Scheduling workflows by enforcing intertask
dependencies §

P C Attief, M P Singh§, E A Emerson||, A Shethq and M Rusinkiewicz+

1 School of Computer Science, Florida International University, Miami, Florida 33199,
USA. attie@Qfiu.edu

§ Department of Computer Science, North Carolina State University, Raleigh, North
Carolina 27695-8206, USA. singh@ncsu.edu

|| Department of Computer Sciences, The University of Texas at Austin, Austin, Texas
78712, USA. emerson@cs.utexas.edu

§ Large Scale Distr. Info. Sys. Lab, Department of Computer Science, University of
Georgia, Athens, Georgia, USA. amitQom.cs.uga.edu

+ Department of Computer Science, University of Houston, Houston Texas, USA.
marek@uh.edu

Abstract. Workflows are composite activities that can be used to support and
automate multisystem applications involving humans, heterogeneous databases and
legacy systems. The traditional atomic transaction model, successful for centralized
and homogeneous applications, is not suitable for supporting such workflows. Intertask
dependencies, which are conditions involving events and dependencies among workflow
tasks, are used to specify the coordination requirements among the workflow tasks and
are a central component of most workflow models. They form a basis for developing
a uniform formal framework for workflows, which is a key contribution of this work.
In this paper, we formalize intertask dependencies using temporal logic. This involves
event attributes, which are needed to determine whether a dependency is enforceable
and to properly schedule events. Fach dependency is represented internally as a finite
state automaton that captures the computations that satisfy the given dependency.
Sets of automata are combined into a scheduler that produces global computations
satisfying all relevant dependencies, thus enacting the given workflow. This algorithm
is rigorously proved correct; it has been implemented.

Short title: Scheduling workflows by enforcing intertask dependencies

November 22, 1996

1 A preliminary version of this paper was presented at the 19’th International Conference on Very Large
Databases, Dublin, Ireland, 1993, under the title “Specifying and Enforcing Intertask Dependencies.”

2

1. Introduction

One of the main challenges in current database research is to design approaches—
theories, languages, methodologies—for the development of applications that depend
on related information stored in heterogeneous, multiple existing systems. The Carnot
project at MCC addressed these challenges to build and support complex applications
by developing tools and techniques [4]. Relazed task management and workflows were
key areas of work in this context [17, 31]. The architecture and results of this project
are outlined in general terms in [33].

A workflow involves multiple (possibly heterogeneous) tasks (also called activities
or steps) that need to be orchestrated or coordinated. A task is a computation that
performs some useful function—database transactions are tasks of particular interest.
To efficiently develop multisystem applications that involve humans and access existing
heterogeneous and closed systems, we must be able to modularly capture the execution
constraints of various applications. In many such systems, the data can be accessed
only through the existing interfaces, even if it is internally stored under the control of
a general-purpose DBMS. Such systems are frequently referred to as legacy systems.
Complex applications that access several legacy systems or involve other forms of
heterogeneity are better characterized as workflows than transactions. Workflows consist
of related tasks executed on different systems with domain-specific semantic constraints
among them. Because of their importance in modern, open, information environments,
workflows are garnering much research interest.

The requirements of the traditional, so-called ACID, transaction model include full
isolation and atomicity [19]. On the one hand, these translate into atomic commitment
and global serializability, which can be too strong for multisystem applications. This
is because they require the component systems to expose their internal states and wait
for each other to progress far enough until all components can commit or abort in
agreement. It is infeasible to modify existing legacy code (which is often undocumented)
to provide synchronization and access to internal state. Such modification would also
violate autonomy requirements of existing systems. On the other hand, it is crucial to
have some support for complex applications, so we cannot do away with all database
primitives. For example, an application may need to ensure that two tasks commit only
in a certain temporal order. An example is a banking application in which deposits
made into an account over a certain period may have to be processed before debits are
made from the account over the same period.

Therefore, we may need to selectively relax the ACID properties for multisystem
transactions to capture precisely the synchrony and coupling requirements based
on the true application semantics. While relaxed- or advanced-transaction models
[9, 10, 24, 28, 29] have been proposed, there is continuing debate whether they are

3

appropriate to support multisystem workflow applications [34, 26]. In any case, intertask
dependencies provide a generic means to capture the constraints among tasks in a
relaxed manner, independent of whether we follow a transaction model and, if so, which
one. Intertask dependencies (also called task relationships or control dependencies), are
constraints over significant task events, such as commit and abort. The concomitant
reduction in constraints across tasks enables the generation of scripts that can be
efficiently executed with a high level of parallelism. This, in turn, may result in higher
availability of data, better response times, and higher throughput.

To illustrate these concepts, let us consider the following scenario. A travel agency
maintains two databases: one containing detailed information about the bookings made
by different agents and another containing a summary of the information in the first
database with the number of bookings per agent. When the summary changes, a task
is run that turns on an alarm if the summary falls below a preset threshold, and turns
off the alarm if the summary rises above the threshold. An obvious integrity constraint
is that for each travel agent, the number of rows in the bookings database should be
equal to the number of bookings stored for that agent in the summary database.

If it holds initially, this constraint can be assured by executing all the updates to
both databases as components of an atomic multidatabase transaction, which is globally
serialized with other transactions [3]. This, however, is impossible if the database
interfaces do not provide visible two-phase commit facilities. And, if they provide a
visible precommit state, it would still be inefficient, requiring resources to be locked
at remote sites. Instead, we assume that the interdatabase integrity is maintained by
executing a workflow consisting of separate tasks that obey the appropriate intertask
dependencies. These dependencies capture the requirement that if a delete task on the
bookings database commits, then the corresponding decrement-summary task should
also commit. Further, if a delete task aborts, while its associated decrement-summary
task commits, then we must restore consistency by compensating for the spurious
decrement. We do this by executing an increment-summary task. Figure 1 shows
the tasks involved in this example; dB, dS, S, and u%a denote the delete-booking,
decrement-summary, increment-summary, and update-alarm tasks, respectively.

When the semantic constraints are relaxed as described above, the delete booking
application becomes a workflow. This workflow will often leave the state of the combined
database system inconsistent. However, it will ensure that consistency will eventually
be restored. This can be justified on semantic grounds, since we know that temporary
inconsistency is not damaging in this particular application. It might appear that we
are introducing a requirement to reason about the semantics. However, the semantics
is involved anyway when programmers design complex applications. Our approach
does not require any additional semantic knowledge. It simply provides high-level
primitives to specify dependencies and thus declaratively capture what would otherwise

4

be captured procedurally.

DELETE
BOOKING
child . child
child
delete decrement |cause | update
booking summary alarm
(dB) (dS) (u?a)
compensate
increment |cause | update
summary alarm
(iS) (u?a)

Figure 1. Task Graph for the Delete Booking Application

We model each intertask dependency as a dependency automaton, which is a finite
state automaton whose paths represent the computations that satisfy the dependency.
Each such automaton ensures that its corresponding dependency is not violated, by
permitting only those events whose execution would not lead to the violation of the
dependency. The scheduler receives events corresponding to a possible task execution.
It queries the applicable dependency automata to determine whether they all allow the
event to be executed. If so, the event is executed; otherwise, it is delayed (if delayable)
and reattempted later.

We present a framework in which dependencies can be stated modularly as
constraints across tasks. We also present a scheduler that enforces all stated
dependencies, provided they are jointly enforceable, and assures that a dynamically
changing collection of tasks is executed in accordance with the dependencies. It does this
by appropriately accepting, rejecting, or delaying significant events. Our contributions
include task behavior modeling, formal modeling of intertask dependencies, and their
provably correct enforcement. Additional details of workflow modeling that are
consistent with this paper are discussed in [25]. The important issue of how dependencies
are generated is complementary to the goals of this paper—see, e.g., [28, 30].

The rest of the paper is organized as follows. Section 2 provides the technical and
methodological background for our work and illustrates it using the delete bookings
application discussed above. Section 3 describes how we formally specify dependencies
using the temporal logic CTL [12, 13], discusses event attributes and their impact on the
enforceability of dependencies, and considers how dependencies can be added or removed
at run-time. Section 4 gives a formal definition of a dependency automaton, which we
use to represent each dependency; it also shows how dependency automata operate and
enforce their corresponding dependencies. Section 5 presents our execution model as well
as the notion of wiable pathsets, which we use as a correctness criterion. It formalizes

5

these definitions and uses them in the definition of a scheduling algorithm. It also shows
how a relaxed transaction model such as the Sagas [16] can be described (and hence
enforced) as a set of dependencies. Section 6 briefly discusses the concurrency control,
safety and recovery issues. A description of CTL and a rigorous proof of correctness of
the scheduling algorithm are given in the appendices.

2. Background

The specification and enforcement of intertask dependencies has recently received much
attention [5, 9, 10, 22, 25]. Following [5], we specify intertask dependencies as constraints
on the occurrence and temporal order of certain significant events. Klein has proposed
the following two primitives [22]:

(i) e; — ey: If €1 occurs, then e; must also occur. There is no implied ordering on the
occurrences of e; and e,.

(ii) e; < eq: If e; and ey both occur, then e; must precede es.

