interoperation that accom-
modates the subtleties of e-commerce interactions.
Whereas current approaches to interoperation can ac-
commodate only the simplest client-server (request-
response) kinds of interactions, our approach includes
the more flexible interactions that are needed to accom-
modate exceptions and revisions. Our metamodel and
its semantics can form the basis of for practical ap-
proaches and standards in e-commerce. Although we
don’t emphasize the formal aspects of our work here,
the theory of commitments is well-developed [16] and
has been applied in a temporal logic approach for veri-
fying e-commerce protocol compliance [20].
Organization. Section 2 describes some important
upcoming approaches to interoperation in B2B e-
commerce. Section 3 describes our metamodel and
presents its key concepts. Section 4 introduces the
operational semantics for the main components of the
metamodel, and shows how they can be mapped to a
rule-based execution framework. Section 5 discusses
the literature and future directions.

2. Challenge for Existing Approaches

We review some of the relevant existing or emerging
approaches and standards. We consider representative
languages and protocols.

2.1 Languages and Protocols

The extensible markup language (XML) has become
the language of choice for encoding business informa-
tion and services on the Internet [23]. The Common
Business Library (CBL) promotes business interoper-
ability by representing common business concepts (e.g.,
companies, services, and products) and interactions
(e.g., catalog searches, purchase-order processing, and
inventory updates) using a public collection of XML
components [3].

RosettaNet [14] offers industry-wide electronic
business interoperability standards. It develops com-
mon business process interfaces between supply-chain
trading partners through common vocabularies. Cou-
pled with an exchange protocol specifying services,
transactions, and messages, these can support business
dialogs in the partner interface process (PIP).

The Open Trading Protocol (OTP) [13], defines a
number of different types of OTP transactions such as
purchase, refund, value exchange, authentication, with-
drawal, and deposit. These transactions involve trad-
ing roles, exchanges, and components. Typical trading
exchanges are offer, payment, delivery, and authentica-
tion.

The Information and Content Exchange (ICE) pro-
tocol [8] defines the roles and responsibilities of syndi-
cators and subscribers, defines the format and method
of content exchange, and provides support for manage-
ment and control of syndication relationships. In ICE,
the syndicator produces the content that is consumed
by subscribers. The ICE protocol is essentially a re-
quest/reply protocol in which the subscriber and syndi-
cator may assume several different roles: subscriber ver-
sus syndicator, requester versus responder, and sender
versus receiver.

2.2 Workflows

Open buying on the Internet (OBI) is a proposed stan-
dard framework that describes the main roles and low-
level standards for use in e-commerce [12]. OBI includes
buyer, seller, and payment organizations, and a req-
uisitioner (member of the buyer). Tian et al. show
how OBI-compliant workflows can be achieved [19]. Al-
though OBI facilitates low-level interoperation, it is not
organizationally flexible and does not help in handling
exceptions or revisions. For example, we will presum-
ably need a different standard to accommodate mar-
ketplaces instead of direct buying or to handle deliv-
ery delays. We suspect these limitations are the rea-
son why OBI is marketed for low-dollar, non-mission
critical procurement. However, the main challenge is
in specifying the right interoperation among compa-
nies and is independent of the cost of the goods being
traded.

The Workflow Management Coalition (WfMC) is
developing standards to support interoperability for e-
commerce [7]. These standards provide the key infras-
tructure through which the process information of dif-
ferent enterprises could be integrated. However, the
state of the art covers only the simplest e-commerce
scenarios. Their interoperation component is quite
weak [1]. It supports the main interactions are chain-
ing (where a workflow hands off control to another)
and nesting (where a workflow makes a call to another
and expects control to be returned). These abstrac-
tions better correspond to traditional distributed ob-
jects and are not suitable for autonomous interaction
as necessary to handle the challenges outlined above.

2.3 Evaluation and Motivation

To evaluate the above approaches and motivate our
own, we consider a simple example.

