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Abstract

Workflows are the semantically appropriate com-
posite activities in heterogeneous computing envi-
ronments. Such environments typically comprise
a great diversity of locally autonomous databases,
applications, and interfaces. Much good research
has focused on the semantics of workflows, and
how to capture them in different extended transac-
tion models. Here we address the complementary
issues pertaining to how workflows may be declar-
atwely specified, and how distributed constraints
may be derived from those specifications to enable
local control, thus obuviating a centralized sched-
uler. Previous approaches to this problem were
limited and often lacked a formal semantics.

1 Introduction

Workflows are composite, semantically appropriate
activities that execute in heterogeneous environments.
In such environments, extremely common in practice,
the challenge 1s to interoperate properly without vi-
olating the autonomy of the components. Workflows
address this challenge [5]. Transactional workflows,
which primarily involve database transactions as their
component activities, are of great interest. The desir-
able semantic properties for such workflows are best
represented by different extended transaction models
[4]. These models overcome the limitations of the tra-
ditional, ACID, model [6] by relaxing the atomicity,
isolation, and consistency requirements of the ACID
model in various ways.

The reported work concentrates on the complemen-
tary, distributional, aspects: how workflows of any
model may be declaratively specified, and how the
given specifications may be executed in a distributed
manner. We have developed a general facility—
with a language and execution model—to specify
and schedule intertask dependencies. Our approach
makes no assumptions about the component systems
or activities—in particular, they may not be databases
or transactions!

We propose a language based on a simple form of
process algebra that proves remarkably effective in
capturing the desired properties of workflows through
intertask dependencies [13]. This language deals with
the coordinational aspects, but not with the details
of the constituent tasks—this is a major strength.
Intertask dependencies can be used to formalize the
scheduling aspects of a large variety of, and combina-
tions of, workflow and transaction models. Declarative
primitives are useful not only for ease of specification,
but also because they facilitate run-time modifications
of workflows, e.g., in response to exception conditions.
Our approach can express the primitives of [10], which
can capture those of [3] and [8]. Our approach is more
general than previous scheduling approaches: whereas
they are limited to loop-free tasks, we can handle ar-
bitrary ones. Our notation and examples are designed
to highlight similarities with the literature where pos-
sible; only the essential distinctions are made.

Because of the heterogeneity and inherent distribu-
tion of the environments where workflows arise, it is
crucial that workflow specifications be converted into
distributed executions. In this paper, we provide a
temporal semantics for our specification language. We
use this semantics to give formally define how guards
on events may be calculated. The guard on each event
is localized on that event and used to control its exe-
cution in a distributed manner. Our formal definition
is not only easily applicable, but yields several impor-
tant technical results—about correctness and various
independence properties, which facilitate rapid calcu-
lations of the guards. Certain related but orthogonal
issues, such as event attributes, are discussed infor-
mally in [14]; we do not repeat those discussions here.
Our approach has been implemented.

Section 2 briefly delineates our execution model and
architecture for workflow processing. Section 3 intro-
duces dependencies and shows how workflows can be
formally expressed using them. It also discusses some
important aspects of scheduling dependencies. Sec-
tion 4 shows how to synthesize constraints on events as



guards that can be localized on the individual events.
This 1s a natural way to distribute the scheduling of
workflows. This section also shows how to execute
events using their guards. Next it gives some techni-
cal results on the guard computation, to prove correct-
ness and to justify some calculational simplifications.
Section 5 shows how parametrized events and tasks of
arbitrary structure can be accommodated.

2 The Execution Model
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Figure 1: Some Common Task Agents [12]

To best distribute the necessary computations, our
approach associates an agent with each task. The
agent—typically placed close to its task—embodies a
coarse description of the task, including only states
and transitions (or ewvents) that are significant for co-
ordination. Our approach applies to arbitrary agents
and to any set of significant events (see Figure 1). The
agent performs the important function of interfacing
the task with the scheduling system. It informs the
system of uncontrollable events like abort and requests
permission for controllable ones like commit. When
triggered by the system, it causes appropriate events
like start in the task. An agent may intercept requests
or remote procedure calls made to the task (as in our
implementation), or be explicitly informed of all tran-
sitions by the task (this requires some reprogramming,
but is conceptually simpler).

