In Proceedings of the 6th International Conference on Management of Data (COMAD), 1994

Workflow Execution Through Distributed Events

Munindar P. Singh and Christine Tomlinson

Microelectronics and Computer Technology Corporation
Research Division
3500 West Balcones Center Drive
Austin, TX 78759, USA
(512) 338-3431

{msingh,tomlic}@mcc.com

Workflow Execution Through Distributed Events

Munindar P. Singh and Christine Tomlinson

Microelectronics and Computer Technology Corporation
Abstract

Workflows are the semantically appropriate units of activity in heterogeneous envi-
ronments. Heterogeneous environments, which are extremely common in enterprises
of even moderate complexity, involve a number of database systems, each with its
own interfaces, applications, and users. It is typically not possible to violate the
autonomy of these systems, even though it is essential to have them interoperate
properly. Workflows are activities carried out in heterogeneous environments that
impinge upon a number of autonomous systems. The semantics of workflows are
best represented by different extended transaction models, or combinations thereof.
We present an approach by which workflows can be efficiently scheduled in a dis-
tributed manner.

1 Introduction

Heterogeneous systems consist of a number of differently constructed applications and infor-
mation resources that must interoperate coherently. Since they involve a variety of system
and human activities, composite tasks in heterogeneous environments are best thought of as
workflows [DGMH*93]. A number of extended transaction models [DHL91, EIm92] have been
proposed recently to overcome the shortcomings of the traditional, ACID, model [GR93] in
heterogeneous environments. These models relax the atomicity, isolation, and consistency re-
quirements of the ACID model in various ways.

We have developed a general facility to specify and schedule intertask dependencies. Such
dependencies can be used to formalize the scheduling aspects of a large variety of, and com-
binations of, workflow and transaction models. Our approach can express the primitives of
[Kle91], which can capture those of [CR92] and [Giin93]. Our broad approach is similar to
[ASSR93, Kle91], although it is more general—e.g., in handling tasks with arbitrary structure,
not just loop-free ones.

This paper presents an approach by which workflows can be efficiently scheduled in a dis-
tributed manner. We have developed an algebra of events for representing and reasoning about
intertask dependencies, which are a natural means by which to capture workflow requirements.
Our algebra has special features for event scheduling; several technical semantic properties are
needed to ensure that the algebra can be used for symbolic reasoning about event schedules.
We described these details in a previous paper, and do not discuss them here. Instead we
focus on the aspects of designing an automatically distributed event scheduler and highlight
the intuitions and principles behind our (implemented) approach.

Current workflow products are centralized with a single server that stores and processes
all relevant workflows. They operate in office environments with activities of fairly long time
scales, typically involving humans. These products require procedural encoding of workflows
and are designed for homogeneous PC environments. All decisions are made in the server. For
these reasons, they cannot scale up easily.

O Aborted Committed O (O Aborted Committed O

commat Failed Succeeded commat

Executing O O o Prepared
crash L abort
inttialize : done
fadl succeed
) Submitted Executing P Executing
start start start
(O Not executing (O Not executing (O Not executing
IMS Transaction Typical Application RDA Transaction

Figure 1: Some Common Task Agents [RS94]

Centralization is clearly undesirable in distributed, heterogeneous environments. Our ap-
proach associates an agent with each task or transaction. The agent embodies a coarse de-
scription of the task, including only states and transitions (or events) that are significant for
coordination. QOur approach applies to arbitrary agents and to any set of significant events.
Figure 1 shows some example task agents. An IMS database transaction when submitted enters
the executing state, from where it may proceed to abort or commit. If it crashes during pro-
cessing, it may be resubmitted. A typical application enters its executing state when started,
from where it may fail or succeed. Failure or success is usually associated with a return code.
An RDA (Relational Data Access protocol) transaction has an explicit prepared state, which
enables mutual commit protocols across transactions. Qur approach is not limited to these
agents.

The agent performs an important function: it interfaces the task with the scheduling system.
It informs the system of uncontrollable events like abort and requests permission for controllable
ones like commit. When triggered by the system, it causes appropriate events like start in the
task. An agent may intercept requests sent or remote procedure calls made to the task (as in
our implementation), or be explicitly informed of all transitions by the task (this requires some
reprogramming, but is conceptually simpler).