Well-known examples of dependencies include:

e Commit Dependency [5]: Transaction A is commit-dependent on transaction B,
iff if both transactions commit, then A commits before B commits. Let the
relevant significant events be denoted as emy and emp. This can be expressed
as cmy < cmp.

e Abort Dependency [5]: Transaction A is abort-dependent on transaction B, iff if
B aborts, then A must also abort. Let the significant events here be abs and abg,
so this can be written abg — ab4.

e Conditional Existence Dependency [22]: If event e; occurs, then if event es also
occurs, then event ez must occur. That is, the existence dependency between e,
and e3 comes into force if e; occurs. This can be written e; — (es — e3).

Note that we allow dependencies of the form F, — E5, where E; and E, are general
expressions. An expression F can be formally treated as an event by identifying it with
the first event occurrence that makes it definitely true. For example, e, — e3 is made
true as soon as ez or the complement of e; occurs, the complement of e; being an event
whose occurrence implies that e, will never occur.

The relationships between the significant events of a task can be represented by a
state transition diagram, which serves as an abstraction for the actual task by hiding
irrelevant details of its internal computations. This is akin to the intuition behind the
synchronization skeletons of [13]. The execution of an event causes a transition of the
task to another state. Figure 2 shows an example task state transition diagram, based
on figure 17.4 of [14, p. 535]. From its initial state (at the bottom of the diagram), the
task first executes a start event (st). Once the task has started, it will eventually either

Committed

Executing

st
O Not executing

Figure 2. An Example Task State Transition Diagram

abort, as represented by the ab transition, or finish, as represented by the pr transition
(for “done and prepared to commit”). When a task is done, it can either commit, i.e.,
make the cm transition, or abort, i.e., make the ab transition. For simplicity, we omit
the “forget” transition, which comes after ab and cm.

st(dB) — st(dS)

ab(dB) — (ecm(dS) — st(iS))

em(dS) — st(u?a)

em(iS) — st(u?a)

st(u?a) — (em(dS) or em(iS))

(ab(dB) & (ab(dB) < pr(dS))) — ab(dS)

SHIEA R R R

Figure 3. Intertask Dependencies in the Delete Booking Example

Using the state transition diagrams and significant events defined above, we can
represent the travel agent workflow described in the previous section as shown in
Figure 3. The intertask dependencies are shown as “links” between states that result
after the corresponding significant events of the different tasks are performed (& denotes
conjunction). For simplicity, we consider only the dependencies shown in Figure 3.

7

These dependencies mean (1) start dS when dB begins; (2) compensate spurious dS
by executing iS; (3) start u%a when summary changes; (4) start ¢ when summary
changes; (5) start u?a only when summary changes; and (6) abort dS if dB aborts,
unless dS has already committed.

3. Intertask Dependency Declarations

As discussed in Section 2, we specify intertask dependencies as constraints on the
occurrence and temporal order of events. The significant events and transitions of a
task depend on the characteristics of the local system where it executes. Our theory
and implementation apply to tasks with an arbitrary set of task states and significant
events. We assume that an event can occur at most once in any possible execution
of the system. This is not a restriction in real terms. If a task aborts and must be
reexecuted, a new id may be generated for it (and for its events). The dependencies can
be appropriately modified and everything can proceed normally.

3.1. Formal Specification of Dependencies

We adopt the language of Computation Tree Logic (CTL) as the language of our
dependencies [12]. CTL is a powerful language, well-known from distributed computing
(2,6, 8,12, 13]. A brief description of CTL and modeling of various dependencies is given
in Appendix A. The primitives < and — are useful macros that yield CTL formulae.
CTL can uniformly express different dependencies. Since it is a formal language, it helps
reduce ambiguity in communication. It also makes it possible to formally determine the
relationships among different dependencies, e.g., whether they are consistent, or whether
one entails another.

The dependencies should be easily specifiable by users or database administrators.
For this reason, it is essential that the automata that enforce those dependencies
be synthesized automatically from those dependencies. CTL formulae can be used
to automatically synthesize dependency automata: this process is hidden from the
dependency specifier. Thus we retain the flexibility of Klein’s approach, while using
a formal, more expressive and general representation for which a significant body of
research already exists.

3.2. Enforceable Dependencies

The scheduler enforces a dependency by variously allowing, delaying, rejecting, or
forcing events to occur, so that the resulting computation satisfies the given dependency.
Some syntactically well-formed dependencies may not be enforceable at run-time. For
example, the dependency ab(T1) — cm(T5) is not enforceable, because a scheduler can

8

neither prevent ab(77) from occurring nor in general guarantee the occurrence of em/(75).
This is because, in general, a scheduler cannot prevent tasks from unilaterally deciding
to abort. Thus both 7} and 75 can abort.

We associate the following attributes with significant events that meet the given
conditions:

e Forcible, whose execution can be forced;
e Rejectable, whose execution can be prevented;
e Delayable, whose execution can be delayed.

We assume below that local systems on which the tasks are executed provide a
prepared-to-commit state so that a task can issue a prepare-to-commit (pr) event. The
prepared-to-commit state is visible if the scheduler can decide whether the prepared task
should commit or abort. Table 1 below shows the attributes of the significant events
of transactions commonly found in database applications and DBMSs. Therein, a /
indicates that the given attribute always holds, whereas a x indicates that the given
attribute may or may not hold.

Event | Forcible? | Rejectable? | Delayable?
cm X Vv Vv
ab v X X
pr X X X
st v v v

Table 1. Attribute Tables for Some Common Significant Events

Let e, e;, €j, etc. denote any significant event and D(ey, .. ., e,) denote an unspecified
dependency over eq,...,e,. We can characterize the enforceability of dependency
D(ey,...,e,) in terms of the attributes of ey, ..., e,. For example, e; — ey is run-time
enforceable if rejectable(e;) and delayable(e;) hold, since we can then delay e; until es is
submitted, and reject e; if we see that the task that issues e, has terminated (or timed
out: see below) without issuing es. Alternatively, if ey is forcible, then we can enforce
e1 — e at run-time by forcing the execution of e; when e; is accepted for execution.
Yet another (although somewhat vacuous) strategy would be to unconditionally reject
e;. This strategy is available if rejectable(e;) holds.

As another example, consider e; < ey, for which there are two possible strategies.
The first, which can be applied if delayable(es) holds, is to delay es until either e; has
been accepted for execution, or task 1 has terminated without issuing e;. The second,
which can be applied if rejectable(e;) holds, is to let e be executed when it is submitted
and thereafter reject e; if it is submitted.

One way to extend our approach to real-time dependencies is by considering real-
time events, such as clock times (e.g., 5:00 p.m.), as regular events that lack the attribute

9

of delayability. Consider e; < 5:00 p.m.. This dependency is enforceable only if e; is
rejectable. The scheduler can enforce e; < 5:00 p.m. by accepting e; if 5:00 p.m. has
not already occurred (i.e., if it is before 5:00 p.m.) and by rejecting e; otherwise.

3.3. Dynamic Addition and Removal of Dependencies

The preceding exposition assumed that all dependencies are initially given, i.e., at
compile-time. However, dependencies may be added or deleted dynamically at run-
time. The removal of a dependency is achieved simply by removing its corresponding
automaton. The addition of a dependency requires that an automaton be synthesized
for it and used in further scheduling. A dependency may be added too late to be
enforced. Suppose D = e; — ey is added after e; occurs. If ey is not forcible and
is never submitted, D cannot be enforced. This is unavoidable in general, since the
addition of dependencies cannot be predicted. At best we can report a violation when
such a dependency is added.

4. Dependency Automata: Enforcing a Single Dependency

For each dependency D, we assume a finite state machine Ap that is responsible for
enforcing D. Ap captures all possible orders of events for which D is satisfied. The
results of this paper are orthogonal to how the automata are synthesized. For well-known
dependencies, it is most effective to take the automata from a precompiled library of
automata. We return to this topic in section 7.

Ap is a tuple (so, S, %, p), where S is a set of states, sy is the distinguished initial
state, X is the alphabet, and p C S x X x S is the transition relation. We use ¢; to
indicate the specific termination event of task ¢, and ¢ to denote any event which can
either be a significant event (notated with e) or a termination event. We discuss the
generation and usage of termination events below. The elements of ¥ are notated as o,
o', etc. o can be of any of the forms described below.

e afer,...,6m): This indicates that Ap accepts the events ¢; through e,,. If this
transition is taken by Ap, then each ¢; is accepted and, if ¢; is a significant event,
it is then forwarded to the event dispatcher for execution.

e r(ey,...,ey): This indicates that Ap rejects the events e; through e, because the
execution of any of them would violate the dependency D.

e oil||...|||on, where the o; € ¥: This indicates the interleaving of the accept
operations corresponding to o; through o,,.

e 01;...;0p, Where the o; € X: This indicates the accept operations of o; occur before
the accept operations of 0,41 (for 1 <i < (n—1)).

Note that reject operations do not result in actual operations being executed by the

10

dispatcher, but merely cause the sending of a reject message to each task that submitted
a rejected event.

Example Dependency Automata

We represent Ap as a labeled graph, whose nodes are states, and whose edges are
transitions. Each edge is labeled with an element o of ¥. o denotes the actions, such
as accept or reject, that are taken by the scheduler when that transition is executed.