Our approach maximizes local autonomy, since the
task is minimally affected when its agent is inserted
into the computational system. The invisible states of
the task are not exposed by the agent and its interface
is not violated. This clearly precludes certain kinds
of interactions among tasks, but that is unavoidable if
autonomy 1s to be preserved.

We instantiate an active entity or actor for each
event type [1]. Each actor maintains the current guard
for its event and manages its communications. The
guard is a temporal logic expression, which defines the
condition under which that event may occur. In the
simplest case, when a task agent is ready to make a
transition, it attempts the corresponding event. Intu-

itively, an event can happen only when its guard eval-
uates to true. If the guard for the attempted event is
true, it is allowed right away. Otherwise, it is parked.
When an event happens, messages announcing its oc-
currence are sent to actors of other relevant events.
These may be at remote sites on the network. When an
event announcement arrives, the receiving actor sim-
plifies its guard to incorporate this information. If the
guard becomes true, then the appropriate parked event
is enabled.

The above is the simplest case. Further complexity
is involved for cyclic constraints and for events that
may be instantiated multiple times (in tasks of arbi-
trary structure). Other important situations include
those where the given event may have to be proac-
tively triggered or where it cannot be delayed [14].

3 Event Algebra

Our formal language, used to specify acceptable com-
putations or traces, is based on an algebra of events
[13], which is related to the proposal of [11]. A user
would typically be supplied with some graphical nota-
tion for specifying workflows, which would be trans-
lated into our formal language. Event symbols are the
atoms of our language. We also introduce for each
event symbol e a symbol € corresponding to its com-
plement. Throughout, 2 means s defined as.

3.1 Syntax

Y is the set of significant event symbols, T is the alpha-
bet, and £ is our language of event expressions. A de-
pendency, D, is an expression of £. A workflow, W, is
a set of dependencies. Since previous approaches con-
sidered loop-free tasks only, they did not distinguish
event types from event instances or tokens. However,
this distinction is crucial when arbitrary tasks are con-
sidered. For expository ease, we initially take event
symbols as naming event tokens. Later, we allow them
to be parametrized, i.e., treat them as event types.

Syntax 1 e € X implies that e,e € T’

Syntax 2 ' C &

Syntax 3 Fi, Fy € £ implies that Fq - 5, F1 + E>,
E{|E; €&

Syntax 4 0, T €&

3.2 Semantics

The semantics of £ is given with respect to traces.
Technically, traces are finite or infinite sequences of
events. Intuitively, each trace describes a fragment of
a possible computation in the system. Our seman-
tics thus associates expressions with sets of possible
computations. This is important because expressions
are used (a) to specify desirable computations and (b)
to determine event schedules to realize such computa-
tions.

Each trace is a member of the universe, Ug. Ug
contains all traces on T such that (a) no trace contains



both an event and its complement, and (b) no event
(instance) occurs more than once on any trace. F,
...are expressions; e, ...are events; u, ...are traces;
i, ...are indices. For 1 < i < size(u), u; denotes
the ith event in u; it is undefined otherwise. For a
trace u € Ug and an expression £ € £, u = F means
that u satisfies F/. For convenience, we overload event
symbols with the events they denote, but our usage is
always unambiguous. Traces are written as event se-
quences enclosed in ( and ) brackets. Thus (ef) means
the trace in which event e occurs followed by the event
f. A 2 () is the empty trace.

Definition 1
Ug 2 {u:ueT*UTYA((Fj i uj =€) = (Vj 1 uj #

AV (u =eAuj =e) = i=j)}

Semantics 1 u = fiff (Jj:u; =f),if feT
Semantics 2 uE E1 + Ey ifuE By VulE By
Semantics 3 u = Fy - Fy iff (Fv,w :u =vw Av |
El ANw I: Ez)
Semantics 4 u = E1|Fy ifful= By Au = By
Semantics 5 u = T

This semantics validates various useful properties of
the given operators, e.g., associativity of +, -, and |,
and distributivity of - over + and over |. For con-
venience, we define the intension or denotation of an
expression as [E] & {u: u |E F}. Thus the atom e de-
notes the set of traces at which event e occurs. Ey - Es
denotes memberwise concatenation of the traces in the
denotation £y with those for E5. E; + F5 denotes the
union of the sets for E; and E5. Lastly, F1|Fy denotes
the intersection of the sets for £y and Fs.