Local autonomy is highly desirable. It is maximized by the above approach, since the task
is minimally affected when its agent is inserted into the computational system. The invisible
states of the task are not exposed by the agent and its interface is not violated. This approach
lends itself to distribution, since the agents can be naturally placed close to their respective
tasks.

Our key idea is to instantiate active entities for different events. Like agents, these entities
are actors in our actor-based, object-oriented execution environment. This means they are
lightweight threads and communicate through symbolic IO ports. At most one copy of the
execution environment need be active at each host: this exists as a single process that manages
low-level communications and data resources. We have implemented protocols to access various
database systems.

There is one actor per event. This actor maintains the current guard for the event and
manages communications. The guard is a temporal logic formula, which defines the condition
under which that event may occur. In the simplest case, when a task agent is ready to make a
transition, it attempts the corresponding event. Intuitively, an event can happen only when its
guard evaluates to true. If the guard for the attempted event is true, it is allowed right away.

Otherwise, it is parked. When an event happens, messages announcing its occurrence are sent
to actors of other relevant events. These may be at remote sites on the network. When an event
announcement arrives, the receiving actor simplifies its guard to incorporate this information.
If the guard becomes true, then the appropriate parked event is enabled.

The above is the simplest case. Further complexity is involved in treating events that may
be instantiated multiple times (to ensure that all and only the right event instances occur).
Other situations that must be handled include those where the given event may have to be
proactively triggered, or where the given event is such that it cannot be delayed. Lastly, there
are cases where events have mutual (positive or negative) constraints. We discuss these below.

Section 2 shows how workflows can be formally expressed with dependencies and how depen-
dencies can be used to schedule events. Section 3 shows how to compile constraints on events
into guards that can be localized on the individual events, and how to execute events using
their guards. Section 4 shows how to accommodate event attributes into guard computations.
Lastly, section 5 briefly discusses some additional subtleties of workflow execution.

2 Dependencies and Event Scheduling

Event symbols are the atoms of our language. For ease of exposition and to facilitate comparison
with the literature, we initially assume that the event symbols denote unique instances of
different types. In section 5 we allow the symbols to name event types, which may be multiply
instantiated.

We introduce for each event symbol e a symbol € corresponding to its complement (€ = €).
We return to event complementation in section 5.3. Our algebraic language, &, is used to
specify acceptable computations or traces. All traces considered are legal in that

e an event (instance) occurs at most once in any trace, and
e if an event (instance) occurs in a trace, then its complement does not occur in that trace.

& contains constants 0 and T, and operators for choice (4), interleaving (]), and sequence (-).
Roughly, e (resp. €) means that event e (resp. €) should occur; E + F (resp. E|F') means that
one of (resp. both) £ and F' should hold; and, F - F' means that E should hold on the initial
part of a trace and F' on the remainder. Each expression or dependency identifies a set of event
traces, namely, those of which it is a true description. 0 is true of no trace, and T is true of all.

Y. is the set of significant event symbols, I' is the alphabet, and £ is our formal language of
event expressions.

Syntax 1 e € X implies that e,e € T’

Syntax 2 ' C &

Syntax 3 F, Ey € £ implies that Ey - Ey, Fy + Es, E4|Ey € E
Syntax 4 0, T € &

As running examples, we use two dependencies well-known in the literature. In Klein’s
[Kle91] notation, e < f means that if both events e and f happen, then e precedes f. This is
precisely captured by (6—{—?—}—6 - f)—see Example 1 below. Klein’s e— f means that if e occurs
then f also occurs (before or after €). This is captured by (€ + f)—see Example 2 below.

Example 1 Let D1 =2+ f+e¢- f. Let 7 be a legal trace that satisfies D1. If 7 satisfies both
e and f, then e must occur before f on 7. This is because 7 satisfies e and satisfies f iff both
e and f occur on 7. Since 7 is legal, neither nor f can occur on 7. Hence, to satisfy D1, 7
must satisfy e - f, which requires that an initial part of 7 satisfy e and the remainder satisfy f.
In other words, e must precede f on 7. |

Example 2 Let D2 = e+ f. Let 7 be a legal trace that satisfies D2. If 7 satisfies e, then it
must satisfy f. This is because 7 satisfies e iff € occurs on 7. Since 7 is legal, € cannot occur
on 7. Hence, to satisfy D2, 7 must contain f. There is no constraint as to the relative order of

eand f. I

Now we have the basic machinery available to define a simple workflow in our formalism.
The following example shows that a number of decisions must be taken about the schedules
one expects from a given workflow, and that it is possible to capture the various options as
dependencies in our approach.

