An Event Algebra for Specifying and Scheduling
Workflows

Munindar P. Singh, Greg Meredith,* Christine Tomlinson, and Paul C. Attief
Microelectronics and Computer Technology Corporation
Research & Development Division
3500 West Balcones Center Drive
Austin, TX 78759
USA

msingh@mcc.com
msingh@cs.utexas.edu

Abstract

Heterogeneous systems arise when preexisting or legacy in-
formation systems are integrated in such a way as to pre-
serve their autonomy and past applications. Workflows are
the semantically appropriate units of activity in such en-
vironments. They involve a variety of tasks and are best
represented by different extended transaction models or
combinations thereof. We present an approach by which
workflows can be efficiently scheduled. Our novel contribu-
tion is an event algebra in which dependencies character-
izing workflows can be declaratively expressed. We show
how to symbolically process these dependencies to deter-
mine which events can or must occur, and when. Our ap-
proach can represent dependencies compactly and reason
with them efficiently.

1 Introduction

The design and implementation of heterogeneous informa-
tion systems poses special problems for task scheduling and
management. Heterogeneous systems consist of a number
of differently constructed applications and databases that
must interoperate coherently. Since they involve a variety
of system and human activities, composite tasks in het-
erogeneous environments are best thought of as workflows
1, 6, 13].

The traditional transaction model defines ACID trans-
actions [7], so named because they have the properties of

*Currently with the Department of Computing, Imperial
College, London.

t Currently with the School of Computer Science, Florida In-
ternational University, Miami.

Proceedings of the Fourth International Conference on
Database Systems for Advanced Applications (DASFAA’95)
Ed. Tok Wang Ling and Yoshifumi Masunaga

Singapore, April 10-13, 1995

© World Scientific Publishing Co. Pte Ltd

These
properties are naturally realized through a syntactic cor-
ACID transac-
tions have proved extremely valuable in traditional, homo-
geneous, single-node databases, but are not well-suited to
heterogeneous systems.
which are required to ensure atomicity, are problematic.
They are inefficient to implement because of distribution

Atomicity, Consistency, Isolation, and Durability.

rectness criterion, such as serializability.

First, mutual commit protocols,

and often impossible to implement because of autonomous
legacy applications. For technical and political reasons, it
is usually impossible to viclate the autonomy of local sys-
tems. Second, the semantic requirements in heterogeneous
applications are often quite complicated and need more so-
phisticated task structuring [5, 3]. A number of extended
transaction models have been proposed recently [4]. Typi-
cally, these extended models generalize the ACID model in
different directions and do not meld well with each other.

We do not propose a transaction model. Instead, we
describe a general approach to declaratively specify and
schedule intertask dependencies. Such dependencies can
be used to formalize the scheduling aspects of a large va-
riety of, and even combinations of, workflow and transac-
tion models, including all known in the literature. Owur
approach can express the primitives of Klein [10], which
can capture those of Chrysanthis & Ramamritham [2] and
Gunthor [8]. Klein shows how serializability requirements
and extended nested transactions can be captured in his
approach, so we do not go into such details here.

Our broad approach is similar to our previous temporal
logic work on event scheduling [1]. Our main contribution
in this paper is an algebra that yields succinct representa-
tions of dependencies and leads to more efficient scheduling
of events. We emphasize that our contribution is not in in-
venting a new formalism. Our formalism is loosely based
on that of Pratt [11]. We choose our present formalism over
the formalisms of past scheduling approaches [1, 10, 8] be-
cause it facilitates the derivation of stronger results. How-

ever, we make crucial enhancements—defined below—to
Pratt’s syntax (complement events) and semantics (admis-
sibility) to derive our key results. Without these enhance-
ments, those results would not obtain [14]. In our pre-
sentation, we carefully isolate admissibility from the basic
semantics and motivate it carefully to show exactly where
it is necessary.