Example 1: A customer comes up with a need to
travel to a certain city (with multiple hotels and air-
ports) on a certain date. She contacts her travel agent
who in turn requests an airline and a hotel clerk to make
appropriate reservations. The clerks are to send confir-
mations to the traveler. The customer may have some



1326
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

additional requirements that are not initially brought
out. For example, the hotel may not be close to the
airport chosen by the airline clerk and, say, for a late
flight, the hotel location is an important constraint of
the customer. If the customer’s requirements are not
met, she complains to her travel agent. If the travel
agent offers a high quality of service and works to sat-
isfy his customer, he would then make a revised request
to the clerks, let’s say by trying for an earlier flight. ✷

Although small, Example 1 is not trivial. It com-
bines the B2B and B2C aspects of e-commerce. Four
autonomous parties are involved, and communication
among them does not follow a simple nesting of re-
quests and responses. Even a task that executes suc-
cessfully may need to be revisited as shown in Fig. 1.
Current situations work well for the simpler situations
up to the first travel plan. However, because they of-
fer no conceptual or operational support for exceptions,
programmers are left to fend for themselves. Typically,
they are forced to employing ad hoc techniques that

Fig. 1 An e-commerce scenario that does not follow a simple
nesting of requests and responses.

Fig. 2 Commitment-based metamodel for interoperation.

lead to reduced productivity and ineffective solutions.
Existing approaches can help as follows. CBL

would facilitate the different parties agreeing about
their business transactions, although some extensions
might be needed to specify the various restrictions on
their contracts. ICE could be used to specify how ho-
tels and airlines respond to requests for bookings from
travel agents. Possibly, our travel agent may subscribe
to a listing of special promotions from an airline or ho-
tel. OTP could handle the payment modes used by
the participants. RosettaNet could be used to specify
the common vocabulary and interfaces for the travel
domain.

Thus, existing approaches can specify the details
of the business transactions, domains, and payment,
as well as simple protocols for composing the different
activities. However, they either refer to the infrastruc-
ture or solely to low-level synchronization interactions.
They provide little support for handling the exceptions
and revisions of information that are crucial even in this
simple scenario. Each such case that is improperly han-
dled leads to tedious work by a human, not only costing
time and money to the interacting organizations, but
resulting in an unhappy customer. By contrast, our ap-
proach develops principled abstractions to handle just
such scenarios.

3. Metamodel for Interoperation

A metamodel is a language for specifying models. Our
metamodel is a language for specifying the desired in-
teroperation. Traditional metamodels are based on
flowcharts or activity diagrams, which are of limited
help in handling complex situations. Coding the as-
sociated procedures or scripts is tedious work. While
some of the complexity of the scripts arises from ac-
cessing legacy data, much of it is because of the ad hoc
manner in which exceptions are handled.

We develop a simple metamodel that supports
interoperating businesses represented by autonomous
agents. Like traditional metamodels, our metamodel
captures the structuring of activities. However, un-
like traditional metamodels, our metamodel includes



XING et al.: A COMMITMENT-BASED APPROACH FOR BUSINESS PROCESS INTEROPERATION
1327

Fig. 3 Model of interoperating to plan a trip.

concepts dealing with persistence and commitments to
support exceptions and revisions. Figure 2 presents our
metamodel in UML [4]. We now discuss its main con-
cepts.

• A task identifies a definite piece of work. Tasks
may be atomic or compound. We model a task as
taking inputs and producing results, both of which
map to resources (such as databases). A task is
executed only if it is triggered; upon completion it
produces an event, which (through the connectors)
may trigger other tasks.

• Capabilities implement tasks by defining the pri-
mary processing required of a task. They are han-
dles to procedural code that would do the bulk of
the computation in an enterprise.

• Connectors capture the control flow among the
tasks. They also capture the data flow among
tasks by binding the outputs and inputs of suc-
cessive tasks. On the surface, these connectors are
traditional and include Fork, Branch, Or-join, and
And-join. However, their operational semantics is
nontraditional and supports reentrance, which is
essential for managing commitments properly, es-
pecially to enable revisions.