Example 3 Consider a workflow which attempts to buy an airline ticket and book a car for
a traveler. The key semantic requirement is that both or neither task should have an effect.
Mutual commit, e.g., two-phase commit, protocols cannot be executed, since the airline and
car rental agency are different enterprises and possibly their databases don’t have a visible
precommit state. We can use the fact that there are several mutually indistinguishable instances
of plane seats and rental cars.

Assume that (a) the booking can be canceled: thus cancel compensates for book, and (b) the
ticket is nonrefundable: buy cannot be compensated. Assume all subtasks have at least start,
commit, and abort events, like RDA transactions, as in Figure 1. For simplicity, assume that
book and cancel always commit. Now the desired workflow may be specified as (1) Spuy + Stook
(initiate book upon starting buy), (2) Cruy + Chook - Couy (if buy commits, it commits after book—
this is reasonable since buy cannot be compensated and commitment of buy effectively commits
the entire workflow), and (3) Cpook + Chuy + Scancer (compensate book by cancel).

Note that (2) explicitly orders cpoox before czuy—as in Example 1 above. However, (1) and
(3) do not order any events—see Example 2 above. When the events spoor and scancer are to be
triggered only by the scheduler, then the above specification suffices. However, to be triggered,
the events should have the attribute triggerable—see section 4. The scheduler causes the events
to occur when necessary, and may order them before or after other events as it sees fit. However,
if the two events may occur independently, then the specification must be strengthened further.
For instance, if spo0r may be directly attempted by a user application independently of spyy,
then we must ensure that either (i) spoor is accepted only if sy, also occurs—e.g., by adding
Shook + Sbuy, Or (i) Spoor 18 accepted but Scancer occurs unless sp,, occurs—e.g., by adding
Chook T+ % + Scancel-

Di=¢+f+e-f(=e<f) D2=¢+ f(=e— f)

Figure 2: Scheduler States and Transitions Represented Symbolically

The scheduler must ensure that any trace that is realized satisfies all stated dependencies.
An important component of the state of the scheduler is determined by the dependencies it is

enforcing, because they specify the traces it must allow. As events occur, the possible traces
get narrowed down. An event e occurs when the scheduler (a) accepts that event if requested
by the task agent in which that event arises, (b) triggers that event in the task agent on its
own accord, or (c) rejects the complement of that event if the complement is requested by the
task agent.

Consider how the state of the scheduler evolves when it enforces a dependency. After each
event, the state equals the remnant of the dependency yet to be enforced.

Example 4 Figure 2 shows the state changes for dependencies D1 = (€ + f+e- f) and
D2 = (4 f). For D1, if the complement of events e or f happens, then D1 is necessarily
satisfied. If e happens, then either f or f can happen later. But if f happens, then only €
must happen afterwards (e cannot be permitted any more, since that would mean f precedes
e). Similarly, for D2, the scheduler can permit € or f to happen right away, but if e happens
first, it must be followed by f and if f happens first, it must be followed by &. |

3 Guards on Events

The above is a dependency-centric view of the scheduling procedure. This procedure is most
naturally centralized, although the dependency representations could be distributed appropri-
ately. However, in many practical cases, it is a good idea to take the dual, event-centric, view.
This too can be either centralized or distributed; in either case, it preprocesses the dependen-
cies so that the information pertinent to an event is kept locally. As events prepare to happen
and happen, messages are sent to ensure that other events learn of their recent or imminent
occurrence. Thus only essential messages need be transmitted. This is the approach that we
have taken.

In order to properly convert from the dependency representations to the event represen-
tations, we consider all possible computations relevant to each dependency to determine the
various conditions in which a given event can occur: what should have happened already and
what should be guaranteed to happen. The sum of these conditions denotes the guard of the
event, i.e., the weakest condition that must hold for the event to occur, so that correctness is
preserved. It turns out that in the dependencies that are most often of interest, the guards of
the participating events are succinct temporal formulae.

Taking this approach requires the resolution of the following issues: (a) how does one come
up with the right guards on different events, (b) how does one evaluate the guard on an event,
and (c) how does one communicate information about the occurrence or expected occurrence of
an event to events in other agents? Briefly, the guard on an event is derived from the applicable
dependencies mentioning that event and from the attributes of that and other events. Before
we specify how guards are obtained, we must augment the underlying language so as to have a
sufficiently expressive formalism.