Each task or transaction is characterized by a skeletal
description, which is captured by its agent. This descrip-
tion includes the events or state transitions that are signif-
icant for purposes of coordination. Our approach applies
to any set of significant events. A typical set for database
transactions is start, commit, and abort. Precommit or
done can be added if visible. The agent of a task inter-
faces with the scheduling system. It informs the system
of uncontrollable events like abort and requests permission
for controllable ones like commit. When triggered by the
system, it causes appropriate events like start in the task.
An agent may intercept requests sent or remote procedure
calls made to the task (as in our implementation), or be
explicitly informed of all transitions by the task (this re-
quires some reprogramming, but is conceptually simpler).
Our theory is not sensitive to this detail. Figure 1 shows
some example task agents borrowed from Rusinkiewicz &

Sheth [12].

These dependencies can also be used as intratask con-
straints for monitoring whether system or user tasks meet
some minimal requirements, e.g., to identify corrupted task
instances. Another use is to mediate in the interactions
among heterogeneous components, e.g., to ensure that dif-
ferent components do not violate prespecified protocols of
interaction.

In this paper, we describe an algebra of events that is de-
signed for representing and reasoning about dependencies.
We present the syntax and basic semantics for our language
and then motivate the additional features it must have for
the above job. We show how we may use the syntactic pro-
cedures of residuation for workflow scheduling; and, lastly,
how one may actually schedule using our algebra.

2 Action Algebra

Our formal language is based on an algebra of actions due
to Pratt [11]. A user of our system—a DBA or a sophis-
ticated end-user—would typically be supplied with some
graphical notation for specifying workflows, which would
be translated into our formal language. Event symbols are
the atoms of our language. Unlike Pratt, we also introduce
for each original event symbol another symbol correspond-
ing to its complement. We return to event complementa-
tion in section 5. Throughout, £ means is defined as.

2.1 Syntax

Action expressions are formed by the following syntactic
definitions. X is the set of significant event symbols, I' is
the alphabet, and £ is our language of event expressions.

Syntax 1 X CT

Syntax 2 e € X implies that e € T’

Syntax 3 ' C &

Syntax 4 FE,, F> € £ implies that £y - B> € £
Syntax 5 FEi, F; € £ implies that F1 + F> € £
Syntax 6 FEp, E; € £ implies that Eq|E> € €
Syntax 7 0, T € £

A dependency, D, is an expression of £&. A dependency
system, D, is a set of dependencies.

We require an alphabet to be closed under event com-
plementation.

Definition 1 © is an alphabet
e€Oiff e € ©)

A OCTand (VeeT:

And, I'g, the alphabet of an expression F, is defined as
the set of events mentioned in E, and their complements.
Specifically,

Definition 2
To 2 0;T1 2 0;T. 2 {ee}; Iz 2 {ece}
T'gor 2 I'g UTp, where o is one of +, -, and |

2.2 Semantics

The semantics of £ is given in terms of computations or
traces. Each trace is a sequence of events in the given sys-
tem. It is important to associate expressions with possible
computations, because they are used

e to specify desirable computations, and

e to determine event schedules to realize good compu-
tations.

For convenience, we overload event symbols with the events
they denote and use concatenation variously for sequence
expressions and traces. Our usage is always unambiguous.
Thus in a semantic context, ¢f means the trace in which
event e occurs followed by the event f.

Let Ur 2 I'*. Thus Ur is the set of all possible traces
over I'. For a trace, o € T'*, and an expression F € &,
o |= E means that trace o satisfies expression E. [] gives
the intension or denotation of an expression: [E] & {o:

o= E}.

Semantics 1 [f] = {o : f is mentioned in o}, if f €T
Semantics 2 [E1 + Ex] = [E1] U[£:]

Semantics 3 [E; - Ez] = {o7 : 0 € [E1] and 7 € [E2]}
Semantics 4 [E1|E:] = [E1] N [E-]

Semantics 5 [0] =0

O Aborted Committed O
abort
commat Failed
Executing O
crash
done fail

) Submitted

start

(O Not executing

IMS Transaction

(O Not executing

Typical Application

(O Aborted Committed O

abort
13
Succeeded comms
O Prepared
abort
done
succeed
xecuting) Executing
start start

(O Not executing

RDA Transaction

Figure 1: Some example task agents

Semantics 6 [T]= Ur

Thus the atom e denotes the set of traces in which event
e occurs. £ - F5 denotes memberwise concatenation of the
traces in the denotation F; with those for F». Ei + Fs
denotes the union of the sets for £4 and E». Lastly, E1|E>
denotes the intersection of the sets for £1 and E5. This
semantics validates various useful properties of the given
operators, e.g., associativity of +, -, and |, and distributiv-
ity of - over + and over |.