In Figures 4 and 5 below, we give example dependency automata for the
dependencies e; < ey, and e; — eq, respectively. The symbol | indicates choice: an
edge labeled 0|0’ may be followed if the scheduler permits either o or o’

Figure 4. Dependency Automaton for order dependency e; < ey assuming that
rejectable(e2) and delayable(es)

Figure 5. Dependency Automaton for existence dependency e; — e assuming
rejectable(e;) and delayable(e;)

The Operation of an Automaton

The automaton Ap operates as follows. At any time, it is in some state, say, s. Initially,
s = so. Events arrive sequentially. Let € be the current event. If s has an outgoing edge
labeled a(e) and incident on state s’, then the given transition is enabled. This means

11

that, as far as its local state is concerned, Ap can change its state to s’. However, Ap
cannot actually make the transition unless the scheduler permits it (see Section 5).

If the scheduler permits a certain transition, then the automaton can execute it,
thereby changing its local state to keep in synchronization with respect to the events
executed so far. The behavior of the scheduler is such that it accepts an event only if
it can find an event ordering that is consistent with all of the dependency automata
that contain that event in their alphabet. So if it accepts an event, all the relevant
automata must be in agreement. Therefore, each of them must execute the given
accepting transition. This ensures that acceptance of the event does not violate any
of the dependencies in which the event is mentioned. Similarly, the scheduler can reject
an event only if all of the relevant automata reject it, i.e., only if it can find an event
ordering that is consistent with all of the relevant dependency automata executing a
rejecting transition for the event. The same reasoning as for accepting an event applies
here, since the rejection of an event can also cause the violation of a dependency in
which the event is mentioned. Section 5 discusses the operation of the scheduler in
detail.

The following observations concern how a dependency automaton enforces a
dependency. A t; indicates the termination or timing out of task . A dependency
automaton cannot reject a t; event, since it cannot unilaterally prevent such an event.
The importance of t; events is that their submission tells the automaton that events
that may have been submitted by the given task will definitely not be submitted. This
can significantly affect the automaton’s behavior. Knowledge that the given task has
terminated may allow the scheduler to accept for execution a previously delayed event
e;, as the knowledge that e; will never occur may enable the scheduler to infer that the
execution of e; now will not violate certain dependencies that it might have violated
before. This happens, for example, if a dependency e; < e; is to be enforced and e; has
been submitted, but is being delayed. In such a case, the arrival of ¢; ensures that the
dependency e; < e; cannot be violated; consequently, e; can be scheduled (unless doing
so would violate some other dependencies).

Dealing with Failures using Timeouts

We have so far interpreted the ¢; events to indicate the termination of task 7. Ordinarily,
tasks terminate by committing or aborting. However, system problems, such as disk
crashes and communication failures, may cause indefinite waits. For example, the
automaton for e; < ey, shown in Figure 4, delays accepting es until ¢; or e; is submitted.
Thus, this automaton could possibly hang forever, if neither ¢; nor e; is forthcoming.
One policy is to have the automaton accept e when ey arrives and reject eq if e
arrives later. In general, this policy speeds up es’s task at the cost of aborting e;’s task

12

and, possibly, delaying or aborting the global task. In cases where both policies, namely,
one in which an event is indefinitely delayed and the other in which an event is eagerly
rejected, are unacceptable, a policy based on timeouts may be preferred. This would
require tasks to wait, but would allow timeouts to be generated when expected events
are not received within a reasonable time. This is an improvement in practical terms,
but does not require any significant change in our approach. We support timeouts by
modifying the interpretation of the ¢; events in the above and associate them with either
the normal termination of a task or a timeout on the corresponding event, e;. We assume
that e; is not submitted after ¢; has been submitted.

5. The Scheduler: Enforcing Multiple Dependencies

A system must enforce several dependencies at the same time. A naive approach
would generate a product of the individual automata (Ap’s) that each enforce a single
dependency. However, if there are m individual automata each roughly of size IV, then
the product automaton has size of the order of N™. This is intractable for all but the
smallest m. We avoid this “state explosion problem” [7], by coordinating the relevant
individual automata at run-time rather than building a static (and exponentially large)
product at compile-time, using techniques similar to those of [2]. Although the worst
case time complexity is still exponential, we have reason to believe that in many
interesting cases, e.g., certain workflows in telecommunications applications [1], the time
complexity is polynomial. Also, the space complexity of our technique is polynomial
versus the exponential space complexity of building the product automaton.

5.1. The Execution Model

Figure 6 shows the execution model. Events are submitted to the scheduler as tasks
execute. We introduce the correctness criterion of wiable pathsets, which is used to
check whether all dependencies can be satisfied if a given event is executed. Computing
a viable pathset requires looking at all relevant dependency automata. If an event can
be accepted based on the viable pathset criterion, it is given to the event dispatcher for
execution. If an event cannot be accepted immediately, then it still may be possible to
execute it after other events occur, provided that the event is delayable. In that case,
the event is put in the pending set and a decision taken on it later. If the scheduler ever
permits the execution of an r(e) transition by some automata, then e is rejected, and a
reject(e) message is sent to the task that submitted e to the scheduler.

13

Submitted

Event=s Accepted Events . Event Execute

Tasks P Scheduler Dispatcher

R}ejjected <

vents yy Events

Reattempted
]) Delayed Events
Queries Replies
Y

Pending
Set

Dependency

Automata

[indicates a process
(O indicates a data structure

Figure 6. The Execution Model

5.2. Pathsets

We now discuss pathsets, present an algorithm to compute them, and discuss event
execution in more detail. When an event ¢ is submitted, the scheduler searches for a
pathset, i.e., a set of paths with one path from each relevant dependency automaton.
The desired pathset must

(i) accept ¢;

(ii) begin in the current global state of the scheduler;
(iii) be order-consistent;

(iv) be a-closed and r-closed; and

(v) be executable.

A pathset accepts ¢ iff all its member paths mentioning ¢ should accept it and
there should be no paths accepting the termination event associated with €. Order-
consistency means that different paths in the set must agree on the order of execution
of each pair of events. The requirements of a-closure and r-closure mean that for any
event that is accepted or rejected, paths from each automaton referring to that event
must be included and must agree on whether to accept or reject it. Executable means
that all rejected events must have been submitted and all accepted events must have
been submitted or be forcible. A pathset that meets criteria ii—v is called viable. These
conditions ensure that the events in the member paths of II can be executed in the order
imposed by those paths.

After some technical definitions, we give further intuitions and present an algorithm
to compute pathsets.

14

Definition 1. (Global State).

A global state s is a tuple (sp,,...,Sp,,---,Sp,) where sp, is the local state of Ap,,
and Dy, ... D, are all the dependencies in the system. stD; = sp, denotes the project
of s on to D;.

The global state is simply the aggregation of the local states of every individual
dependency automaton.

Definition 2. (Path). A path mp in Ap is a sequence s' 2 §2 %5 _such that
(Vj > 1:(s?,07,87") € pp) where pp is the transition relation of Ap.

A global computation is a sequence of events as executed by the event dispatcher. Recall
that Ap is meant to encode all the computations that satisfy dependency D. Thus, each
path of Ap represents computations that satisfy D. Further, Ap is maximal in the sense
that every possible computation whose prefixes satisfy D is represented by some path in
Ap. By definition, a global computation must consist solely of events accepted by the
scheduler. Our scheduler has the property that, for each dependency D, the projection
of any global computation onto the events in D is represented by a path in Ap. This
means that our scheduler enforces each dependency.

Definition 3. (Pathset).
A pathset II is a set of paths such that:

(i) Each element of II is a path in some Ap.

(ii) Each Ap contributes at most one path to II.

Definition 4. (Source State).
A global state s is a source state of II iff
for every mp in II : the first state of mp is stD.

A source state of a pathset is a global state in which execution of the pathset may
commence.

Definition 5. (Depset).
The depset of an event ¢ is the set of automata in which ¢ is some part of some label
(i.e., € is accepted or rejected).

The depset gives is the set of automata that are potentially relevant for scheduling it.

Definition 6. (Accepts).
A pathset I1 accepts event ¢ iff
for every Ap in depset(e) : there exists a mp € II such that a(e) occurs along 7p.

15

Thus execution of II entails execution of . The scheduler attempts to execute a
submitted event ¢ by searching for a pathset that accepts .

Definition 7. (Rejects).
A pathset I1 rejects event ¢ iff
for every Ap in depset(e) : there exists a mp € II such that r(g) occurs along 7p.

Thus execution of II entails rejection of €. The agent that submitted ¢ is then informed
of this rejection.

Definition 8. (A-Closed).
A pathset 11 is a-closed iff
for every a(e) that occurs along some 7 in IT : IT accepts €.

An event ¢ is executed iff every automaton Ap such that e € ¥4, executes an a(e)
transition. Thus, if some path 7 in pathset II contains an a(e) transition, then that
transition can only be taken if an a(¢) transition in every Ap such that ¢ € 34, is
taken, i.e., if II accepts ¢.

Definition 9. (R-Closed).
A pathset I1 is r-closed iff
for every r(e) that occurs along some 7 in II : II rejects e.

An event ¢ is rejected iff every automaton Ap such that ¢ € X4, executes an 7(e)
transition. Thus, if some path 7 in pathset II contains an r(¢) transition, then that
transition can only be taken if an r(e) transition in every Ap such that ¢ € ¥4, is
taken, i.e., if II rejects e.