3.1 Temporal Logic

The guards on events are temporal formulae. This is necessary so that decisions made on
different events can be sensitive to the state of the system, particularly with regard to which
events have occurred, which have not occurred but are expected to occur, and which will never
occur. These conditions are essential in order to properly enforce various dependencies.

We now present the formal language, 7, in which the guards are expressed. This language
enables events that have occurred to be explicitly distinguished from those that have not yet
occurred as well as from those that have not yet occurred, but will eventually occur.

Syntax 5 £ C 7T

Syntax 6 Fi, F, € T implies that Ok, <>E1, —-Fy, B+ Es, E1|E2, Ei - EyeT

The semantics of 7 is given with respect to a trace and an index into that trace. The trace
must be mazimal, i.e., for each event, contain that event or its complement. Intuitively, one
can think of the index as identifying a prefix of the given trace. Thus in effect the semantics
is given with respect to pairs of traces, where the first is maximal, and the second trace is a
prefix of the first. The second trace describes what has happened, and the first trace what will
eventually have happened.

—e, e, —e —e, O, —e

Oe, e, —e Oe, <€, —e
Figure 3: Temporal Operators Related to Events

The general technical definitions are given in [ST94]. Informally, a pair satisfies an event ¢,
if e occurs on its second trace, i.e., if ¢ has happened. This definition validates the stabulity of
events, meaning that if e is true for a trace, u, then it is also true for all traces of which u is a
prefix. A pair satisfies OF | if F will always be true. A pair satisfies OF if E will eventually
hold (thus, Oe = <e) A pair satisfies = F, if £ does not yet hold. Because of stability, we
have Oe = e, where e € I'. The corresponding assertion for all expressions of 7 is false, e.g.,
O-e # —e. The formula —e is thus the boolean complement of Oe (me+0e = T and —e|Oe = 0).
Also, —e + Oe = —e.

Figure 3 shows the possible traces with respect to event e. On different possible traces, the
event or its complement may occur. Initially, neither e nor € has happened, so —e and —€ hold
on both traces. But, the trace on which e will occur satisfies $e, and the other Oe. After e
occurs, Oe becomes true, —e becomes false, and Ce and —€ remain true. Figure 3 illustrates the
following results: (a) Oe + O # T—neither e nor € may have occurred at certain states, e.g.,
initially, (b) Ce+ <€ = T—eventually either e or € will occur, (¢) Ce|O€ = 0—both e and € will
not occur, and (d) $e + O # T—initially, € has not happened, but e may not be guaranteed.
Gilinthor’s approach validates Ge + 0 = T, which we believe is a major shortcoming. The
above and allied results were our main motivation in designing the formal semantics of 7—its
details are not necessary for this paper.

3.2 Computing Guards

For expository ease, we begin with the simplest case; section 4 discusses additional features.
Figure 4 illustrates our procedure for the dependencies introduced previously. The initial node
in the dependency representation is labeled —e|=€|—=f|-f to indicate that no event has occurred
yvet. The nodes in the middle layer are labeled Oe, etc., to indicate that the corresponding event
has occurred. To avoid clutter, labels like Ge and —e are not shown after the initial state.

To compute the guard on an event, we sum the contributions of different paths on which it
occurs. The contribution of a path ending in 0 is 0. For a path ending in T, the contribution
is the label of the pre-state for the event conjoined with the label of the future post-state. In
each case, we delete the event and its complement from the label. G(D,e) denotes the guard
on ¢ due to dependency D.

—e|=E|~f|~f —e|=e|~f|~F

T 0
Di=¢+f+e-f(=e<f) D2=¢+ f(=e— f)
Figure 4: Computing Guards on Events With Respect to Different Dependencies

Example 5 G(D1,e) = (=f|=f|O(f + f)) + (Of|T). But O(f + f) = T. Hence, G(D1,¢e) =
(=f|=f) + Of, which reduces to =f + Of, which equals =f. G(D1,8) = (=f|-f|O(f + f)) +
(Of|T)+(Of|T), which reduces to T. G(D1, f) = T. G(D1, f) = (—e|-e|O€) + Qe + Oe, which
simplifies to Ce + Oe.