Example 1 Let T = {e,%, f,f}. Then [¢] = {e, et ¢f,
fe e, ccef7,...} and [ef] = {cf,cef,ef f2, fecEfF,...}.
One can verify that [e +€] # T and [e|e] # 0. |

The above semantics gives the formal meaning of alge-
braic expressions in our language. This semantics seeks to
associate with each expression the set of traces over which
it is realized. However, the version given above is not the
whole story. It does not capture two important aspects of
our execution framework. These constraints, given below,
both apply to event instances and are quite intuitive.

e An event excludes its complementary event from any
computation.

e An event occurs at most once in any computation.

Traces that satisfy these constraints are termed legal.
Many of the traces in Example 1 are clearly illegal (when
e and f are specific instances). An event instance only
precludes its very own complement, not the complements
of other instances of its type. Similarly, different event
instances of the same type can occur in the same compu-
tation.

The above restriction enables the interpretation of com-
plement events (formally independent symbols) as seman-
tically complementary. Thus, the event abort in an RDA
task agent is the complement of the event commit. In for-
mal reasoning, therefore, we need an event symbol ¢ inter-
preted as commit; we automatically obtain another event
symbol ¢, which can be interpreted as abort. This obser-
vation is used in the examples below.

Example 2 Let T = {e,?, f, f}. Then restricting to legal
traces as informally defined above, [e] = {e, ¢f, fe,ef, fe}
and [ef] = {ef}. One can verify that [e + €] # T and
[ele] =o0. 1

As running examples, we use two dependencies due to
Klein [10] that are well-known in the literature. In Klein’s
notation, e— f means that if e occurs then f also occurs
(before or after e). Klein’s e < f means that if both
events e and f happen, then e precedes f. Restricting
to legal traces, e— f is precisely captured by (€ + f)—
see Example 3. Similarly, e < f is precisely captured by
(+ f+e- f)—see Example 4.

Example 3 Let D— =e+ f. Let 7 be alegal trace that
satisfies D— —i.e., 7 € [D—]. If 7 satisfies e, then it
must satisfy f. This is because 7 satisfies e iff ¢ occurs on
7. Since 7 is legal, € cannot occur on 7. Hence, to satisfy
D— | 7 must contain f. There is no constraint as to the
relative order of e and f. |

Example 4 Let Do =&+ f+e- f. Let 7 be a legal trace
such that 7 € [D<]. If = satisfies both e and f, then e
must occur before f on 7. This is because 7 satisfies ¢ and
satisfies f iff both e and f occur on 7. Since 7 is legal,
neither € nor f can occur on r. Hence, to satisfy Do,
must satisfy e - f, which requires that an initial part of 7
satisfy e and the remainder satisfy f. In other words, e
must precede f on T. |

One may be tempted to define the universe set to con-
tain only legal traces. However, this prevents proving the
soundness of the equations for residuation (introduced in
section 3) that are at the core of our approach. We ul-
timately do restrict the set of possible traces to properly
capture the above aspects, but in a more subtle manner—
through the definition of admissibility (see section 3.2). To
highlight the main reasons for admissibility and to con-
vince the reader that we are not modifying the formalism
gratuitously, we introduce the needed restrictions later in
the technical development. However, the next motivating
example of a workflow specification also assumes the re-
striction to legal traces.

Example 5 Consider a workflow which attempts to buy
an airline ticket and book a car for a traveler. Both or
neither task should have an effect. Assume that (a) the
booking can be canceled: thus cancel compensates for book,
and (b) the ticket is nonrefundable: buy cannot be com-
pensated. Assume all subtasks are RDA transactions (as
in Figure 1). For simplicity, assume that book and cancel
always commit. Now the desired workflow may be specified
as the conjunction of the following three dependencies:

1. Spuy + Svook (if buy starts, then book must also start),

2. Tpook + Thuy + Cook * Cbuy (book commits before buy if
both commit), and

3. Tbook + Cbuy + Scance (compensate book by cancel—i.e.,
if book commits and buy does not, then start cancel).

Thus a workflow may be formally defined as a set of
significant events (in different task agents), and a set of
dependencies over those events. Indeed, the set of depen-
dencies component is the crucial one of the two.