Definition 10. (Mutually Order-Consistent).
Paths 7, my are mutually order-consistent iff there do not exist events €1, 9 such that:

(i) a(e1) and a(e2) both occur along 71, and a(e;) occurs before a(es) in 7.
(ii) a(e1) and a(e2) both occur along 79, and a(es) occurs before a(e1) in 7.

This states that m; and 7 do not impose opposite orderings on any pair of events, €;
and €9 to be executed. Thus it is possible to construct a global computation that has
both 7; and 75 as local projections. Note that reject operations, e.g., (1), 7(€2), do not
need to be so ordered, since they do not contribute events to the global computation.

Definition 11. (Order-Consistent).
A pathset II is order-consistent iff
for all m; and 75 in II : m; and my are mutually order-consistent.

This states that no pair of paths in pathset Il imposes opposite orderings on some pair
of events. Thus it is possible to construct a global computation that has all the paths
in IT as local projections.

16

Definition 12. (Executable).
A pathset II is executable iff
for every a(e) or r(e) that occurs along some path 7 in IT :
event € has been submitted to the scheduler.

This reflects the constraint that neither an a(e) transition nor an r(¢) transition can be
executed unless € has been submitted by its agent to the scheduler.

Definition 13. A pathset II that satisfies the following conditions is called viable.
(i) II has the current global state as a source state
(ii) II is a-closed and r-closed
(iii) II is order-consistent
(

iv) II is executable.

These conditions ensure that the events in the member paths of II can be executed in
the order imposed by those paths.

Now when an event ¢ is submitted to the scheduler, the scheduler attempts to
execute € by finding a viable pathset II that accepts €. If such a pathset is found,
then all of the events that are accepted by the pathset are executed in an order that
is consistent with that imposed by the pathset. This results in the global state of the
scheduler being updated appropriately. If such a pathset is not found, then event ¢ is
placed in the pending set. Another attempt at finding a suitable pathset may be made
when more events that have an impact on the acceptability of £ have been submitted.
Event € remains in the pending set until either a viable pathset is found, or a viable
pathset is executed that rejects . In the latter case, ¢ is rejected for execution by the
scheduler and a message is sent to ¢’s agent informing it of this rejection.

5.3. The Pathset Search Algorithm

Figure 7 presents a (recursive) procedure search_PS that searches for viable pathsets.
search_PS is initially called as search_PS((}, {c}, 0, 0, 0, 0, s), where ¢ is an event that
the scheduler is attempting to execute, and s is the current global state. It attempts
to construct a viable pathset by selecting paths from each automaton in AS_due that
are order-consistent with PS and executable. If these paths contain a(e) or r(e) events
that occur in automata outside AS_due, it adds those automata to AS_due, thereby
ensuring a-closure and r-closure of the eventual solution. Then automata in AS_due
are examined one by one by invoking search_PS recursively. Each invocation searches
through the paths of a single automaton (given by the select_a function) and either finds
a solution or recurses. Note that the successful return of a viable pathset only occurs

17

when AS due, ES_a, and ES_r have each been reduced to the empty set, i.e., no edges
are pending, and all the necessary automata have been examined and an appropriate
path selected from each. The arguments of search_PS are:

The

AS due: The automata that the given invocation must consider.

ES_a: The events that the given invocation must accept.

ES_r: The events that the given invocation must reject.

PS: The pathset that has already been computed. The given invocation must extend
this set, either by adding paths from automata that have not yet been considered,
or by extending the paths already in the set.

ES_Done_a: The events that must be accepted and for which the automata in their
dependency sets have already been added to AS_Due.

ES_Done_r: The events that must be rejected and for which the automata in their
dependency sets have already been added to AS_Due.

Curr_St: The current global state. Each of the paths that constitute the returned
pathset must begin at a local state projected from this global state.

data structures of search_PS are:

A: The dependency automaton currently being searched for a path possibly to be
added to the pathset being computed.

P: The set of paths in A that are executable and order-consistent with respect
to the current pathset. These paths are tested for suitability for inclusion in the
pathset being computed.

ES_a": The set of events that must be accepted and for which the current pathset
is not a-closed.

ES_r": The set of events that must be rejected and for which the current pathset is
not r-closed.

PS': The pathset returned by the next recursive invocation of search_PS.

search_PS also uses the following functions:

e a events(PS): The set of events, ¢, for which a(e) occurs along some path in PS.

e revents(PS): The set of events, ¢, for which r(¢) occurs along some path in PS.

e depset(e): As defined above in this section, depset(¢) = {Aple € ¥p}.

e automata_in(PS): The set of dependency automata that contribute a path to PS.
e path_of(A, PS): The path contributed by automaton A to pathset PS.

e select_p(A, P): Returns an arbitrary element of P.

e select_a(AS_due): Returns an arbitrary element of A.

The implementation of the above functions and predicates is straightforward and is
therefore omitted. The annotations of search_PS use the following predicates and
functions;

e o_cons(PS): Returns true iff PS is order-consistent.

18

e exec(PS): Returns true iff PS is executable.
e automata_in(PS, v): The set of dependency automata that contribute a path (along
which 7 occurs) to PS. 7 is either a(e) or r(¢) for some ¢.

search _PS calls the function get_candidate paths(A, ES a, ES r, PS, s0) (given
in figure 8), which returns the set of paths in automaton A that are candidates for
inclusion into the pathset PS that search_PS is building. get_candidate_paths calls
the (recursive) function get_cands(A, ES_a, ES_r, Done_a, Done_r, PS, source)
(given in figure 9) which searches recursively through A as it builds up the appropriate
candidate paths. get_candidate paths and get_cands use the following functions (as
well as some of those listed above):

e last(p): Returns the last state in path p.
e out_edges(s, A): Returns the set of transitions in automaton A that have state s as
a source state.

and the following predicates:

e order_consistent(e, Done_a, Done_r, PS): Returns true iff there is no path p in PS
such that, along p, € occurs before some event in Done_a U Done_r.

e executable(¢): Returns true iff £ has been submitted, or ¢ is a forcible event (in
which case, the scheduler can itself initiate the execution of €).

The symbol A used in figure 9 denotes the empty path.

5.4. The Scheduler

The scheduler is a nonterminating loop, which on each iteration attempts to execute an
event ¢ that has just been submitted or is in the pending set (Figure 6). It does this by
invoking search_PS((, {e}, 0, @, 0, @, s). If this invocation returns a nonempty II, then
IT is immediately executed. Otherwise, ¢ is placed in the pending set. II is executed by
(a) accepting the events that IT accepts in a partial order that is consistent with II and
(b) rejecting all events rejected by II.

Definition 14. (Path Projection).
The projection 771D of global computation 1 onto a dependency automaton D is the
path obtained from 7 by removing all transitions € such that € & ¥ p.

Lemma 1. Let n be a global computation generated by the scheduler. Then, for every
dependency D, 71D is a path in Ap.

Proof sketch. By construction of the scheduler. O

19

search_ PS(AS_due, ES_a, ES_r, PS, ES Done_a, ES_Done_r, Curr_St)
if (ES_.a U ES_r) =0 and AS_due = () then

return;
else { /* Add to the automata set */
AS _due := AS_due U depset(ES_a U ES_r);
ES _Done_a := ES_Done_a U ES_a;
ES Done_r := ES Done r U ES_r;
A := select_a(AS_due); /* select an automaton */
AS_due := AS_due — {A};
P := get_candidate_paths(A, ES_Done_a N X4, ES Done_r N X4, PS, Curr_St 1+ A);
if A € automata_in(PS) then PS := PS — {path_of(A, PS)};
while P # 0§

p := select_p(A, P);

/* check path p */

P :=P — {p}

AS_due’ := AS_due;

ES_a' := a_events({p}) — ES_Done_a;

ES_r' := r_events({p}) — ES_Done_r;

PS' := PS U {p};

ES_Done_a’ := ES_Done_a;

ES_Done_r’ := ES_Done_r;

search PS(AS_due’, ES_a’, ES_r', PS’, ES Done_a’, ES Done_r’;, Curr_St);

if PS’ # () then /* PS’ is viable; end all recursive calls */
AS_due := AS_due’;

ES_a := ES_a/;
ES_r := ES_r/;
PS := PS’;

ES_ Done_a := ES_Done_a’;
ES_ Done_r := ES_Done_r';

return;
endwhile
/* all paths in P failed, so return @ */
PS := (;
return;
}

Figure 7. Pathset Search Algorithm

20

get_candidate_paths(A, ES_a, ES_r, PS, s0)
if A € automata_in(PS) then
p := path_of(A, PS);
s := last(p);
ES a' := ES_a — a_events({p});
ES ' := ES_r — r_events({p});
Done a’' := a_events({p});
Done_r' := r_events({p});
P’ := get_cands(A, ES_a’, ES 1/, Done_a’, Done_r/, PS, s);
return({pp’ | p’ € P'}); /* juxtaposition denotes path concatenation */
else
return(get_cands(A, ES_a, ES_r, (), §, PS, s0));
endif

Figure 8. Get Candidate Paths Function

get_cands(A, ES_a, ES_r, Done_a, Done_r, PS, source)
ifES.a=0AESr =0 then
return();
else
Selected_P := {;
Edge set := out_edges(source, A);
for ¢ € Edge_set do
if executable(c) and order_consistent(e, Done_a, Done_r, PS) then
dest := target_node(¢);
P := get_cands(A, ES_a’ — a_events({c}), ES_r' — r_events({c}),
Done_a U a_events({¢}), Done_r U r_events{(c}), PS, dest);
Selected P := Selected P U {¢;p | p € P};
endfor;
return(Selected_P);
endif

Figure 9. Generate Candidate Paths Function

21
5.5. Complexity of the Pathset Search Algorithm

Let Ap,,...,Ap, be all the dependency automata in the system. For any automaton
Ap, and any event ¢ in the alphabet of Ap,, there will, in general be several local paths
in Ap, containing €. Let ¢ denote the maximum number of such paths, taken over all
events and automata in the system. Then, for any invocation of search_PS, there will
be O(n%) candidate pathsets in the worst case. Since search_PS works by searching for
a viable candidate pathset, it will have O(n?) time-complexity in the worst case. We
note however, that when ¢ = 1, this complexity is linear in n.