Consequently, € can occur at any point in the computation, and e can occur if f has not
yet happened (possibly because it will never happen). Similarly, f can occur anywhere, but f

can occur only if e has occurred or € is guaranteed. I

Example 6 G(D2,¢) = (=f|~f[Cf)+(Of|T). Since Of entails = f, this reduces to (= f|Of) +
Of. Since Of and —f are boolean complements of each other, we obtain G(D2,e) = < f + OFf,
which equals Of. G(D2,f) = (—e|-€|O€) + O, which using the same reasoning as above
simplifies to O. G(D2,€) = (=f|=f|OT) + (Of| T)+ (Of|T), which reduces to T. G(D2, f) =
T.

Consequently, € and f can occur at any time; e can occur if f has happened or will happen,;
and f can occur if € has happened or will happen. 1

The guards on different events can be calculated at compile-time: they can be kept precom-
piled for frequently occurring dependency expressions.

3.3 Execution Through Guard Evaluation

Execution with guards is conceptually straightforward. The guard on an event is evaluated
when it is submitted. Since guards are simplified whenever an event mentioned in them occurs,
evaluation usually means checking if the guard is T (subexpressions of the form —f cannot
always be simplified). However, preprocessing is necessary to ensure that temporal expressions
are consistently evaluated and that tasks are not unnecessarily delayed.

3.3.1 Prohibitory Relationships

Let e be the given event, whose guard is being evaluated. Roughly, a subexpression of the form
—f evaluates to T, since it means that f has not yet happened: if f had happened, =f would
have been reduced to 0. But such subexpressions are potentially problematic, since the message
announcing f could be in transit when —f is evaluated, leading to an inconsistent evaluation.
Thus, a message exchange with f’s actor is essential to ensure that f has not happened and
is not happening. This is an example of a prohibitory relationship between events, since f’s

occurrence can possibly disable e (depending on the rest of the guard of €). The left part of
Figure 5 diagrams the message flow in this case.

Oe 4+ Oe
N

2

Oe 4+ Oe Of
\

-
‘f_

Figure 5: Prohibitory and Promissory Message Flows

Al

3.3.2 Promissory Relationships

If the guard on an event is neither T nor 0, then the decision on it can be deferred. The
execution scheme must be enhanced to prevent mutual waits in consistent situations:

Example 7 Consider dependencies D1 and D2 of Figure 2. These result in e’s guard being
Of|=f and f’s guard being Oe + Og. Roughly, this means that e waits for Of, while f waits
for Oe.

The guards given in Example 7 do not reflect an inconsistency, since f is allowed to occur after
e. One way in which to resolve this kind of wait is through promises (this appears related to
Klein’s approach [Kle91]). This relationship is recognized at compile-time. The events are setup
so that when f is submitted, it promises to happen if € occurs. Since e’s guard only requires
that f occur sometimes, before or after ¢, it is then enabled and happens upon submission.
When news of e’s occurrence reaches f, f discharges its promise by occurring—events always
keep their promises.

Example 8 Consider dependency D2 of Figure 2 and its “transpose” D27 = (T + ¢e). These
result in e’s guard being O f and f’s guard being $e. Thus, e waits for Cf, while f waits for
Oe. This kind of a cyclic wait can also be handled through promising; either temporal order of
e and f is acceptable. 1

The message Oe means e has occurred; $e means that e is promised. Thus, when e occurs,
Oe is asserted to all events whose guards mention e. Similarly, when e is promised, <e is
asserted. Oe = Oe means that occurrence is stronger than promising (see Figure 3). We use
a limited set of proof rules to reduce guards when events occur or are promised. Oe reduces
subexpressions Oe or $e reduce to T, and —e to 0. However, Oe and —e are unaffected when
Oe is received. And, Oe and Ce reduce to 0 and —e to T, when O€ or <€ is received. The right
part of Figure 5 diagrams the message flow in this case.

4 Incorporating Event Attributes

The definition of guards given in section 3.2 ignores the attributes of different events. However,
the following attributes are crucial to scheduling [ASSR93].

e Triggerable: events that the system can initiate;
e Rejectable: events that the system can prevent; and

e Delayable: events that the system can delay.

A nondelayable event must also be nonrejectable, because it happens before the system learns
of it. Such an event is not attempted: the scheduler is notified of its occurrence after the fact.
It is possible to have nonrejectable, but delayable, events.