• A role provides the capabilities required of any
tasks assigned to it. During execution, a concrete
agent with matching capabilities is bound to each
role. Importantly, roles are used to specify the
applicable commitments. Thus, roles capture the
underlying organizational structure. Agents can
volunteer to assume certain roles that would re-
quire them to perform certain tasks by executing
their capabilities. Thus, an agent playing a role
must implement all the capabilities that the role
provides and must honor the metacommitments of
that role.

• A commitment relates a debtor role, a creditor
role, and a condition, in the scope of a context
group [16]. This means that the debtor is obliged
to the creditor to satisfying the given condition.
The context group is the virtual organization that

provides the scope of the interoperation. The con-
dition of the commitment involves the relevant
predicates from the domain. In our example, the
airline can commit to the given traveler that she is
confirmed on a particular flight.
Domain-level commitments, such as the above,
arise at run time. They are not represented in the
models and don’t show up in the metamodel.
Importantly, commitments are flexible, and can be
revoked or modified. For example, even a con-
firmed flight booking or an entire flight can be
canceled. However, the revocation or modification
of commitments is constrained through metacom-
mitments, which are commitments whose condi-
tion itself involves commitments. In our example,
the airline can commit to the traveler that if the
flight that she is on is canceled, the airline will
book her on an alternative flight. In other words,
if the airline has to cancel the commitment (of the
booking), then the airline will create an alternative
commitment. That is, the above is a metacommit-
ment.
Metacommitments are important because they
capture the structure or qualitative aspects of ser-
vice agreements. Service agreements may have ad-
ditional domain-specific details.
Our metamodel codifies the important kinds of
metacommitments as metacommitment patterns.
We have found a small set of patterns that cover
real-life examples as well as other research scenar-
ios. For expository ease and to save space, we re-
strict this paper to the six main patterns.
These patterns handle revisions and capture the
major classes of semantic exceptions [15] as arisen
in example 1. These exceptions deal with the ongo-
ing interoperation, not dealing with low-level pro-
gramming errors such as divide-by-zero.
In most cases, the metacommitment patterns ap-
ply in conjunction with the connectors, which
carry the information about which commitments
are made. However, in some cases, patterns can



1328
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

apply across two or more connectors.

We use the following notation. Rectangles repre-
sent tasks to each of which a role is assigned. Each
task has associated resources. Solid arrows represent
the connectors. Associated with each connector is a
metacommitment from its source role to its target role.
Single-dashed lines represent metacommitments from
the target of a connector to a role. Double-dashed lines
represent metacommitments that go across more than
one connector.

Example 2: Figure 3 illustrates our metamodel ap-
plied on Example 1. The control and data flows are as
described in Example 1. The applicable metacommit-
ment patterns are that the roles will notify and renotify
other roles, entertain requests and updates, satisfy their
customers and abort from their producer. ✷

4. Metacommitment Semantics

Commitments help the agents behave in a coherent
manner to realize the robustness and flexibility that we
desire. Specifying and managing commitments through
metacommitments is at the heart of our approach.
Since constraining the specifications is the major pur-
pose of metamodeling, we define a small but expres-
sively rich set of metacommitment patterns. By adding
further structure, these patterns help us specify inter-
actions that are coherent at the level of the applica-
tion domain. These patterns are based on a study of
real-life interoperation as well as of examples from the
literature. Our patterns have two properties crucial for
inclusion in a metamodel. They are

• minimal, in that each pattern imposes the fewest
reasonable restrictions to maximize the agents’ au-
tonomy.

• composable, so the patterns may be assigned in any
combination by a modeler.

4.1 Basic Behavioral Model

To support minimal and composable metacommitment
patterns, we require that the agents follow a basic be-
havioral model. Agents who follow this behavioral
model may invoke any capabilities (implemented in
any manner), but the agents persist and include well-
defined states in which they can reexecute a capability,
and enter into commitments. The proprietary details
of the capability or the agent’s design are not revealed.

Figure 4 shows the basic behavioral model ex-
pressed as a statechart. Statecharts are well-established
in software engineering as a means to specify concurrent
computations [5]. Typically, such descriptions involve
complex sequences of events, actions, conditions and in-
formation flow that combine to form a system’s overall

Fig. 4 Basic agent behavioral model.

behavior. A statechart is primarily composed of states
(OR-states, AND-states, and basic states) and transi-
tions. Transitions are labeled by an expression of the
form e[c]/a. Intuitively, event e triggers the transition
if condition c is true when e occurs. As a result, action
a is performed. Each of e, c, and a is optional. The
states in our statecharts are abstract and correspond to
sets of physical states of the underlying computation.