Although assuming ¢ = 1 is too restrictive in general, a typical situation in workflows
is that a single stimulus from the “environment” sets up a long chain of activity. More
precisely, there are many dependencies of the form e; — e; and e; < ey where ey is
both delayable and forcible. In this situation, the dependency automata for e; — eo
and e; < ey both consist of a single path containing a(e;) followed by a(ez). Thus, we
partition the automata Ap,,..., Ap, into two classes:

e simple automata, which contain exactly one local path for each event in their
alphabet

e compler automata, which contain more than one local path for some event in their
alphabet

Let the numbers of simple and complex automata in the system be ns, nc respectively
(note ns +nc = n). The worst case time complexity of search_PS can now be rewritten
as O(ns + nc’). In cases where nc << n, the exponential factor nc® will not be a
hindrance to practical application.

5.6. Example of Scheduler Operation

We now give an example of how relaxed transactions expressed with < and — can be
scheduled using our algorithm. For simplicity, let the only dependencies in force be
e1 < ey and e; — ey, where both e; and ey are rejectable and delayable. Let A. and
A_, be the corresponding automata as shown in Figures 4 and 5. Assume that e; is
submitted first. We find a(e;) in A.. However, since no path in A_, begins with a(e;),
the empty pathset is returned and e; added to the pending set. When e5 is submitted,
two executable paths can be found in A_,: a(ez);a(e;) and a(es)|||a(er). The a-closure
requirement now forces the scheduler to search A. for a path that accepts e; and e,.
The only such path is a(e;); a(e2). Since a(e1);a(e2) and a(es); a(er) are not mutually
order-consistent, the only viable pathset is {a(e;1);a(e2), a(e2)|||a(er)}. This is finally
returned. The partial order consistent with it is: e; and then e,.

Table 2 shows how the axioms for the Sagas transaction model [16], that were
formulated in [5] using the ACTA formalism, can be expressed using the < and —
primitives. A Saga, S, is a sequence of sub-transactions, T;, 7 = 1, ..., n. The term ‘post’

22

denotes the postcondition of the given event. The Saga commits iff all subtransactions
are successfully executed in the specified order; otherwise, if one of the subtransactions
aborts, the Saga aborts and the compensating transactions C'T; are executed in the
reverse order. Since the specifications use only the < and — primitives, our scheduler
can be used to execute relaxed transactions with Sagas semantics.

ACTA <, — notation
post(begin(S)) T, BCDT;_, st(T;) — em(Ti—1) A
em(T—1) < st(T;)
CT,WCD CTj;; | em(CTj41) < st(CTy)
n—1BAD S st(CT,—1) — ab(S) A
ab(S) < st(CT,-1)

post(begin(73;)) SADT, ab(T;) — ab(S)
T, WD S cm(T;) < ab(S)
CT,BCDT; st(CT;) — em(T;) A
m(T;) < st(CT)
post(commit(7;)) | CT;,CMD S ab(S) — ¢cm(CT;)
CT,BAD S st(CT;) — ab(S) A
ab(S) < st(CT;)
post(begin(7},)) | SSCDT, cm(7;,) — cm(S)

Table 2. SAGA Dependencies in ACTA and in the <,— Notation

6. Executing Multidatabase Transactions

Three issues in executing multidatabase transactions are: concurrency control, safety,
and recoverability.

6.1. Concurrency Control

Our scheduler is part of a multidatabase environment in which local database systems
(LDBS) cooperate in the execution of global transactions. Each LDBS will, in
general, contain a concurrency control module, which enforces local concurrency control
(typically ensuring local serializability). We may assume that a task executing at each
of the local systems has a serialization event that determines its position in the local
serialization order. For example, if the local system uses two-phase locking (2PL), the
serialization order of a local transaction is determined by its lock point—the point when
the last lock of the transaction is granted.

A problem arises if local concurrency control modules impose an inconsistent
ordering on serialization events of tasks belonging to a given multidatabase application.

23

We resolve this problem by transferring the responsibility for global concurrency control
to the scheduler. This is achieved by restating the concurrency control obligations as
a set of dependencies, which are then processed like other dependencies. Unlike other
scheduling dependencies, concurrency control dependencies arise at run-time, when a
serialization precedence between tasks in different applications is established at some
site. However, once these dependencies are added, they can be processed as usual.
Thus we have a uniform mechanism for both dependency enforcement and concurrency
control.

The main difficulty in this approach is that the serialization events are neither
reported by the local concurrency controllers, nor can they be deduced from the temporal
order of other significant events controlled by the global scheduler (start, commit,
terminate). It is possible for a local concurrency controller to completely execute task
T; before task T; has even begun, yet serialize them in such a way that that 7} precedes
T;. This problem can be overcome by using the idea of tickets introduced in [18]. As
in [18], we may add a ticket read and ticket write operation to each task of a global
application. These ticket read/write operations can be regarded as significant events,
and so their execution can be controlled by declaring dependencies that refer to them.
Thus the required concurrency control is obtained simply by declaring an appropriate
set of ticket access dependencies.

6.2. Flexible Transaction Safety

A flexible transaction [11] is defined as a set of subtransactions and their scheduling
preconditions along with a set of conditions over their final states [11]. These conditions
specify the acceptable termination states of the flexible transaction; it completes
successfully iff it terminates in such a state.

Consider the following example, adapted from [21]. We have a travel agent flexible
transaction, consisting of reserve-flight (F') and reserve-car (C) subtransactions. If we
fail to secure a car reservation, we wish to cancel the plane reservation. This cancellation
is achieved by a subtransaction F'~, which is a compensating transaction for F'. Thus the
set of acceptable termination states for the overall transaction is given in Table 3, where
in, cm, and ab indicate that the subtransaction is in its initial state, is committed, and
is aborted, respectively. The set of acceptable states is a constraint on the execution of
a flexible transaction. This constraint can also be expressed as the set of dependencies
given in Table 3.

6.3. Recoverability

The above approach provides a sound basis for specifying the error recovery criteria for
complex applications. Compensation dependencies are an example of semantic error

24

F |F|C

cm | in | cm

ab |in |in abe < emp-

ab |in | ab | | (abc A cmp) — cmp-

cm | cm | ab cmec — cmp

in |1in in
cm | cm | in

Table 3. Acceptable States of a Flexible Transaction

recovery criteria, because they enable us to initiate additional tasks when a component
of the application fails.

Another set of recovery issues arise when the scheduler itself may fail. The following
data must be checkpointed in order to enable recovery of the scheduler from a failure:

(i) The current state of every dependency automaton.

(ii) Any (partially executed) pathset (see Section 5), plus the current state along every
path in the pathset.

(iii) The set of pending events.

The above data is subject to concurrent updates that must be executed atomically with
respect to the checkpointing mechanism. For example, when an event ¢ is executed,
the current state of every dependency automaton Ap where € occurs in D must be
updated. We do not wish a checkpoint to reflect only some of these updates. It should
either reflect none of them (corresponding to a state before € is executed), or reflect all
of them (corresponding to a state after ¢ is executed).

In addition, the communication mechanism between the scheduler and the tasks
must be persistent, so that no messages are lost while the scheduler is down (i.e., after
a failure and before recovery from that failure). Mailboxes or persistent pipes may be
used to provide this functionality.

7. Conclusions and Future Work

We addressed the problem of specifying and enforcing intertask dependencies. Our
framework allows dependencies to be stated modularly and succinctly as constraints
across tasks. The actual set of significant events and task state transition diagrams is not
predetermined, but can vary with the application. Our framework can be extended to
accommodate the issues of concurrency control, flexible transaction safety, recoverability,
and the enforcement of other dependencies that are introduced dynamically at run-time
(e.g., see [25]).

25

We showed how a dependency can be expressed as an automaton that captures all
the computations that satisfy the dependency. We presented a scheduling algorithm
that simultaneously enforces multiple dependencies. We showed that every global
computation generated by the scheduler satisfies all of the dependencies. We also
showed how relaxed transaction models such as the Saga model can be captured in our
framework. The desiderata for a task scheduler for multidatabase transaction processing
include correctness (no dependencies are violated), safety (transaction terminates only
in an acceptable state), recoverability, and optimality and quality. We have established
the correctness, safety and recoverability of the scheduler; we defer to future work issues
concerning the quality of the schedules generated and the optimality of generating them.