2.3 Scheduling Events to Enforce Dependen-
cies

Each expression or dependency identifies a set of event
traces, namely, those of which it is a true description. Our
scheduler, howsoever implemented, must ensure that any
trace that is realized satisfies all stated dependencies. Fur-
ther, the scheduler should meet the converse requirement:
roughly, if there is a trace that satisfies all stated dependen-
cies and that may be generated given the events and their
order of submission, then the scheduler should be able to
realize some trace that satisfies all dependencies.

Example 6 Acceptable traces for the workflow of Exam-
ple 5 include the following. The reader can readily verify
that these traces satisfy each of the dependencies given in
Example 5.

Sbuy Sbook Cbook Cbuy

Sbuy Sbook Cbuy Cbook

Sbuy Sbook Cbook CbuyScancelCcancel

= W R

Sbook Sbuy Cbook Cbuy

An important component of the state of the scheduler
is determined by the dependencies it is enforcing, because
they specify the traces it is supposed to allow. As events
occur, the possible traces get narrowed down. An event e
occurs when one of the following three conditions occurs:

1. the scheduler accepts that event if requested by the
task agent in which that event arises,

2. triggers that event in the task agent on its own accord,
or

3. rejects the complement of that event if the comple-
ment is requested by the task agent.

For each dependency, in order to guarantee its satisfaction,
the scheduler must keep track of the current state and at-
tain a state labeled T. It is fruitful to consider how the
state of the scheduler evolves when it is trying to enforce
a dependency.

Example 7 Figure 2 shows the state changes for depen-
dencies Dc = (€+ f+e-f)and D = (e + f). For
D, if the complement of events e or f happens, then D
is necessarily satisfied. If e happens, then either f or f
can happen later. But if f happens, then only € must
happen afterwards (e cannot be permitted any more, since
that would mean f precedes €). Similarly, for D— , the
scheduler can permit € or f to happen right away, but if
e happens first, it must be followed by f and if f happens
first, it must be followed by €. |

Requirements of the kind as given in the above exam-
ple, when formalized, lead to a solution to the scheduling
problem that is intimately related to the operation of resed-
uation. In section 3, we explore the intuition further and
motivate the definition of residuation. We present a set of
equations that capture the desired properties of residua-
tion, and develop their proofs of soundness, which entails
adding admissibility to the models of section 2.2.

3 Residuation

The event scheduler must decide for each event whether or
not it must occur. For expository ease, let us consider the
case where an event has been attempted by a task agent,
and the scheduler must decide whether or not to accept it.
Other interesting cases are covered in section 4 below. The
key factors on which a decision to accept an event e must
be based are as given next. Here proper informally refers
to traces that meet the legality requirements of section 2
and satisfy the stated dependencies.

1. Whether e can occur in the initial part of the currently
remaining part of any of the traces for which the given
dependency is true; and

2. Whether accepting e would leave the scheduler in a
state where it may

e prevent some proper traces, or

e generate some improper traces.

For further motivation, let s be the set of traces that
satisfy a dependency D). Thus, s characterizes the state of
the scheduler. If event e is executed now, let y denote the
set of traces that would be permissible at the end of e. In
other words, we must replace s by y to reflect the fact that
e has occurred. Therefore, y is the set such that

o ¢-y C s (relative to s, y contains no improper traces);
and

o (Vz:e-zCs= zCy) (relative to s, y contains all
proper traces after e)

Figure 2: Scheduler states and transitions represented symbolically

3.1 Equations for Residuation

What makes the above extremely exciting is that when s
is represented by an expression in &, then y is also rep-
resented by an expression in &£, which can be efficiently
computed from s. Thus, the states of the scheduler can be
represented symbolically and its transitions processed alge-
braically. The operation of computing the resulting set of
traces corresponds to residuation in our algebra. We define
residuation as an operator /. The residuation operator is
not formally in £. Consequently, it cannot be used to spec-
ify workflows—e.g., e/f is not a well-formed dependency.
It can only be used in reasoning about workflows.