On receiving a request or a control signal, an
agent following basic behavioral model begins reason-
ing. Upon completion, it sends the results to some se-
lected consumers and commits to those results. Fur-
ther events may cause the agent to reexecute its rea-
soning. If the results change substantially to invalidate
the agent’s commitments, it announces the new results
(canceling the old commitments and creating the new
ones). The behavioral model just limits the agents’ ac-
tions. However, the agent will have specific metacom-
mitments that force it to carry out certain actions.

4.2 Metacommitment Patterns

We now consider some interesting metacommitment
patterns. The ones discussed here are the simplest and
most common six of the ten odd patterns that we have
studied.

P1. Notify the consumer. This pattern comes into
effect when a role finishes its execution for the
first time. COMPUTING DONE is an event that
signifies the “computed” state in the statechart
of Fig. 4. The rule is fired when COMPUT-
ING DONE is received. Results are sent to the
given consumer and the associated commitment
is created and stored. (Shown in Fig. 5, (p1).)

P2. Renotify the consumer. This pattern is enacted
when an agent finishes its execution for a second



XING et al.: A COMMITMENT-BASED APPROACH FOR BUSINESS PROCESS INTEROPERATION
1329

Fig. 5 Metacommitment patterns: (p1) notify consumer, (p2) renotify consumer, (p3)
entertain request, (p4) entertain update, (p5) satisfy consumer, (p6) abort from producer.

or later time. If a previous commitment to a con-
sumer doesn’t hold, then it must send the update
information to the consumer and store the new
commitment. (Shown in Fig. 5, (p2).)

P3. Entertain request from another role. This pattern
consists (from Fig. 4) of the start, reasoning, and
computed states, and the REQUEST EVENT
transition and the succeeding transition. (Shown
in Fig. 5, (p3).)

P4. Entertain update from producer. This pattern
consists (from Fig. 4) of the committed, rea-
soning, and recomputed states, and the UP-
DATE EVENT transition and the succeeding
transition. (Shown in Fig. 5, (p4).)

P5. Satisfy the consumer. This pattern is similar to
entertain-update pattern with UPDATE EVENT
replaced by DISSATISFACTION EVENT. The
practical ramifications of this pattern are much
greater, however, because it enables an agent to
send a complaint upstream and to demand that
a property it desires in its inputs be satisfied.
(Shown in Fig. 5, (p5).)

P6. Abort from producer. This pattern comes into ef-
fect when a role aborts its execution. This pat-
tern consists of committed, initial states. When
an abort event occurs, an abort message is sent to
the given consumer and associated commitment is
canceled. (Shown in Fig. 5, (p6).)

Pattern composition is an important concept in

object-oriented design and analysis. Here we use the
concepts to compose agent behaviors. Each pattern
shows one agent interaction property, which is consid-
ered as minimal granularity for representing agent be-
havior. Thus each pattern represents one agent prop-
erty. We compose patterns: p1, p2, p3, p4, p5, and p6

to obtain basic agent behavior model. The basic agent
behavior model satisfies each property of all of these
patterns. You can find the details for pattern composi-
tion in [22].

Let’s consider a special agent, which periodically
supplies latest information to its consumer. The in-
formation is automatically delivered to its consumer
agent without explicit request message. The method
seems particularly suitable for the conveyance of sen-
sor data. If the sensor data changes the new value is
automatically forwarded to the consumer agent that
processes these data. We call the agent as a monitor
agent. We choose patterns: p1, p2, p3, p4 and compose
them to obtain a monitor agent behavior model (see
Fig. 6). Although it satisfies these properties of p1, p2,
p3, p4, it doesn’t satisfy properties of p5 and p6. Thus
the monitor agent is simpler than the basic agent in
behavior.