Example 1 Let T' = {e¢,¢, f,_?}._ Then Ug =
{A(e), (£), (@), (£). (ef), (Fe), (ef), (fe), (ef), (fe),
(€f),(fe)}. Also, [0] = {} and [T] = U¢. [e] =

{{e), (ef). (fe), (ef), (fe)} and [ef] = {(ef)}. Onme
can verify that [e + €] # T and [e[e] = 0. 1

As running examples, we use two dependencies due
to [10]. These are well-known in the literature: they
have been used in [2, 8] and are related to the primi-
tives in [3]. In Klein’s notation, e— f means that if e
occurs then f also occurs (before or after €). This may
be formalized as (€+ f)—see Example 2. Klein’s e < f
means that if both events e and f happen, then e pre-
cedes f. This may be formalized as (€+ f +e¢ - f)—see
Example 3.

Example 2 Let D_, = e+ f. Let v be a trace that
satisfies D_, (i.e.,v = D_). v satisfies e, iff e occurs on
v, whence € cannot occur on »v. Hence, v must satisfy
f. There is no constraint as to the relative order of e

and f. 1

Example 3 Let Do =€+ f+¢- f. Let v be a trace
such that v = D.. v satisfies both e and f iff both e
and f occur on v. Thus neither € nor f can occur on v.
Hence, to satisfy Do, v must satisfy e- f, which requires
that an initial part of v satisfy e and the remainder

satisfy f. In other words, if e and f both occur on v,
then e precedes f. I

Example 4 Consider a workflow which attempts to
buy an airline ticket and book a car for a traveler. The
key semantic requirement is that both or neither task
should have an effect. Mutual (e.g., two-phase) com-
mit protocols cannot be executed, since the airline and
car rental agency are different enterprises and possibly
their databases don’t have a visible precommit state.
We can use the fact that there are several mutually in-
distinguishable instances of plane seats and rental cars
to relax the scheduling requirements.

Assume that (a) the booking can be canceled: thus
cancel compensates for book, and (b) the ticket is non-
refundable: buy cannot be compensated. Assume all
subtasks have at least start, commit, and abort events,
like the RDA transactions of Figure 1. For simplicity,
assume that book and cancel always commit. Now the
desired workflow may be specified as (1) Spuy + Stook
(initiate book if buy is started), (2) Cray + Coook * Couy (if
buy commits, it commits after book—this is reasonable
since buy cannot be compensated and commitment of
buy effectively commits the entire workflow), and (3)
Chook + Chuy + Scancer (compensate book by cancel if buy
fails to commit).

Note that (2) explicitly orders cjoo before cpyy—as
in Example 3. However, (1) and (3) do not in them-
selves order any events—see Example 2. When the
events Spoor and Scqncer are to be triggered only by the
scheduler, then the above specification suffices. How-
ever, to be triggered, the events should have the at-
tribute triggerable [2]. The scheduler causes the events
to occur when necessary, and may order them before
or after other events as it sees fit. However, if the
two events may occur independently, then the speci-
fication must be strengthened further. For instance,
if spoor may be directly attempted by a user applica-
tion independently of spy,, then we must ensure that
either (i) spoor is accepted only if spy, also occurs—
e.g., by adding Spoor + Stuy, or (i) Spoor 1s accepted
but Scancer occurs unless spyy occurs—e.g., by adding
m+m+scancel~ I

3.3 Enforcing Dependencies

The scheduler must ensure that any trace that is re-
alized satisfies all stated dependencies. An important
component of the state of the scheduler is determined
by the dependencies it is enforcing, because they spec-
ify the traces 1t must allow. As events occur, the possi-
ble traces get narrowed down. An event e occurs when
the scheduler (a) accepts that event if requested by the
task agent in which that event arises, (b) triggers that
event in the task agent on its own accord, or (c) re-
jects the complement of that event if the complement
is requested by the task agent. The scheduler has no
choice but to accept nonrejectable events like abort
[14]. Consider how the state of the scheduler evolves



Figure 2: Scheduler States and Transitions Repre-
sented Symbolically

when it enforces a dependency. After each event, the
state equals the remnant of the dependency yet to be
enforced.