Semantics 7 [E1/E;] = {v : (Vu :
[£:D)}

u € [E2] = wv €

In our usage—i.e., in an algorithm for scheduling
events—F; is a general expression and FE; is an event.
The above is a model-theoretic definition. This definition
clearly meets the criteria motivated above, whereby the
proper and only the proper traces may be generated. It is
possible to characterize residuation symbolically by a set
of equations or rewrite rules. The equations below assume
that the given expression is in a form where there is no |
or + in the scope of the - operator. This holds for con-
junctive normal form (CNF) and disjunctive normal form
(DNF), each of which can be obtained by repeated appli-
cation of the distribution laws. Thus, £ in equations 3, 9,
and 10 must be an atom or a sequence expression. Below,
FE, etc. are expressions and e, etc. are event symbols. For
simplicity, we identify € with e.

Equation 1 0/E =0

Equation 2 T/E=T

Equation 3 (e- E)/e=F

Equation 4 (Ey + Ez)/e = (Ev/e+ Ez/¢)
Equation 5 (E1|E2)/E = ((E1/E)|(E2/E))

Equation 6 E/(E, - E;) = (E/E1)/Es

Equation 7 E/(E1 + E2) = (E/E1)|(E/E?)
Equation 8 E/e=FE,ife,e ¢ I'g

Equation 9 (¢'-E)/e =0,if e €5 and e # ¢’
Equation 10 (¢’ - E)/e =0,ife € 'g

Example 8 In Figure 2, we can verify that residuating
each state label by any of its out-edge labels yields the la-
bel of the next state. For instance, (€ + f + ¢ - f)/e =
(/e) + (F/e) + (e - £/e)) = 0+ T +) = (T + 1).
Similarly, (€ + f)/e = ((€/e) + f/e) = (0 + f) = f and
(e+9)/f = (/) + §/f) = (e + T) = T. Thus, we need
not represent the automaton for any dependency explic-
itly, but can efficiently compute its transition function as

needed. |

Observation 1 D/e=D,if f¢Tp N

The above means that events can be scheduled indepen-
dently of dependencies that do not mention them. Com-
bined with Equation 5, it entails the modularity of de-
pendencies. In other words, we can compute the result
of residuating a workflow—a set of dependencies—by an
event by residuating each dependency separately and es-
sentially ignoring dependencies that do not mention the
given event.

Observation 2 I'n,; CI'p — {f, f} B

Theorem 3 Equations 1 through 10 are sound. i

The soundness of equations 1 to 7 follows directly. How-
ever, equations 8, 9, and 10 require admissibility, which we
formalize next. The formal proofs are developed in [14].

3.2 Admissibility

Admissible traces are those in which

e no event is repeated,
e no event and its complement both occur, and

e an event or its complement occur.

Intuitively, these traces characterize the eventual behavior
of the “environment,” i.e., of the collection of tasks whose
significant events are scheduled. Let Ae be the set of all
admissible traces on the alphabet ©. As before, identify e
with e.

Definition 3 ¢ is maximal over © 2 (e € © iff € € O)
and (Ve €©:0 =€ or o =F¢)

Definition 4 Ae 2 {o: 0 is maximal over © and (Ve €
O: (Vr, p,7 €O : 0 # weper and o # meper))}

The key idea in using admissibility is as follows. Recall
that, roughly, residuation determines whether the resid-
uated expression allows immediate execution of the event
with which it is residuated. (It also determines what would
remain to be done afterwards, but let us ignore that aspect
for the time being.) Suppose that the given event, e, oc-
curs after some other event e’ in the sequence expression,
E. We know that e’ has not occurred yet, or it would have
been residuated out already. Therefore, if we let e happen
right away, then either (a) we must prevent e’ altogether or
(b) we must eventually let ¢’ happen followed by another
instance of e. Option (a) clearly violates the requirement
imposed by E, which is to do e’ and then e. Option (b)
violates our assumption that events are not repeated. Op-
tion (a) is precluded by our semantic definitions, since they
require that a sequence containing e’ is satisfied only by
traces on which e’ occurs. Option (b) is precluded by the
set of admissible traces, since they exclude repeated oc-
currences of events. When appropriately generalized and
formalized, this argument becomes the proof of soundness
of Equation 9. A similar proof can be constructed for Equa-
tion 10.