Example 9 The scheduler may trigger a start or an abort, but not a commit (see Figure 1).
However, it can reject or delay a commit, but can neither delay nor reject an abort (a task
may unilaterally abort). The scheduler can delay but not reject a forget (not shown), in which
a task clears its bookkeeping data and releases its locks. Timer events (not shown) are not
delayable, rejectable, or triggerable. |

The correctness and executability of the schedules generated depends crucially on the at-
tributes of the involved events. We now show how to compute guards in a manner that takes
attributes into account. These guards can then be executed as before, but ensure that no
attribute constraint is violated.

The key intuition here is that traces that violate some event attribute must be eliminated. A
dependency excludes certain computations as illegal; additional knowledge of event attributes
further restricts the set of allowed computations. Thus event attributes can be seen as means
of strengthening a given dependency. We eliminate from a dependency all the risky paths. The
updated guard computations, as given next, effectively sets the contributions of all risky paths
to 0.

It turns out that the computations are most natural when the attributes are paired as
nondelayable and nonrejectable, and delayable and nonrejectable, respectively. The default of
section 3.2 applies to delayable and rejectable events; we argued above that nondelayable and
rejectable events are impossible.

4.1 Delayable and Nonrejectable Events

An event that is delayable but nonrejectable must be permissible on every computation, possibly
after some other events have transpired. Thus the scheduler must realize only those compu-
tations on which the given event can occur later (if it has not occurred already). The basic
approach is as described in section 3.2, except that it is applied to a dependency representation
from which certain paths are removed.

Figure 6 shows the dependencies of Figure 4 with paths deleted to reflect the fact that
event e is delayable and nonrejectable. Using this representation, we can readily determine the
guards for the various events.

Example 10 G(D1,¢) = ~f|~f+0f = ~f+0f = =f. Similarly, G(D1, f) = Oe+ Oe. Thus,
G(D1,e) is unchanged but G(D1, f) is stronger: since e cannot be rejected, we cannot let f
happen unless e or € has already happened. I

Example 11 Again referring to Figure 6, we can compute the following: G(D2,e) = Of;
G(D2,f) = Ug; G(D2,e) = =f|-f+0f = =f +0f; and G(D2, f) = T. |

4.2 Nondelayable and Nonrejectable Events

An event that is nondelayable (and, therefore, also nonrejectable) must be permissible in every
state of the scheduler, i.e., of each dependency. Thus the scheduling system must never take
an action that leaves it in a state where the given event cannot occur immediately. Thus,
in essence, the guard of any such event is set to T by fiat. This category corresponds to
uncontrollable events of Klein and Gunthor.

—e|=E|~f|~f —e|=e|~f|~F

T 0
Di=¢+f+e-f(=e<f) D2=¢+ f(=e— f)
Figure 6: Guards Assuming e is Nonrejectable, but Delayable

Example 12 Figure 6 still holds with the assumption that e is not delayable or rejectable.
Using this representation, we can readily determine that G(D1, f) = Oe 4+ Oe. It is necessarily
the case that G(D1,e) = T. Thus, G(D1,¢) is weakened, but G(D1, f) is strengthened: since e
cannot be rejected, we cannot risk letting f happen unless e or € has already happened. I

Example 13 Again referring to Figure 6, we can compute the following: G(D2e) = T;
G(D2, f) = Ug; G(D2,8) = =f|-f+0Of = =f +0f; and G(D2, f) = T. |

4.3 Enforceability of Dependencies

Dependencies can be enforced during workflow execution as long as appropriate guards for
events can be found. Enforceability must be checked at compile-time, when dependencies
are added. Individual dependencies may become unenforceable if the asserted attributes as
overconstraining.

Example 14 Dependency D1 of Figure 6 is enforceable if e is nonrejectable and f is non-
rejectable and delayable, because f can be delayed until e or € occurs. However, D1 is not
enforceable if e is nonrejectable and f is nondelayable, because the nonrejectability of e re-
moves the path beginning with f from the initial state. I

Example 15 Figure 7 diagrams a dependency, D3 = €+ f - e + f - ¢, which is enforceable
when e is nonrejectable and delayable (because e can occur after f or 7), but not enforceable
when e is nondelayable (because e cannot occur right away). D3 continues to be enforceable
when both e and f are nonrejectable and and e is delayable. By contrast, D4 = €+ f - ¢ is not
enforceable even when e and f are both nonrejectable and delayable, because there is no path
on which they both occur. |

However, it is possible that dependencies are individually, but not jointly, enforceable. This
can be detected when the guards on different events as contributed by different dependencies
are conjoined and clash with the attributes of those events.