Example 5 Figure 2 shows the state changes for de-
pendencies D¢ = (€+ f+e-f)and D, = (e+ f). If
the complement of events e or f happens, then D is
necessarily satisfied. If e happens, then either f or f
can happen later. But if f happens, then only & must
happen afterwards (e cannot be permitted any more,
since that would mean f precedes e). Similarly, for
D_. the scheduler can permit € or f to happen right
away, but if e happens first, it must be followed by f
and if f happens first, it must be followed by €. I

3.4 Residuation

We now formalize the requirements illustrated above.
The determination of whether and when an event e
may occur relative to some dependency must be based
on

1. Whether e can occur in the initial part of the cur-
rently remaining part of any of the traces for which
the given dependency is true; and

2. Whether accepting e would leave the scheduler in a
state where it (a) may prevent some proper traces,
or (b) generate some improper traces.

Our approach relies on the fact that when depen-
dencies are expressed in £, then the above decisions
can be made symbolically and efficiently. In effect, the
scheduler’s states are captured initially by the stated
dependencies, and throughout processing, by expres-
sions derived from them. The operation of computing
the resulting set of traces corresponds to residuation
in our algebra. We define residuation as an operator /
(which is not in &, so that it cannot be used to specify
workflows—e.g., e/ f is not a well-formed dependency).

Semantics 6 v | E1/Fy iff (Vu :u |E B2 = (uv €
Us = uv = Fy))

In our usage, E; is a general expression and E; is
an event. The above model-theoretic definition clearly
meets the criteria motivated above. It is possible to
characterize residuation symbolically by a set of equa-
tions or rewrite rules. The equations below assume

that the given expression is in a form where there is
no | or + in the scope of -. This holds for CNF, which
can be obtained by repeated application of the distri-
bution laws. Thus E in equations 3, 7, and 8 must be
an atom or a sequence expression. For simplicity, we
identify € with e. I'g is the set of events mentioned in
FE, and their complements.

Residuation 1 0/F =0

Residuation 2 T/E=T

Residuation 3 (¢ - F)/e = F

Residuation 4 (Fy + Fy)/e = (E1/e + Eq/e)
Residuation 5 (F1|F2)/E = (E1/E)|(E2/E))
Residuation 6 F/e = E,ife,e ¢ g

Residuation 7 (¢ - E)/e =0,if e € T and e # ¢’
Residuation 8 (¢ - E)/e =0,ife € T'g

Example 6 In Figure 2, we can verify that resid-
uating each state label by any of its out-edge la-
bels yields the label of the next state. For instance,

(E+F+ef)/e = (E/e)+(f/e)+(ef/e)) = (0+F+f) =

(f + f). Similarly, (e + f)/f =2. |
Theorem 1 Equations 1 through 8 are sound. The
proof requires an interesting quotient construction,

which is developed in [13]. H

4 Guards on Events

The above development naturally leads to a centralized
dependency-centric scheduler, in which dependencies
are explicitly represented in one place in the system.
However, that approach would suffer from all the prob-
lems attendant to centralization. Rather than invent a
distributed dependency-centric scheduler, we designed
a distributed event-centric one. This enables all the
information pertinent to decisions about an event to
be localized on that event. An implementation of this
approach requires

e determining the conditions on the events by which
decisions can be taken on their occurrence

e setting up messages so that the relevant information
flows from one event to another

e providing an algorithm by which the different mes-
sages can be assimilated.

We satisfy these prerequisites through the symbolic
computation of guards on events. In order to properly
convert from the dependency representations to the
event representations, we consider all possible com-
putations relevant to each dependency to determine
the various conditions in which a given event can oc-
cur: (a) what should have happened already, (b) what
should not have happened yet, and (¢) what should be
guaranteed to happen eventually. From these condi-
tions, we determine the guard of the event. The guard
is the weakest condition that must hold for the event
to occur, so that correctness is preserved. It turns out
that in the dependencies that are most often of in-
terest in specifying common workflows, the guards of



the participating events are succinct temporal expres-
sions. Before we specify how guards are obtained, we
must augment the underlying language so as to have
a sufficiently expressive formalism.