Example 3: Figure 3 illustrates our metamodel ap-
plied on Example 1. In the following, we apply these
metacommitment patterns to the example.

• After the travel agent receives a request from the
customer, this forces it to perform the task Make
order by entertain-request pattern.

• After the travel agent finishes its task, it notifies



1330
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

Fig. 6 Monitor agent behavioral model.

the hotel and airline agents about the customer’s
order information respectively, such as the date,
place, and price by using notify pattern.

• When the hotel and airline agents receive the re-
quest from the travel agent, this forces them to
perform their tasks book flight and book room by
using entertain-request pattern.

• After the airline and hotel agents finish their tasks,
they notify the flight, hotel and price information
to the customer by using notify pattern.

• If the customer is dissatisfied with the itinerary
schedule and suggests a different date or destina-
tion city, he renotifies the travel agent about the
revisions by using satisfy the consumer pattern.

• When the travel agent receives the revised re-
quests, it entertains this updated on account of
entertain update commitment pattern. If the ef-
fects of the revisions are significant and lead to
the violation of a prior commitment by the travel
agent, the travel agent may propagate the effect of
revisions to hotel and/or airline agent(s).

• When the hotel, or airline agent receives the re-
vised information, it entertains the updated and
reexecutes Book flight or Book room.

• After the hotel, or airline agent finishes its tasks,
it can send the updated information to the cus-
tomer by using renotify pattern if any of the prior
commitments don’t hold any more.

• Sometimes the customer’s requirements cannot be
satisfied by the airline agent after the airline agent
tries several times. The airline agent sends the
abort information to the travel agent by abort pat-
tern. The travel agent tries another airline agent
by notify pattern, or send an abort information
to the customer by abort pattern. It depends on
the customer’s decision about whether it wants to
abort the order, or renotify the travel agent of a

new requirement. ✷

4.3 Connectors

For brevity, we consider a single generic connector with
m inputs and n outputs. The connector fires if all in-
puts are received and the condition on some out-branch
evaluates to true. This translates to a simple forward-
chaining rule. When the connector requires fewer than
the total number of inputs (e.g., if it is an or-join), then
the rule for each of the receiving agents is a little more
complex to count the number of available inputs, so it
can fire when the desired number of them has arrived.

After the connector condition evaluates to true and
target tasks have been executed, there might be up-
dates or corrections sent from source tasks that can
require reexecution by the target tasks. We term this
behavior reentrance.

There are two approaches for handling reentrance.
One, the connector condition is always checked to en-
sure that the number of executions of each task reen-
tering the connector is identical. (This test is essential
for the first execution.) Two, the connector condition
is not checked for executions (after the first execution).
Events generated by the source tasks are sent directly to
the target, which may reexecute. The second approach
is more practical, but also more challenging from a the-
oretical standpoint, e.g., to ensure correctness.

5. Discussion

Because of the autonomy and decentralization of the
participants, specifying and managing e-commerce in-
teractions can be challenging. Conventional techniques
fall into one of two extremes, being either too rigid
(over-restricting the designer) or too unstructured (not
helping the designer). Our commitment-based ap-
proach takes the middle path, emphasizing the coher-
ence desired from the activities of autonomous decen-
tralized entities, but allowing the entities to change
their mind in a controlled manner, which enables them
to achieve progress in a dynamic, unpredictable world.

Sycara et al. consider the problem of matchmaking
in heterogeneous agents [18]. Their approach essentially
involves matching agents based on their capabilities.
This complements our approach because finding agents
with the right capabilities is an important subproblem
for us. A possible synthesis is an enhanced approach
that will also consider the metacommitments that the
agents are willing to support.