Example 16 Let D5 = f + €. The dependencies D1 = €+ f and D5 are jointly enforceable,
although G(D1,¢€)|G(D5,e) = Of|<Of, which reduces to 0. This just means that e must always
be rejected. However, if we are given the fact that e is nonrejectable, then the dependencies
are jointly unenforceable, since the guard of a nonrejectable event must be an expression that
will eventually evaluate to T. |

10

—e|-el~f|-f

- f
af
Oe
7.1 -
he
D3=¢+f-e+f-e Di=e+f-e

Figure 7: Nondelayable is Stronger than Nonrejectable and Delayable

4.4 Triggerable Events

The computational consequence of a dependency can vary based on whether some event is
triggerable.

Example 17 Consider dependency D2 of Figure 2, which says that if e happens, then f must
also happen. The guards due to D2 on the various events can be readily checked: G(D2,e) =
Of; G(D2,8) = T; G(D2,f) = T; and G(D2, f) =e. |

Ordinarily, these guards capture the desired behavior. In our usual execution scheme, if e is
attempted, it will wait for f to be promised. When f is triggerable, this is unsatisfactory, since
f would never happen by itself. An indefinite wait can result.

We must setup the information flow so that f is triggered. A principled way to do this is
as follows. Recall that an event or its complement must eventually occur, and that they both
cannot occur. When event e occurs (or is promised), it causes the guard of f to reduce to 0.
This, in effect, prevents f from ever occurring. In other words, it forces f to occur, sooner or
later. Consequently, we can set G(D2,¢) = T, provided our execution scheme guarantees that
f will be triggered when the guard on f goes to 0. The contributions of other dependencies to
the guards of both events are unchanged. The above relationship is recognized when the guard
on an event includes the promise or occurrence of a triggerable event.

5 Further Subtleties

Sections 3 and 4 gave the core ideas about computing and executing guards on events. We now
show how some further complexities are handled in our approach.

5.1 Multiply Instantiated Events

Multiply instantiated events are handled in the expected manner by introducing unique event
identifiers. An event is uniquely determined by (a) the identity of the agent in which it occurs
and (b) the count of the event. Thus each agent can maintain a counter for each event (or
a single counter for all events) and increment it whenever it attempts an event or an event
is triggered in it. This guarantees uniqueness. For practical reasons, we consider events in
different agents to be different types and have a separate actor for each of them. Different
instances of an event are different tokens of the same type.

11

5.2 Deadlocks and Race Conditions

The underlying execution mechanism should avoid provide a consistent view of the temporal
order of events. It should avoid potential race conditions and deadlocks. The compilation phase
can detect these conditions and add messages to ensure that there are no problems. It is also
possible to show that if the guards are automatically generated from a fixed set of dependencies,
then certain problematic conditions won’t occur. This set of dependencies is quite adequate for
most workflow specifications, but we do not discuss any details here.

5.3 Event Complements Revisited

We require that € exist for each significant event e. In practice, some events may not have a
complement. For example, the start event of a task may have no complement (see Figure 1). But
our assumption simplifies the required reasoning. A user may state a dependency 57+353 451 52.
By assigning a meaning to 57 and 53, even if it is the empty set, we can proceed without regard
to the fact that 57 and 55 never.

Also, task agents may easily be defined in which there is a three-way split, meaning that the
first event along each split is complemented by the first events of the other two splits. However,
these can be captured in our approach by defining three separate events, each of which triggers
the complements of the other two.

5.4 Control Flow and Data Flow

Depending on the attributes of the events, dependencies can model both control flow and data
flow requirements. Control flow involves any kind of conditional triggering, whereas data flow
involves waiting for another computation to complete.