4.1 Temporal Logic

We now present 7, the formal language in which the
guards are expressed. This language enables events
that have occurred to be explicitly distinguished from
those that have not yet occurred as well as from those
that have not yet occurred, but will eventually occur.

Syntax 5 £ C 7T
Syntax 6 Fq,Fy € T implies that OF,, OF, - FEj,
FEi+ Es, E1|E2, E, - Es€T

The semantics of 7 is given with respect to a trace
(as for &) and an index into that trace. The semantics
of T enables the progress along a given computation
to be exactly characterized and used to determine the
scheduler’s action at each event. Our semantics is es-
sentially the standard one for linear temporal logics,
except that our traces are sequences of events, not of
states. For i > 0, u |=; £ means that E is satisfied on
u at index i. For j > 0, u/ is the suffix of u from in-
dex j. Syntax rule 5 can be thought as a simple type
coercion from &€ to 7, which justifies fresh semantic
definitions for expressions in &.

The traces used in the semantics of £ are further
restricted to be maximal. Specifically, the top-level
calls to the semantics of £ are made with maximal
traces; the recursive calls may not be so. Maximality
is captured as follows: Ur 2 {u:ue€UgA (Ve e T :
(3j:uj =eVu; =€))}. Thus A & Ur, for T # 0 (we
assume ' # 0).

Semantics 7 u = fiff (Fj<i:u;j=f),if fel
Semantics 8 u |=; By + Es iff u |=; By or u | B
Semantics 9 u | Ey - Ex iff (35 < i:u 5 E1 A
w i Ea)
Semantics 10 u |&; E|Ey iff u l=; By Au = By
Semantics 11 u |; T
Semantics 12 u |, OF iff (Vj:i<j=>uls E)
Semantics 13 u = OE iff (Fj: i< jAu 5 E)
Semantics 14 u |; “F iff u l5; F

OF means that £ will always hold; GF means that
F will eventually hold (thus Oe entails Ce); and = F
means that £ does not (yet) hold. Semantic condi-
tion 7 validates the stability of events: if an event is
satisfied at a given index, it is satisfied at all future
indices as well. Because of stability, we have Oe = e.
However, but O-e # —e still holds.

Example 7 Let u = (efg...) be a trace in Ur. One
can verify that u =g $Og; u o —e|f|g; u =0 O(f -
9); u 1 Oe|=flmg;uffre-giandu s e g

Example 8 Figure 3 shows the possible traces for
' = {e,e}. For larger alphabets, the set of traces is
larger, but there is no conceptual difference. On differ-
ent possible traces, e or @ may occur. Initially, neither

—e | v v v
Oe v

Se| v v

—e | Vv v v

Oe N
Oe v v

Figure 3: Temporal Operators Related to Events

e nor € has happened, so traces (e) and (€) both sat-
isfy —e and —€ at index 0. Trace (e} satisfies Ce at
0, because event e will occur on it; similarly, trace ()
satisfies Ce at 0. After event e occurs, Oe becomes
true, —e becomes false, and $e and —€ remain true.
The table in figure 3 illustrates the following results:
(a) Oe 4+ O€ # T—neither e nor € may have occurred
at certain times, e.g., initially; (b) Ce + 8 = T—
eventually either e or € will occur; (¢) Ce|Ce = 0—
both e and € will not occur; (d) Ce+0€ # T—initially,
€ has not happened, but e may not be guaranteed; (e)
—e is the boolean complement of Oe (me+0e = T and
—e|0e = 0); and (f) me4+0€ = —e (OF entails —e). The
above and allied results were our main motivation in
designing the formal semantics of 7. |

By enriching the formal language, we are able to
make certain useful distinctions explicit. Two opposite
intuitions about events can be seen. One, e is true
precisely when e has occurred and will remain occurred
forever. Two, e is true precisely when it is definite
that e will occur, even if e has not occurred yet. The
former corresponds to the O operator under stability.
The latter corresponds to the & operator.