There are several products and a huge body of
literature on workflows. The work on rule-based sys-
tems for workflows is pertinent. A lot of it, however,
deals with the lower-level aspects of workflow manage-
ment. Several approaches include rules for handling
exceptions [2], [17], but they do not capture the bigger



XING et al.: A COMMITMENT-BASED APPROACH FOR BUSINESS PROCESS INTEROPERATION
1331

patterns of long-lived interactions, as studied here.
The CREW approach provides one of the best

recent approaches from the database community [10].
Kamath and Ramamritham develop a rich model for
workflow that includes failure handling and enables op-
portunistic rollback, restricting the extent of the com-
pensation activities. They consider the interactions
among the different tasks. CREW can accommodate
interactions among workflows, including the important
case where a workflow feeds information to another, and
can change its results under some circumstances. Like
CREW, we consider higher-level abstractions, but un-
like CREW, we also consider abstractions that relate to
the organizational aspects of the workflow. Some of our
patterns are designed to accommodate opportunism in
rollback, e.g., by renotifying consumers of updates only
when necessary.

The language for action metamodel involves com-
mitments as well [21], and is applied in the Action-
Workflow tool. This metamodel uses loops representing
a four-step exchange between a customer and a per-
former : (a) a request from the customer, (b) negotia-
tion by the two about the task, (c) actual performance
of the task, and (d) evaluation of the performance by
the customer. A step may potentially be nested with
other loops. The loops metamodel has some limita-
tions. It only considers two actors at a time, and does
not explicitly consider the surrounding organizational
structure. It cannot easily accommodate modifications
or revocations of the commitments.

Several agent-based approaches exist. Klein and
Dellarocas exploit a knowledge base of generic excep-
tion detection, diagnosis, and resolution expertise [11].
Specialized agents are dedicated to exception handling.
This approach is complementary to ours; special roles
could be included in our approach with commitments
by other roles. The advanced decision environment for
decision tasks (ADEPT) project considered workflow
management [9]. This project emphasized negotiation
among agents. However, the underlying notion of com-
mitments doesn’t allow contextual nesting, as in our
approach.

Our approach synthesizes conventional software
engineering techniques (namely, statecharts and pro-
cess modeling) with artificial intelligence techniques
(namely, agents and commitments) to develop a power-
ful approach for interoperation among autonomous, de-
centralized entities. Several interesting technical prob-
lems are opened up by our research. One, we are in-
vestigating an alternative operational semantics for our
approach that goes beyond the conventional statechart
semantics in terms of allowing reentrance and revision.
Two, we are examining how to declaratively character-
ize the different metacommitment patterns and show
how different behavioral models for agents can support
a given set of metacommitment patterns and may show
how, in effect, metacommitments can be compiled out

in certain settings.

References

[1] M. Anderson and R. Allen, “Workflow interoperability: En-
abling e-commerce,” Whitepaper, Workflow Management
Coalition, 1999. www.aiim.org/wfmc.

[2] F. Casati, P. Grefen, B. Pernici, G. Pozzi, and G. Sánchez,
“WIDE workflow model and architecture,” TR 96.050, Di-
partimento di Elettronica e Informazione, Politecnico di Mi-
lano, 1996.

[3] CBL, Common business library, 1998. www.veosystems.com
/xml/cbl/cbl.html.

[4] M. Fowler, UML Distilled: Applying the Standard Object
Modeling Language, Addison-Wesley, Reading, MA, 1997.

[5] D. Harel and E. Gery, “Executable object modeling with
statecharts,” IEEE Comput., vol.30, no.7, pp.31–42, 1997.

[6] D. Harel and A. Naamad, “The STATEMATE seman-
tics of statecharts,” ACM Trans. Software Engineering and
Methodology, vol.5, no.4, pp.293–333, 1996.

[7] J.G. Hayes, E. Peyrovian, S. Sarin, M.-T. Schmidt, K.D.
Swenson, and R. Weber, “Workflow interoperability stan-
dards for the Internet,” IEEE Internet Computing, vol.4,
no.3, pp.37–45, May 2000.

[8] ICE, Information and content exchange, 1997. www.w3.org
/TR/NOTE-ice.

[9] N.R. Jennings, P. Faratin, M.J. Johnson, T.J. Norman, P.
O’Brien, and M.E. Wiegand, “Agent-based business pro-
cess management,” International J. Cooperative Informa-
tion Systems, vol.5, no.2 & 3, pp.105–130, 1996.

[10] M. Kamath and K. Ramamritham, “Failure handling and
coordinated execution of concurrent workflows,” Proc.
International Conference on Data Engineering (ICDE),
pp.334–341, 1998.