Our approach assumes that finite state automata are available for each dependency
and is independent of how those automata are produced. The automata can readily
be produced manually for the common dependencies. We are developing a synthesis
technique for automatically synthesizing an automaton for a dependency from the CTL
formula for the dependency. This technique extends the CTL synthesis technique of
[13]. Our synthesis procedure requires only the specification of the dependencies, not
of the tasks over which those dependences are defined. That is, the precise transitions
for a task’s state transition diagram do not affect the representations of the different
dependencies. As a result, our procedure generates an open system. By contrast,
traditional temporal logic synthesis methods [13, 27| require a specification of the entire
system. Thus their results have to be recomputed whenever the system is modified. Our
synthesis procedure also takes the event attributes into account. However, this aspect
has not yet been fully formalized and its details remain beyond the scope of the present
paper. Rigorous synthesis techniques are a major open problem that we defer to future
work.

An implementation of this work has been completed as part of the distribution
services of the Carnot project at MCC. Our implementation is in the concurrent
actor language Rosette [32], whose asynchrony and other features make for a natural
realization of our execution model. Key features of our intertask dependency framework
have also been adopted by the METEOR system [25].

Acknowledgments

We are indebted to Greg Meredith and Christine Tomlinson for discussions. We also
benefited from conversations with Phil Cannata and Darrell Woelk. Discussions of this
paper during Amit Sheth visit at ETH-Ziirich and comments by H. Ye were helpful.
Sridhar Ganti provided the Sagas example.

26

References

[1] M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth, “Using Flexible Transactions to Support
Multi-system Telecommunication Applications,” Proceedings of the 18th VLDB Conference,
August 1992.

[2] P. Attie and E. A. Emerson, “Synthesis of Concurrent Systems with Many Similar Sequential
Processes,” Proceedings of the 16th Annual ACM Symposium on Principles of Programming
Languages, pp. 191-201, Austin, Texas, January 1989.

[3] Y. Breitbart and A. Silberschatz, “Multidatabase Update Issues,” In Proceedings of the ACM
SIGMOD International Conference on Management of Data, June 1988.

[4] P. E. Cannata, “The Irresistible Move Towards Interoperable Database Systems,” Proceedings
of the 1st International Workshop on Interoperability in Multidatabase Systems, Kyoto, Japan,
April 1991.

[5] P. Chrysanthis and K. Ramamritham, “Synthesis of Extended Transaction Models Using ACTA,”
ACM Transactions on Database Systems, vol. 19, no. 3, September 1994, pp. 450-491.

[6] E. Clarke, E.A. Emerson, and P. Sistla, “Automatic Verification of Finite State Concurrent Systems
Using Temporal Logic Specifications,” Proceedings of the 10th Annual ACM Symposium on
Principles of Programming Languages, pp. 117-126, Austin, Texas, 1983; journal version, ACM
Transactions on Programming Languages and Systems, vol. 8, no. 2, pp. 244-263, April 1986.

[7] E. Clarke and O. Grumberg, “Avoiding the State Explosion Problem in Temporal Logic
Model Checking Algorithms,” Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing, pp. 294-303, Vancouver, Canada, August 1987.

[8] E. Clarke and O. Grumberg, “Research on Automatic Verification of Finite State Concurrent
systems,” Annual Reviews of Computer Science, vol. 2, pp. 269-290, 1987.

[9] U. Dayal, M. Hsu, and R. Ladin, “A Transactional Model for Long-running Activities,”
Proceedings of the 17th VLDB Conference, September 1991.

[10] A. Elmagarmid, (ed.), Database Transaction Models, Morgan Kaufmann, 1992.

[11] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz, “A Multidatabase Transaction Model
for Interbase,” Proceedings of the 16th VLDB Conference, August 1990.

[12] E. A. Emerson, Temporal and Modal Logic, In Handbook of Theoretical Computer Science, vol.
B, J. Van Leeuwen, (ed.), 1990.

[13] E. A. Emerson and E. Clarke, “Using Branching Time Temporal Logic to Synthesize

Synchronization Skeletons,”

Science of Computer Programming vol. 2, pp. 241-266, 1982.

[14] R. Elmasri and S. Navathe, Fundamental of Database Systems, second edition, Benjamin
Cummings Publishing Company, 1994.

[15] N. Francez, “Program Verification,” Addison—Wesley, 1992.

[16] H. Garcia-Molina and K. Salem, “Sagas,” Proceedings of the ACM SIGMOD Conference on
Management of Data, 1987.

[17] D. Georgakopoulos, M. Hornick, and A. Sheth, “An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure,” Distributed and Parallel Databases,
vol. 3, pp. 119-153, 1995.

[18] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth, “On Serializability of Multidatabase
Transactions through Forced Local Conflict,” Proceedings of the 7th International Conference
on Data Engineering, April 1991.

[19] J. Gray and and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan

27

Kaufmann, 1993.

[20] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communications of the ACM,
vol. 12, no. 10, pp. 576-580, 583, 1969.

[21] W. Jin, L. Ness, M. Rusinkiewicz and A. Sheth, “Executing Service Provisioning Applications as
Multidatabase Flexible Transactions,” Bellcore Technical Memorandum, 1992.

[22] J. Klein, “Advanced Rule Driven Transaction Management,” Proceedings of the IEEE
COMPCON, 1991.

[23] W. Kim, Modern Database Systems: The Object Model, Interoperability, and Beyond, ACM Press
(Addison-Wesley), 1994. Reprinted with corrections, 1995.

[24] H. F. Korth and G. Speegle, “Formal Aspects of Concurrency Control in Long-Duration
Transaction Systems Using the NT/PV Model,” ACM Transactions on Database Systems,
vol. 19, no. 3, September 1994, pp. 492-535.

[25] N. Krishnakumar and A. Sheth, “Managing Heterogeneous Multi-system Tasks to Support
Enterprise-wide Operations”, The Journal on Distributed and Parallel Database Systems, 3
(2), April 1995, pp. 155-186.

[26] F. Leymann, H.-J. Schek, and G. Vossen, Eds., “Transactional Workflows”, Dagstuhl Seminar
Report; 152, IBFI GmbH, Schloss Dagstuhl, D-66687 Wadern Germany, 1996.

[27] Z. Manna and P. Wolper, “Synthesis of Communicating Processes from Temporal Logic
Specifications,” ACM Transactions on Programming Languages and Systems, vol. 6, no. 1,
pp. 68-93, January 1984.

[28] K. Ramamritham and P. Chrysanthis, “A Taxonomy of Correctness Criteria in Database
Applications,” The VLDB Journal, January 1996.

[29] M. Rusinkiewicz and A. Sheth, “Specification and Execution of Transactional Workflows,” In
[23].

[30] M. Rusinkiewicz, A. Sheth, and G. Karabatis, “Specifying Interdatabase Dependencies in a
Multidatabase Environment,” IEEE Computer, vol. 24, no. 12, December 1991.

[31] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, and
A. Wolf, “Report from the NSF Workshop on Workflow and Process Automation in Information
Systems,” Technical Report UGA-CS-TR-96-003, Dept. of Computer Science, University of
Georgia, October 1996. http://Isdis.cs.uga.edu/activities/NSF-workflow/

[32] C. Tomlinson, P.E. Cannata, G. Meredith, and D. Woelk, “The Extensible Services Switch in
Carnot,” IEEE Parallel and Distributed Technology, vol. 1, May 1993, pp. 16—20.

[33] D. Woelk, P. Cannata, M. Huhns, N. Jacobs, T. Ksiezyk, G. Lavender, G. Meredith, K. Ong,
W. Shen, M. Singh, and C. Tomlinson, “Carnot Prototype,” In O. Bukhres and A. K.
Elmagarmid (eds.) Object-Oriented Multidatabase Systems, Prentice Hall International, 1996,
pages 621-648.

[34] D. Worah and A. Sheth, “What do Advanced Transaction Models Have to Offer for Workflows?”
Proceedings of the International Workshop on Advanced Transaction Models and Architectures
(ATMA), Goa, India, August 1996.

Appendix A. CTL

We have the following syntax for CTL (where p denotes an atomic proposition, and f, g
denote (sub-) formulae):

28

(i) Each of p, f A g and —f is a formula (where the latter two constructs indicate
conjunction and negation, respectively).

(ii) EX,f is a formula that intuitively means that there is an immediate successor state
reachable by executing one step of process P; in which formula f holds.

(iii) A[fUg] is a formula that intuitively means that for every computation path, there
is some state along the path where g holds, and f holds at every state along the
path until that state.

(iv) E[fUg] is a formula that intuitively means that for some computation path, there
is some state along the path where g holds, and f holds at every state along the
path until that state.

Appendiz A.1. Formal Semantics

We give the formal semantics of CTL formulae with respect to a structure M =
(S, Ay, ..., Ag, L) that consists of:

S - a countable set of states
A; - € S xS, a binary relation on S giving the possible transitions by process 7, and

L - a labeling of each state with the set of atomic propositions true in the state.

Let A = AjU---UA,. Werequire that A be total, i.e., that Vo € S, Jy : (z,y) € A.
A fullpath is an infinite sequence of states (s, $1, 2. ..) such that Vi(s;, s;11) € A. To
any structure M and state so € S of M, there corresponds a computation tree (whose
nodes are labeled with occurrences of states) with root sy such that s 4 ¢ is an arc in
the tree iff (s,1) € A;.