4.2 Computing Guards

—e|e|-f|~f |~ f|-T

Dco=¢+f+e-f D_=e+f

Figure 4: Computing Guards on Events With Respect
to Different Dependencies

We now show how to formally calculate G(D, e), the
guard on e due to dependency D. Each dependency
is true of a set of traces. For each trace, we consider
whether it allows the given event and if so, what must
have occurred before, what must not have occurred
before, and what must occur after the given event.



Through a small insight, we are able to replace certain
sequences by conjunctions—the guards on other events
ensure that no spurious traces are realized. Below, the
first term reflects the case when e occurs first, and the
remaining terms reflect other events occurring first.
Here T'pe & Tp — {e,e}.
Definition 2 G(D,e) A
Trerp. (BfIG(D/f,¢€))

Figure 4 illustrates our intuition. Each picture en-
codes all traces on T' = {e, €, f, f}. The initial node in
the dependency representation is labeled —e|—€|=f|=f
to indicate that no event has occurred yet. The nodes
in the middle layer are labeled Oe, etc., to indicate
that the corresponding event has occurred. To reduce
clutter, labels like $e and —e are not shown after the
initial state. To compute the guard on an event, we
sum the contributions of different paths on which it
occurs. The contribution of a path ending in 0 is 0.
For a path ending in T, the contribution is the label
of the pre-state for the event conjoined with the label
of the future post-state. In each case, we delete the
event and its complement from the label.

(CD/) Aser,,e =) +

Example 9 We use the above definition to compute
guards for some simple dependencies.

1. G(T,e)=(T[CT)+0=T.

2. G(0,e) = (T|C0)+0=0.

3. Gle,e) = (T|OT)4+0=T.

4. G(g,e) = (T|C0)+0=0.

5. G(D<,®) =

(= fI=FIOT)+(Of|G(E,2))+(TF|G(T,?). It is easy
to see that this reduces to T.

6. G(D<,e) = (~fI=FIO(f + 1)) + (BSIGE€)) +
(OF|G(T,e)). Using O(f + f) = T and the above
two guards, this reduces to (=f|=f) 4+ Of, which

reduces to —f + Of. Hence, G(D<,e) = =f.

7. Similarly, G(D<, f) = T.
8. G(Dq, f) = (—e|—€|<Ce) 4+ Oe 4+ Og, which simplifies
to Ce + Oe.

Consider the guards from D.. Event € can occur at
any time, and e can occur if f has not yet happened
(possibly because it will never happen). Similarly, f
can occur anywhere, but f can occur only if e has
occurred or € is guaranteed. I

The guard on an event e due to a workflow W is
the conjunction of the guards due to the dependencies
in W that mention e—see theorems 7?7 and 7?7 in
section 4.4.

4.3 Execution By Guard Evaluation

Execution with guards is conceptually straightforward.
The guard on an event e is evaluated when it is submit-
ted. Evaluation usually means checking if the guard is
T, in which case e can occur. This results in a mes-
sage Oe being sent to all events that depend on e. In

other cases (see below), a Ge may be sent to indicate
promising. We use a limited set of proof rules to reduce
guards when messages arrive. Oe reduces subexpres-
sions Oe or Ce to T, and —e to 0. However, Oe and —e
are unaffected when <e is received. And, Oe and e
reduce to 0 and —e to T, when O¢ or <€ is received.

Example 10 Consider the guards due to D given in
Example 9. If f is attempted first, its guard is not T,
so 1t is parked. Event € can occur right away when
attempted. When f is informed of this, its guards
reduces to T, and it is allowed to occur. 1

However, greater complexity is required when the
guard on an event e includes a subexpression of the
form —f, for which the scheduler must ensure that
events e and f agree whether f has happened or not.
A related situation arises when guards of two events
refer to each other as in Example 11. In that case
the events can occur only if both agree that each will
happen, thereby enabling the other to happen.

Example 11 Consider dependency D_. and its
“transpose” DT = (f +¢). These result in e’s guard
being Of and f’s guard being <$e. Thus e requires
Of, while f requires <e.