Each dependency is associated with the state of the en-
vironment in which it is evaluated. The state of the en-
vironment changes as events occur. The scheduler must
permit only those events whose immediate execution will
not violate any of the asserted dependencies. We use ad-
missibility to capture the key property of the environment
that (a) instances of events are not repeated and (b) an
event and its complement do not both occur in any trace.
Another way of understanding this is as follows. Initially,
all the admissible traces are possible. Whenever an event
occurs, it shrinks the set of admissible traces to those in
which neither that event nor its complement occur.

Thus, in effect, we attach to each expression the cur-
rent context of evaluation. Given our understanding of
the meanings of expressions and of the role of residuation,
two expressions are interchangeable with respect to a set of
admissible traces if they allow exactly the same subset of
that set of admissible traces. As a result, two expressions
that have different denotations may end up being inter-
changeable with each other in certain evaluation contexts.
The proofs of the soundness of the remaining equations are
given using this notion of interchangeability or equivalence.

A formalization of the above argument involves formal-
izing admissible sets, characterizing the shrinkage of admis-
sible sets as events occur, and defining a notion of equiva-
lence derived from admissibility. Using these we can show

that the desired equations are indeed sound when equal-
ity is replaced by equivalence. It is also required to show
that the above notion of equivalence is well-defined in that
equivalent expressions can be interchanged without loss in
satisfiability. The technical development is deferred to [14].

4 Back to Scheduling

We have shown how to algebraically represent dependen-
cies and compute the possible transitions of a scheduler.
Now we briefly discuss how events may actually be sched-
uled. There are several ways to apply the algebra. The
relationship between the scheduling algorithm and the al-
gebra is similar to that between proof search strategies for
a logic and the logic itself. In the case of scheduling, the
system has to determine a trace that satisfies all depen-
dencies. It can assign different values to the event literals
by accepting or rejecting them.

Example 9 In satisfying dependency D« of Figure 2, the
scheduler may choose any path from the initial state to T.
The scheduler could always reject e (i.e., do €), or reject
whatever event is submitted first. Similarly, the scheduler
could, in satisfying D— , always reject e unless f had al-
ready occurred. Indeed, given the sole dependency T, the
scheduler could decide to reject every event. These may
not be acceptable behaviors from the user’s point of view,
but they will satisfy D.. |

Thus, we face a problem of finding good heuristics, e.g.,
to ensure that events are not unnecessarily rejected. How-
ever, it might sometimes be useful to risk rejecting events
unnecessarily so as to avoid unbounded delays, which is
why it is only a heuristic.

Example 10 For D, if fis attempted first, the scheduler
may either accept f immediately, or delay deciding on it.
In the former case, it will be forced to reject e if it is ever
attempted; in the latter case, it will delay f until e or €
is submitted and then allow f to occur after e, or in any
order with z.

Event scheduling depends on two main aspects:

e resolution of dependencies that apply to the same
event, and

e the attributes or semantic properties of the given
events in the underlying workflow.

The scheduler can take a decision to accept, reject, or
trigger an event only if no dependency is violated by that
decision. Thus the constraint on an event is the conjunc-
tion of the constraints due to different dependencies. As ar-
gued in section 3.1, only dependencies mentioning an event
are directly relevant in scheduling it. In general, we also
need to consider events that are caused by events that are
caused by the given one, and so on.

The semantic event attributes we use were introduced
by Attie et al. [1]. Three primitive attributes were identi-
fied in [1]:

o Triggerable events—called forcible events in [1]—are
those that the system can initiate.

e Rejectable events are those that the system can pre-
vent.

e Delayable events are those that the system can delay.