M, sq = f means that f is true at state so in structure M. When the structure M
is understood, we write so = f. [is defined inductively:

So =P iff p € L(so)

So =f iff not(so = f)

so=fAg iffsg=fandsy=g

so = EX;f iff for some state ¢,
(s0,t) € Aj and t = f,

so = A[fUg] iff for all fullpaths (s, s1,...),
Fi[i > 0Asi EgAYj0<jA] <i=>s; = f)

so = E[fUg] iff for some fullpath (s, s1,-..),
Ji[i > 0Asi EgAYj0<jAj <i=>s; = f)

We introduce the abbreviations f V g for =(=f A —g), f = ¢ for =f V g, and
f=gfor (f = g) A (g = f) for logical disjunction, implication, and equivalence,

29

respectively. We also introduce a number of additional modalities as abbreviations:
AFf for AftrueUf], EFf for E[trueUf], AGf for —EF—f, EGf for —AF—f, AX;f for
—EX;—f, EXf for EX{f V---VEXf, AXf for —EXf.

Particularly useful modalities are AFf, which means that for every path, there
exists a state on the path where f holds, and AGf, which means that f holds at every
state along every path. Thus, AFf is an eventuality formula, which corresponds to a
liveness property and makes a promise that something will happen. Similarly, AGf is
an invariance formula, which corresponds to a safety property and asserts that certain
conditions will hold throughout.

Appendiz A.2. FExpressing Dependencies in CTL

Atomic propositions naturally model the states of a given system: each proposition
corresponds to a significant event and holds in the state immediately following the
occurrence of that event.

Now we show how certain dependencies that were motivated and defined by other
researchers can be expressed uniformly in CTL.

e Order Dependency [22]: If both events e; and e; occur, then e; precedes e;. This

was expressed as e; < ey in the above discussion. In CTL, it becomes:
AG[e; = AG—eq]
That is, if e5 occurs, then e; cannot occur subsequently.

e Existence Dependency [22]: If event e; occurs sometimes, then event e, also occurs
sometimes. This was expressed as e; — ey in the above discussion. In CTL, it
becomes:

—E[-esU(e; A EG—ey)]
That is, there is no computation such that e; does not occur until a state s is reached
where s satisfies (e; A EG—ey), i.e., e; is executed in state s, and subsequently, es
never occurs.

The following instances of the above dependencies have also appeared in the literature.

e Commit Dependency [5]: Transaction A is commit-dependent on transaction B, iff
if both transactions commit, then A commits before B commits. Let the relevant
significant events be denoted as cm4 and cmp.

AG[emp = AG—cm 4]

e Abort Dependency [5]: Transaction A is abort-dependent on transaction B, iff if
B aborts, then A must also abort. Let the significant events here be abs and abg,
so this can be written abg — aby,, and is rendered in CTL just like e; — e above:

—E[-abs U (abp A EG—aby)]

e Conditional Existence Dependency [22]: If event e; occurs, then if event ey also

occurs, then event es must occur. That is, the existence dependency between

30

es and ez comes into force if e; occurs. This can be written e; — (ea — e3).
Translating it to CTL involves two applications of the translation of e; — ey given
above, one nested inside the other. The first application, to e, — e3, yields the
following “mixed” formula:
e; — —E[—e3 U (e2 A EG—e3)]
The second application, which substitutes —E[—e3U(es A EG—e3)] for ey in the CTL
translation of e; — ey given above, gives us
—|E[—|—|E[—|63U(62/\EG—|63)] V)
(e;AEG——E[—e3U(e2AEG—e3)]) |
Eliminating the double negations finally yields the following formula:
—E[E[-e3U(eaAEG—e;)] U
(e1ANEGE[—e3U(eaAEG—e3)])]

Appendix B. Correctness of the Pathset Search Algorithm

We now establish some correctness properties of the pathset search algorithm. We use
Hoare logic [20] to express partial correctness properties, i.e., {Pre} Proc {Post} means
that if procedure Proc is called with arguments that satisfy Pre, then if Proc terminates,
it does so in a state that satisfies Post.

Hoare Logic We use the following fragment of Hoare logic:
Backward Assignment Aziom:

{P< E/X >}X = E{P}
where < E/X > denotes substitution of expression E for variable X.

Rule of Consequence:

P=P, {P}5{Q}, Q@ =Q
{P}5{Q}

where S is any program statement.

Lemma 2. get_candidate_paths(A, ES.an X4, ESrN X4, PS, s4) returns a set of paths

P in A such that the following hold. Here p is any path in P.
(i) P has s4 as a source state

(ii) For path p’ of A, if p’ € PS, then p is an extension of p’
(iii) p is executable

(

iv) p is order-consistent with PS

31
(v) For every ¢ € ES_a N X4, a(e) occurs along p

(vi) For every ¢ € ESr N X4, r(¢) occurs along p. O

We now define the following predicates:

Oce: o_cons(PS) A exec(PS)

Acc: a_events(PS) C (ES_a U ES_Done_a)

Rej: r_events(PS) C (ES_r U ES_Done_r)

Due_a: (Ve € ES_Done_a : depset(c) — automata_in(PS, a(e)) C AS_due)
Due_r: (Ve € ES_Done_r : depset(¢c) — automata_in(PS, r(¢)) C AS_due)
Term: PS # () = (ES.a U ESr = () A AS_due = 0)

The following propositions are used to prove that search PS returns viable pathsets
(lemma 10).

Proposition 3. {Oce} search_PS {Oce}

Proposition 4. {Acc} search PS {Acc}

Proposition 5. {Rej} search_PS {Rej}

Proposition 6. {Due_a} search_ PS {Due_a V PS = 0}
Proposition 7. {Due_r} search_PS {Duer V PS = (}
Proposition 8. {true} search PS {Term}

In proposition 9 below, X and Y are constants.
Proposition 9. {ES_a = X A ES_Done_a 2 Y} search_ PS { ES_ Done.a D (XU Y)}

Propositions 3 to 9, are established using Hoare logic. As an example, we give a proof
of proposition 6 in Appendix C.

Lemma 10. For any event, ¢, and global state s, if search PS((), {e}, 0, 0, 0, @, s)
terminates with PS # (), then PS is viable (w.r.t. global state s)

Proof.
We show that each of the clauses of the definition of viable (definition 13) is satisfied.
The given arguments satisfy Oce, so by proposition 3, Oce holds upon termination
of search_PS. By the same argument, but using propositions 4, 5, 6, 7, respectively, we
establish that Acc, Rej, (Due.a V PS = (), and (Duer V PS = (}) also hold upon
termination of search_PS.
Since Oce holds upon termination of search_PS, PS is order-consistent and
executable upon termination of search_PS (be definition of Oce).

32

By proposition 8 and the assumption of PS # (), we have (ES.a U ESx1 = § A
AS_due = (}) upon termination of search_PS. Together with Acc: a_events(PS) C (ES_a
U ES_Done_a), this yields a_events(PS) C ES Done_a Since PS # () by assumption,
Due_a holds upon termination of search_PS.

By Due.a: (Ve € ES_Donea : depset(¢) — automata_in(PS, a(¢)) C AS_due),
and AS_due = () (established above), we have (Ve € ES_Done.a : depset(e) C
automata_in(PS, a(¢))). Together with a_events(PS) C ES_Done_a (established above),
this gives us (Ve € a_events(PS) : depset(e) C automata_in(PS, a(e))). This implies
that PS is a-closed.

The proof that PS is r-closed follows exactly the same argument as the proof of
a-closure given above, but uses Rej and Due_r in place of Acc and Due_a, respectively.

The get_candidates_path function is always called with global state s as its last
argument, and, by lemma 2, returns a set of candidate paths all of whom have s as their
source state. Since the paths in PS are only taken out of the sets of candidate paths
that get_candidates_path returns, we conclude that PS has s as its source state. Thus
we have proven that PS is viable. O

Lemma 11. search PS(0, {e}, 0, 0, 0, 0, s) terminates for any event &. a

The proof of lemma 11 requires some preliminary definitions and propositions. We de-
fine:
stD if Ap ¢ automata_in(PS)
tate(A PS) =
state(4p, s, PS) { last(p) where p = path_of(Ap, PS) if Ap € automata_in(PS)
and:

rem(Ap, s) = Ay, where s —— " is an edge in A}, iff:
e s s s"isan edgein Ap
e there exists a path from s to s’ in Ap
in other words, A’, is the subautomaton of A, whose states are all the states of Ap

that are reachable from s. A", represents that portion of Ap still to be searched by
search_PS. Finally, we define:
vf(s,PS)=>_ | rem(Ap, state(Ap, s, PS)) |
D
where |A| is the number of edges in automaton A, and D ranges over all of the
dependencies being enforced.

Proposition 12. v f(s, PS) decreases on each recursive call of search _PS.

Proof.
s remains constant, and PS has some (non-empty) path pp added to it, where D' is
some particular dependency. There are two cases:

33

e PS does not contain a path from Apy.

e PS already contains a path p’,, from Ap. In this case, the get_candidate_paths
function will return a set of proper extensions of p’,,, and pp is then selected from
this set.