The scheduler must achieve consensus among the
events regarding their mutual occurrence or order.
Our implemented approach is to setup messages so
that one of the events makes a conditional promise to
the other, using which the latter can proceed, generate
a message, and thereby cause the first to discharge its
promise [14].

4.4 Results on Guard Calculations

The main advantage of formalizing the guard calcula-
tions is that it enables us to prove the correctness of
the resulting executions. The above definition also al-
lows us to prove certain helpful theorems, which justify
the simplification of the guard computations in many
cases of interest. We state some results next; proofs
have been omitted for reasons of space.

Theorem 2 G(D+ FE,e) = G(D,e) + G(E,e), if
FpNTeg=0N1

Lemma 3 G(D,e) = —g|G(D,e) + (Og)|G(D/g,¢),
for any event g & {e,e}. i

Theorem 4 G(D|E,e) = G(D,e)|G(E,¢), if
FpNTg=01

(D) is the set of computations that sat-
isfy D. Notice that G(ey...ep...en,€5) =
Oeq|...|0ep—1|7€k41 .- -€n|OlER1 - - - €n).
Lemma 5 formalizes the intuition behind Definition 2
as explained in section 4.2.

Definition 3 TI(D) 2 {p : p = e1...en A

((D/fex)/ .. ) en =T}



Lemma 5 G(D,e) =
E(el...ek...en)EH(D)/\e:ek G(€1 <o €. En, 6) |

This formalization helps in proving the following
crucial result.

Definition 4 A workflow W generates a trace u iff

(Vj:ujp1=e= (YD eW : uk; G(D,e))).
Theorem 6 W generates u iff (YD e W :u = D). I

5 Generalizing to Arbitrary Tasks

So far, our approach has considered specific event in-
stances only. This is clearly too restrictive. We modify
the syntax of £ and 7 to parametrize event atoms by
attaching a tuple of all relevant parameters. Com-
monly relevant parameters include task 1ds, database
keys, and other unique ids. We now consider two dif-
ferent ways of scheduling parametrized dependencies
to handle intra- and inter-workflow requirements.

5.1 Parametrized Workflows

The simplest uses of parameters are within given work-
flows, where the parameters on different events are
identical, or at least closely related. Attempting some
key event binds the parameters of all events, thus in-
stantiating the workflow afresh. The workflow is then
scheduled as described in previous sections. We redo
Example 4 below.

Example 12 Now we use cid as the customer id
to parametrize the workflow. The parameter cid is
bound when the buy task is begun. The explana-
tions are as before—now we are explicit that the
same customer features throughout the workflow. (1)

Spbuy [c1d] 4 Spoor [c1d], (2) Chuy[ctid] + choor [cid] - chuy[cid],
and (3) cpook[cid] + chuylcid] + Scancer[cid]. |

When domain-specific unique identifiers are not
available, we can uniquely identify each event by (a)
the identity of the agent in which it occurs and (b)
the count of the event. Thus each agent can maintain
a counter for each event (or a single counter for all
events) and increment it whenever it attempts an event
or an event 1is triggered in it. For practical reasons, we
consider events in different agents to be different types
and have a separate actor for each of them. Different
instances of an event are different tokens of the same
type.

The notion of event IDs is well-known in transac-
tion processing: e.g., [7] mentions using operation IDs
in a recovery protocol to ensure uniqueness of opera-
tions recorded on persistent storage. Our contribution
is in making this obvious notion compatible with in-
tertask dependencies, and showing how to reason over
the latter in the presence of parameters.

5.2 Arbitrary Tasks

More challenging cases arise when different events have
unrelated parameters. Such cases occur in the spec-

ification of concurrency control requirements across
workflows or transactions.

Importantly, the event IDs do not need to depend
on the structure of the associated task agent. Our
scheduler does not need to know the internal struc-
ture of a task agent. An agent may have arbitrary
loops and branches and may exercise them in any or-
der as required by the underlying task. Hence, if we
can handle parameters correctly, we can handle arbi-
trary tasks correctly!

The unbound parameters in a guard expression are
treated as if universally quantified. This means that
certain enforceable dependencies may become unen-
forceable when parametrized, e.g., when they require
an infinitely many events to be triggered because of a
single event occurrence.