Nondelayable and nonrejectable events are not really at-
tempted: the scheduler is notified of their occurrence after
the fact.

Example 11 Consider tasks such as shown in Figure 1.
The scheduler may trigger a start, but cannot unilaterally
trigger a commit. However, it can reject or delay a commit,
but can neither delay nor reject an abort. |

The attributes of events constrain the options available
to the scheduler. Certain schedules that are otherwise all
right may be unacceptable in that they leave the scheduler
in a state where it may be forced to violate a dependency.
We define a secure state as one where this will not be the
case. The scheduler can make a transition if the target
state is secure.

Example 12 In dependency D« of Figure 2, if e is abort,
then the state labeled € is not secure. Thus, the transition
labeled f from the initial state must be disabled. However,

f + f is secure. |

Example 13 In dependency D— of Figure 2, if fis start,
then the state labeled f is secure. However, the scheduler
must eventually cause f to fire. |

For brevity and ease of exposition, we describe how our
algebra fits in with the approach of [1], which is based on
pathsets. Our implemented scheduler is somewhat differ-
ent, however. It distributes events and arranges appropri-
ate message flows among them. Further details of these
messages (but not the algebra) are presented in [15]. The
pathset approach maintains the current state of each de-
pendency. It attempts to find a viable set of paths, i.e., one
for which the following conditions hold:

e cach path begins in the current state of some depen-
dency and ends in a secure state;

e cvents mentioned on the paths occur in the same rel-
ative order;

e if an event occurs on a path, then its complement
occurs on no path;

e if an event occurs on a path, then the pathset contains
a path from each dependency involving that event;

o for every event e mentioned in a path, (a) e is either
triggerable or was attempted by its agent or € is re-
jectable and (b) if e was attempted and is not the first
event, then e is delayable.

Consequently, if a viable pathset can be found, then
all events in it can be scheduled in an appropriate partial
order. A viable pathset is tried to be computed whenever
an event is attempted or when the scheduler learns that an
event occurred somewhere in the system.

Example 14 Using the dependencies of Figure 2, if e is
abort and f is start, then the pathset {(e),(e}} begin-
ning in the initial states is viable. The scheduler can ex-
ecute e, but must trigger f later. We can also compute a
trigger-closed viable pathset, which in this case would be

{(e. £), (e, 1)} I

5 Discussion and Comparisons

The idea of defining admissible traces and using them as in
the above appears novel to our approach. By using admis-
sibility, we are able to obtain a notion of residuation that
is more intimately related to eager scheduling of events un-
der dependencies. Our notion of residuation, while closely
related to the standard one—e.g., the one of Pratt [11]—is
specialized for use in scheduling. The standard notion of
residuation does not in any obvious manner yield the kinds
of equations we give here.

Since events are not repeated in admissible traces, it
might appear that we cannot handle task agents with loops.
However, we only require that a given event instance not
be repeated. New event instances must be presented to
the scheduler, e.g., by generating unique event IDs each
time an agent executes an event. We restart dependencies
appropriately for each relevant instance. We lack the space
here to discuss details.

Our treatment of event complementation requires a for-
mal complement for each significant event. An event and
its complement are both atoms in the formal language, &;
corresponding model-theoretic entities occur in the traces.
However, sometimes events are not intuitively thought
of as having complements. For example, whereas abort
and commit usually are complements of each other [10],
start and forget usually have no complements at all. A
superfluous—in the above sense—formal complement of
an event causes no harm, because it is never instantiated.
However, a complement is required for every event that is
optional. For optional events, there is typically just a two-
way branch in their associated task agent, e.g., between
abort and commit. However, when the task agent has a
multiway split, then the complement of an event is, in ef-
fect, the join of all events that are its alternatives. This
is quite rare in practice, since our agents include only sig-
nificant events. However, it can be captured by adding
additional dependencies in the obvious manner.

Our approach is syntactically simple, which enables easy
requirements capture. Other approaches rely on fine syn-
tactic variations: dependencies with nested < operators,
which they require, are often confusing [10, 8]. Our ap-
proach involves no unintuitive semantic assumptions, but
makes use of every available aspect of the problem to gain
expressiveness and efficiency. [t generates smaller repre-
sentations than [1]: e.g., simple compensate dependencies
are of size 3 here, but were over size 40 there.