In either case, |rem(Ap, state(Ap:, s, PS))| decreases, while [rem(Ap, state(Ap, s, P.S))|
remains the same for all dependencies D other than D'. Thus v f(s, PS) decreases. O

Proposition 13. An infinite chain of recursive calls of search_PS does not arise.

Proof.

By proposition 12, vf(s, PS) decreases on each recursive call. Thus the occurrence of
an infinite chain of recursive calls of search_ PS would cause vf(s, PS) to eventually
become less than zero. But this is impossible, since, by the definition of v f(s, PS), we
see that vf(s, PS) > 0 for all values of s and PS. O
We are now ready to provide the proof of lemma 11:

Proof of lemma 11.

There are only two possibilities for non-termination of search_PS:

e An infinite chain of recursive calls of search_PS occurs.
e The (only) while loop does not terminate.

The first case does not arise due to proposition 13. The second case does not arise
due to the following argument. Every dependency automaton is finite. Thus, the
get_candidate_paths function always returns a finite set P. Further, one element is
removed from P on each iteration. It follows that the termination condition of the
while loop, namely P = (), is eventually met, causing termination of the while loop. O

Appendix C. Proof of Proposition 6

We repeat the statement of proposition 6:
{Due_a} search PS {Due_a V PS = 0}

where Due_a <= (Ve € ES_Done_a : depset(s) — automata_in(PS, a(c)) C AS_due)

The proof of this is given by the annotated version of search_PS shown in Figure A1,
along with the accompanying arguments for each annotation. We use a two-part name
for the annotations, where the first part gives a symbolic name for the predicate (which is
then given in the accompanying arguments), and the second part is an instance number,
so that different annotations consisting of the same predicate can be distinguished (e.g.,
Due_a:1 and Due_a:2 below).
Due_a:1

Assumed as a precondition.
Due_a:2

34

Carried forward from Due_a:1, since no variables have been changed.
Due_a:3

Carried forward from Due_a:1, since no variables have been changed.
{Due_a:3} AS_due := AS_due U depset(ES_a U ES_r); {C1:1}
where C1 <L Due_a A (depset(ES_a) C AS_due).

Due_a is preserved since the assignment only changes AS_due, and it does not make
AS_due smaller. (depset(ES_a) C AS_due) is established as a postcondition since
depset(ES_a) C depset(ES_a U ES_r).

C1’:1 where C1' £ (Ve € ES_Done_a U ES_a : depset(g) - automata_in(PS, a(e)) C

AS_due)

We prove C1 = C1', which justifies this annotation.
Due_a A (depset(ES_a) C AS_due) /* definition of C1 */
=
Due_a A (Ve € ES_a : depset(¢) C AS_due)
= /* depset(e) - automata_in(PS, a(¢)) C depset(g) */
Due_a A (Ve € ES_a : depset(e) - automata_in(PS, a(e)) C AS_due)
= /* by definition of Due_a and elementary set theory */
(Ve € ES_Done_a U ES_a : depset(e) - automata_in(PS, a(e)) C AS_due)
{C1':1} ES_Done_a := ES_Done_a U ES_a; {C2:1} where C2 < Due.a

Substituting ES_Done_a U ES_a for ES_Done_a in C2 yields C1’, thus the annotation is
valid by the assignment axiom for Hoare logic.
{C2:2} AS_due := AS due — {A}; {C3:1}

where C3 <& (Ve € ES_Done_a : depset(e) - automata_in(PS, a(e)) C AS_due U {A})
If A ¢ AS_due holds before the assignment, then AS_due is unchanged by the assignment,
and so C3 holds afterwards since AS_due C AS due U {A}. If A € AS _due holds before
the assignment, then AS_due U {A} after the assignment has the same value as AS_due

before the assignment, thus C3 is established.
{C3:2} if A € automata in(PS) then PS := PS — {path of(A, PS)}; {C3:3}

If A ¢ automata_in(PS) holds before the test, then no variables are changes, and so C3
is trivially preserved. Otherwise, depset(¢) - automata_in(PS, a(¢)) either remains the
same or has A added as an element. But since A is an element of AS_due U {A}, the
relation depset(g) - automata_in(PS, a(¢)) C AS_due U {A} is preserved.

{C3:4}

We can carry this annotation into the while loop at each iteration because the unprimed
variables remain unchanged from one iteration to the next. The only time unprimed
variables are changed is immediately before the return statement, which causes
termination of the loop. Thus an assertion over only the unprimed variables which
holds upon entry into the loop will continue to hold at the beginning of every iteration.

35

{C3:4} AS _due’ := AS due; {C4:1}

where C4 <L (Ve € ES_Done.a : depset(c) — automata_in(PS,a(¢)) € AS_due’ U
{A})
Substituting AS_due for AS_due’ in C4 yields C3, thus the annotation is valid by the
assignment axiom for Hoare logic.
{C4:2} PS' := PS U {p}; {C5:1}

where C5 <& (Ve € ES_Done._a : depset(¢) — automata_in(PS’;a(e)) C AS_due')
Substituting PS U {p} for PS" in C5 yields (Ve € ES_Donea : depset(e) —
automata_in(PS U {p},a(e)) C AS_due’). By lemma 2, p is a path in automaton A.
Thus this reduces to: (Ve € ES_Done_a : depset(¢) — (automata_in(PS,a(e)) U A) C
AS due’). This is implied by C4. Thus the annotation is valid by the assignment axiom
and the rule of consequence.
{C5:2} ES Done_a’' := ES Done a; {C6:1}

where C6 <L (Ve € ES_Done_a’ : depset(s) — automata_in(PS, a(e)) C AS_due’).
Substituting ES_Done_a for ES_Done_a’ in C6 yields C5, thus the annotation is valid by
the assignment axiom for Hoare logic.
{C6:2} search PS(AS due’, ES a', ESr', PS', ES Done.a’, ES Done.r/,
Curr_St); {CT:1}

where C7 £ 06 v (PS’ = 0).

This annotation is exactly the same as proposition 6, except that primed variables have
replaced unprimed variables. We assume that it holds. In other words, we establish
proposition 6 by assuming that it holds for all recursive calls, and then proving that it
also holds for the outermost call. Thus, this is a proof by induction on the recursion tree
of procedure search _PS (see for example [15], page 173, rule of parametrized recursion).
{C8:1} where C8 <L (.
Follows from C7:1 and the if-test (PS # 0).
{C8:1} AS_due := AS_due’; {C9:1}

where C9 <L (Ve € ES_Done_a’ : depset(e) — automata_in(PS', a(¢)) C AS_due).
Substituting AS_due’ for AS_due in C9 yields C8, thus the annotation is valid by the
assignment axiom for Hoare logic.
{C9:2} PS := PS5 {C10:1} where C10 <L (Ve € ES_Donea’ : depset(e) —
automata_in(PS, a(¢)) C AS_due).
Substituting PS’ for PS in C10 yields C9, thus the annotation is valid by the assignment
axiom for Hoare logic.
{C10:2} ES_Done_a := ES_Done_a’; {C11:1}

where C11 <& (Ve € ES_Done_a : depset(¢) — automata_in(PS, a(¢)) C AS_due).

Substituting ES_Done_a’ for ES_Done_a in C11 yields C10, thus the annotation is valid

36

by the assignment axiom for Hoare logic.
{C11:2}
Carried forwards from C11:1. Note that C11 = Due_a.

37

search_ PS(AS_due, ES_a, ES_r, PS, ES Done_a, ES_Done_r, Curr_St)

{Due_a:1}
if (ES_.a U ES_r) =0 and AS_due = () then
return;
{Due_a:2}
else { /* Add to the automata set */
{Due_a:3} AS_due := AS_due U depset(ES_a U ES_r); {C1:1}
{C1':1} ES_Done_a := ES_Done_a U ES_a; {C2:1}
ES Done_r := ES Done r U ES_r;
A := select_a(AS_due); /* select an automaton */
{C2:2} AS_due := AS_due — {A}; {C3:1}
P := get_candidate_paths(A, ES Done_a N X4, ES Done_r N X4, PS, Curr_St 1+ A);
{C3:2} if A € automata_in(PS) then PS := PS — {path_of(A, PS)}; {C3:3}
while P # ()
p := select_p(A, P);
/* check path p */
P :=P — {p}
{C3:4} AS_due’ := AS_due; {C4:1}
ES_a’' := a_events({p}) — ES_Done_a;
ES_r' := r_events({p}) — ES_Done._r;
{C4:2} PS' := PS U {p}; {C5:1}
{C5:2} ES_Done_a’' := ES_Done_a; {C6:1}
ES Done_r’' := ES_Done._r;
{C6:2} search_ PS(AS_due/, ES_a’, ES 1/, PS', ES Done_a’, ES Done_r’, Curr_St); {C7:1}
if PS'# 0 then /* PS' is viable; end all recursive calls */
{C8:1} AS_due := AS_due’; {C9:1}
ES_a := ES_a/;
ES_r := ES_.r;
{C9:2} PS := PS'; {C10:1}
{C10:2} ES_Done_a := ES_Done_a’; {C11:1}
ES Done_r := ES _Done_r';
return;
{C11:2}
endwhile
/* all paths in P failed, so return @ */
PS := (;
return;
{PS=10}
}

Figure A1l. Annotated Pathset Search Algorithm