Example 13 Let the b; event denote a task T;’s en-
tering its critical section and the e; event denote T;’s
exiting its critical section. Then, mutual exclusion be-
tween tasks T and 75 may be formalized as follows by
stating that if 77 enters its critical section before 75,
then T exits its critical section before T enters. (Con-
currency control requirements such as serializability
are similar, except that they impose a uniform order
over data access events.)

boly] - b1[x] + ex[x] + bafy] + e1[x] - bo[y] 1

We lack the space to elaborate on the required rea-
soning in detail. However, the following example has
all the essential ingredients. It shows how guards on
parametrized events can grow and shrink as necessary.
Under appropriate conditions, a guard is resurrected.
This is essential for dealing with tasks that are not
loop-free, or of any fixed structure: indeed, Exam-
ple 13 makes no assumptions about the conditions un-
der which the two tasks attempt to enter or exit their
critical sections.

Example 14 Let the guard on e[z] be (= f[y]+0g[y]).
The variable y is not bound. Assume that initially
none of the f[y]’s has happened. Therefore, = f[y] is
true, for all y. Thus e[z] can go ahead when it is
attempted. Suppose f[y] happens, for a particular g.
This reduces the guard on e[z] to Og[y]|(—f[y]+Og[y]),
which is neither T nor 0. Now if e[z] is attempted, it
must wait. Later when Og[y] arrives at e[z], the guard
on e[z] is reduced back to (=f[y] + Og[y]). Then e[z]
is once again enabled.

One might wonder about the value of parametriza-
tion to our formal theory. If we cared only about intra-
workflow parametrization, we wouldn’t need parame-
ters explicitly, since they could be introduced extralog-
ically, i.e., by modifying the way in which the theory is
applied. However, when we care about inter-workflow
parametrization, 1t is important to be able to handle
parametrization from within the theory.



6 Conclusions

A prototype of our system has been implemented [15].
Our approach is provably correct, and applies to many
useful workflows in heterogeneous, distributed envi-
ronments. Much of the required symbolic reason-
ing can be precompiled, leading to efficiency at run-
time. Although we begin with lazy specifications,
which characterize entire traces as acceptable or un-
acceptable, we setup our computations so that infor-
mation flows as soon as it is available, and activities
are not unnecessarily delayed. We believe this will lead
to good scalability.

Klein’s approach, which is only sketchily described
in [10], is the closest to our approach in that it is event-
centric and distributed. However, it is limited to loop-
free tasks, and doesn’t handle event attributes. Klein
assumes that the structure of tasks can be expressed in
a star-free regular expression—hence the restriction to
loop-free events. Gunthor’s approach is based on tem-
poral logic, but is centralized [8]. These approaches
are somewhat ad hoc in their details. Lastly, our pre-
vious approach, which constructs finite automata for
dependencies, is centralized [2]. Tt avoids generating
product automata, but the individual automata them-
selves can be quite large. The past approaches cannot
express or process complex dependencies as easily as

described here.

The underlying execution mechanism should pro-
vide a consistent view of the temporal order of events.
The compilation phase can detect these conditions and
add messages to ensure that there are no problems.
The consensus requirements we mentioned are actu-
ally too strong. In some cases, because of the restricted
language in which dependencies are expressed, certain
consensus requirements can be eliminated without loss
of correctness. We do not discuss these additional opti-
mizations here. An important conceptual point is that
mutual dependencies in workflows are included only
when necessary, not because the transaction model
forces them upon the programmer. Thus inefficien-
cies are suffered only when unavoidable. Declarative
specifications enable modification of the workflows to
suit semantic and performance requirements, e.g., so
that cross-system dependencies can be removed.

We showed how we can handle parametrized depen-
dencies within our theory. Although it took no signif-
icant effort in our approach to do so, this is an impor-
tant conceptual advance—the simplicity only shows
the intuitiveness of our approach. We believe that
extralogical parameters can be added to the previous
approaches; but to do it as above might be a challenge
for them. It would be helpful in our approach to allow
the parameters to be restricted in various ways to cap-
ture more details of information flow. This should lead
into general constraint languages, and is a connection
that we plan to explore.
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