Example 18 Consider dependency D1 of Figure 2 again. For simplicity, assume there are no
other dependencies. If f is triggerable, then e’s occurrence causes f to fire. However, if f is
not triggerable, then e must be delayed until f is guaranteed to occur. If in addition, we had
required that f precede e, then in essence, we can model the flow of information from f (or its
associated task) to e (or its associated task). That is, f could be a write event and e a read
event. 1

6 Conclusions

A prototype of our system has been implemented [STW94]. Our approach is provably correct,
and applies to many useful workflows in heterogeneous, distributed environments. Much of the
required symbolic reasoning can be precompiled, leading to efficiency at run-time. Although we
begin with lazy specifications, which characterize entire traces as acceptable or unacceptable,
we setup our computations so that information flows as soon as it is available, and activities are
not unnecessarily delayed. We believe this will lead to good scalability. Although we focused
on the intuitive, implementational aspects of our approach, a theoretical basis exists for it.
Klein’s approach, which is only sketchily described, is the closest to our approach in that it is
event-centric and distributed [Kle91]. However, it is limited to tasks without loops, and doesn’t
handle event attributes. Also, he tried to obtain the effect of prohibitory message flows through
more complex promises, which seems unintuitive. Giinthor’s approach is based on temporal
logic, but is centralized [Giin93]. These approaches are somewhat ad hoc in their details and
do not properly handle complementary events. Also, they do not consider all the attribute
combinations that we motivated above. Lastly, our previous approach, which constructs finite
automata for dependencies, is centralized [ASSR93]. It uses pathset search to avoid generating

12

product automata, but the individual automata can be quite large. The event attributes used
here were introduced there. Neither of the above approaches can express or process complex
dependencies as easily as the described approach.

In our system, events variously wait (at their actors), send messages to each other, and
thereby enable or trigger each other. This appears intuitively similar to Petri nets in some
respects. Petri nets are indeed an important formalism. However, our goal in this paper was
to find a way to characterize workflows that may be weaker than Petri nets, but which has
just enough power to do what we need and is declaratively specified. Indeed, in a sense we
synthesize Petri nets automatically by setting up the appropriate message flows. At compile-
time, we also ensure that the “net” will operate correctly, e.g., by not deadlocking at mutual
waits, but generating appropriate promissory messages instead.

Our approach enables certain useful kinds of reasoning to be formalized and to some extent
automated. These aspects of the approach follow from the formal semantics of our language
that we carefully designed. These are outside the scope of this paper. Also outside the scope
of this paper is a discussion of how one may actually come up with the necessary intertask
dependencies to capture some desired workflow. This is highly important and a problem that
has been attacked by others, especially in the formulation of various extended transaction

models [Elm92].

References

[ASSR93] Paul C. Attie, Munindar P. Singh, Amit P. Sheth, and Marek Rusinkiewicz. Spec-
ifying and enforcing intertask dependencies. In Proceedings of the 19th VLDB
Conference, August 1993.

[CR92] P. Chrysanthis and K. Ramamritham. ACTA: The SAGA continues. In [Elm92].
1992. Chapter 10.

[DGMH*93] Umesh Dayal, Hector Garcia-Molina, Mei Hsu, Ben Kao, and Ming-Chien Shan.
Third generation TP monitors: A database challenge. In SIGMOD, May 1993.

[DHLI1] U. Dayal, M. Hsu, and R. Ladin. A transactional model for long-running activities.
In Proceedings of the 17th VLDB Conference, September 1991.

Elm92 Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced Ap-
g
plications. Morgan Kaufmann, 1992.

[Giin93] Roger Giinthor. Extended transaction processing based on dependency rules. In
Proceedings of the RIDE-IMS Workshop, 1993.

[GRI3] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[Kim94] Won Kim, editor. Modern Database Systems: The Object Model, Interoperability,
and Beyond. Addison-Wesley, 1994.

[Kle91] Johannes Klein. Advanced rule driven transaction management. In Proceedings

of the IEEE COMPCON, 1991.

[RS94] Marek Rusinkiewicz and Amit Sheth. Specification and execution of transactional
workflows. In [Kim9/]. 1994.

[SMTA94] Munindar P. Singh, L. Greg Meredith, Christine Tomlinson, and Paul C. Attie.
An algebraic approach to workflow scheduling. Technical Report Carnot-049-94,
Microelectronics and Computer Technology Corporation, Austin, TX, July 1994.

13

[ST94]

[STW94]

Munindar P. Singh and Christine Tomlinson. Temporal logic constraints for work-
flows. Technical Report Carnot-087-94, Microelectronics and Computer Technol-
ogy Corporation, Austin, TX, October 1994.

Munindar P. Singh, Christine Tomlinson, and Darrell Woelk. Relaxed transaction
processing. In Proceedings of the ACM SIGMOD, May 1994. Research Prototype
Demonstration.

14