[11] M. Klein and C. Dellarocas, “Exception handling in
agent systems,” Proc. 3rd International Conference on Au-
tonomous Agents, pp.62–68, Seattle, 1999.

[12] OBI, Open buying on the Internet, 1998. www.openbuy.org.
[13] OTP, Open trading protocol, 1998. www.otp.org.
[14] RosettaNet, Home page, 1998. www.rosettanet.org.
[15] S.K. Rustogi, F. Wan, J. Xing, and M.P. Singh, “Handling

semantic exceptions in the large: A multiagent approach,”
Technical Report, Computer Science Department, North
Carolina State University, 1999.

[16] M.P. Singh, “An ontology for commitments in multiagent
systems: Toward a unification of normative concepts,” Ar-
tificial Intelligence and Law, vol.7, pp.97–113, 1999.

[17] M.P. Singh and M.N. Huhns, “Automating workflows for
service provisioning: Integrating AI and database technolo-
gies,” IEEE Expert, vol.9, no.5, pp.19–23, Oct. 1994.

[18] K. Sycara, J. Lu, M. Klusch, and S. Widoff, “Matchmaking
among heterogeneous agents on the Internet,” Proc. AAAI
Spring Symposium on Intelligent Agents in Cyberspace,
1999.

[19] Z. Tian, J.-Y. Chung, L.Y. Liu, J. Li, and V. Guttemkkala,
“Business-to-business e-commerce with open buying on the
Internet,” TR, IBM Institute for Advanced Commerce,
1999. www.ibm.com/iac.

[20] M. Venkatraman and M.P. Singh, “Verifying compliance
with commitment protocols: Enabling open web-based mul-
tiagent systems,” Autonomous Agents and Multi-Agent
Systems, vol.2, no.3, pp.217–236, Sept. 1999.

[21] T. Winograd and F. Flores, Understanding computers and
cognition: A new foundation for design, Addison-Wesley,
Reading, MA, 1987.

[22] J. Xing, “Commitment-based interoperation for e-com-
merce,” Ph. D. Thesis, North Carolina State University,



1332
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

2001.
[23] XML, Extensible markup language, 1997. www.w3.org/

XML/.

Jie Xing received the B.S. degree
in Applied Mathematics from Shanghai
Jiaotong University, China, in 1989 and
the M.E. degree in Computer Aided De-
sign from Beijing Institute of Technol-
ogy, China, in 1992 and the Ph.D. degree
of Operations Research Program, North
Carolina State University, USA in 2001.
His research interests include multiagent
systems, business process interoperation
and e-commerce. Currently he works at

IBM Corporation.

Feng Wan received the B.S., and M.S.
degrees in Computer Science from Bei-
jing University, China, in 1994, 1997 re-
spectively. He is presently a Ph.D. candi-
date of department of Computer Science,
North Carolina State University, USA.
His research interests include multiagent
systems, workflow and e-commerce. Cur-
rently he works at Simpliciti Software So-
lution Inc.

Sudhir Kumar Rustogi received
the Ph.D. degree in Civil Engineer from
North Carolina State University, USA in
1998 and the M.S. degree in Computer
Science from North Carolina State Uni-
versity, USA in 1999. Currently he works
at Cisco Systems Inc.

Munindar P. Singh is currently
an associate professor in computer sci-
ence at North Carolina State University.
He received the Ph.D. degree in computer
science from the University of Texas at
Austin in 1993. His current research in-
terests include the theory and practice of
multiagent systems with a special empha-
sis on communication languages, interac-
tion protocols, and agent teams for car-
rying out complex, dynamic, and coordi-

nated workflows in virtual enterprises and electronic commerce.
His book, Multiagent Systems, was published by Springer-Verlag
in 1994, and his coedited Readings in Agents was published by
Morgan Kaufmann in 1998. He is Editor-in-Chief of IEEE Inter-
net Computing and a member of the editorial board for Kluwer’s
Journal of Autonomous Agents and Multi-Agent Systems. He is
the recipient of an NSF Career Award and an IBM Partnership
Award.