6 Conclusions

We have demonstrated a working prototype based on our
theory [16]. Our implemented scheduler is distributed and
somewhat different from the pathset approach described
above [15]. Our approach has the following merits. It
is provably correct. It yields succinct representations for
many interesting dependencies that arise in practice, in-
cluding those representing compensations. The simplicity
of our algebra facilitates capturing various requirements.
It yields a distributed implementation as easily as a cen-
tralized one, an important factor in many heterogeneous,
distributed environments.s

Our formal theory and, in particular, our equations for
residuation constitute an algebraic approach for scheduling
events to satisfy all stated dependencies, assuming those
dependencies are mutually consistent and enforceable. The
dependencies or specifications are lazy in that they charac-
terize traces as acceptable or unacceptable based on entire
computations. However, our approach to scheduling is ea-
ger in that it attempts to execute events as soon as possible
and accounts for both the conditions under which an event
may be executed and the change of state that its execution
must bring about. The latter is required so that the re-
sulting computations satisfy the initially specified depen-
dencies. Thus, for the purposes of workflow scheduling,
our approach goes well beyond other action algebra ap-
proaches.

References

[1] Paul C. Attie, Munindar P. Singh, Amit P. Sheth, and
Marek Rusinkiewicz. Specifying and enforcing inter-
task dependencies. In Proceedings of the 19th VLDB
Conference, August 1993.

[2] P. Chrysanthis and K. Ramamritham. ACTA: The
SAGA continues. In [4]. 1992. Chapter 10.

[3] U. Dayal, M. Hsu, and R. Ladin. A transactional
model for long-running activities. In Proceedings of
the 17th VLDB Conference, September 1991.

[4] Ahmed K. Elmagarmid, editor.
tion Models for Advanced Applications. Morgan Kauf-
mann, 1992.

Database Transac-

[5] Hector Garcia-Molina and Kenneth Salem. Sagas. In
Proceedings of ACM SIGMOD Conference on Man-
agement of Data, 1987.

[6] Diimitrios Georgakopoulos, Mark Hornick, and Amit
Sheth. An overview of workflow management: From
process modeling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, September
1994.

[7] Jim Gray and Andreas Reuter. Transaction Process-
ing: Concepts and Techniques. Morgan Kaufmann,
1993.

[8] Roger Giinthor. Extended transaction processing
based on dependency rules. In Proceedings of the

RIDE-IMS Workshop, 1993.

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

Won Kim, editor. Modern Database Systems: The
Object Model, Interoperability, and Beyond. Addison-
Wesley, 1994.

Johannes Klein. Advanced rule driven transaction

In Proceedings of the IEFE COMP-

management.

CON, 1991.

Vaughan R. Pratt. Action logic and pure induction. In
J. van Eijck, editor, Logics in AI: Furopean Workshop
JELIA °90, LNCS 478, pages 97-120. Springer-Verlag,
September 1990.

Marek Rusinkiewicz and Amit Sheth. Specification
and execution of transactional workflows. In [9]. 1994.

Munindar P. Singh and Michael N. Huhns. Automat-
ing workflows for service provisioning: Integrating Al
and database technologies. IEEE Ezpert, 9(5), Octo-
ber 1994. Special issue on The Best of CAIA’94 with
selected papers from Proceedings of the 10th IEEE
Conference on Artificial Intelligence for Applications,
March 1994.

Munindar P. Singh, L. Greg Meredith, Christine Tom-
linson, and Paul C. Attie. An algebraic approach to
workflow scheduling. Technical Report Carnot-049-94,
Microelectronics and Computer Technology Corpora-
tion, Austin, TX, July 1994.

Munindar P. Singh and Christine Tomlinson. Work-
flow execution through distributed events. In Proceed-
ings of the 6th International Conference on Manage-
ment of Data, December 1994.

Munindar P. Singh, Christine Tomlinson, and Darrell
Woelk. Relaxed transaction processing. In Proceedings
of the ACM SIGMOD, May 1994. Research Prototype

Demonstration.

