
Automating Workflows for Service Provisioning:
Integrating AI and Database Technologies

Michael N. Huhns and Munindar P. Singh
Microelectronics and Computer Technology Corporation

Information Systems Division
3500 West Balcones Center Drive
Austin, TX, U.S.A. 78759-5398

Abstract

Workflows are the structured activities that take
place in information systems in typical business en-
vironments. These activities frequently involve several
database systems, user interfaces, and application pro-
grams. Tkaditional database systems do not support
workflows 20 any reasonable extent. Usually human
beings must intervene to ensure their proper execution.
W e have developed an architecture based on A I tech-
nology that automatically manages workflows. This
architecture executes on top of a distributed computing
environment. It has been applied t o automating service
provisioning workffows; an implementation that oper-
ates on one such workflow has been developed. This
work advances the C a m o t Project’s goal of develop-
ing technologies f o r integrating heterogeneous database
systems. It is notable in i ts marriage of A I approaches
with standard distributed database techniques.

1 Introduction

The Carnot Project a t MCC seeks to develop a vari-
ety of technologies that enable the integration of het-
erogeneous data and information resources. Project
deliverables include an environment for the develop-
ment of complex multisystem applications that ac-
cess information stored in preexisting heterogeneous
systems and maintain consistency constraints across
them [5, 81. An important component of this effort is
a facility for workflow management [2, 10, 111. Briefly,
workflows consist of tasks, appropriately structured.
A task is any unit of computation that performs some
useful function in a system. The tasks that are of par-
ticular interest are database transactions, but other
computations, e.g., those that generate visualizations,
can be presented in the same framework.

1043-0989/94 $03.00 0 1994 IEEE

Integrating preexisting systems is in general a
harder problem than designing distributed systems
afresh. Many systems, especially those based on older
mainframe architectures, allow data to be accessed
only through arcane interfaces of limited functional-
ity. The systems and their interfaces cannot be easily
modified, and our work assumes they cannot. This is
because of two main reasons: (1) the complexity of the
programming effort that would be required to achieve
any modifications, and (2) the constraint that older
applications continue to run as before, since they t y p
ically have a wide user base that relies heavily upon
them. Thus, the integration must permit newly de-
veloped applications to coexist with previous applica-
tions.

The major goal of the Carnot Project is to cre-
ate general principles and approaches for integration
of heterogeneous information resources. The Carnot
Project is distinguished from other database research
projects not only in terms of its goals, but also in
having a larger and more significant AI component
than is perhaps typical. We also undertake various
application partnerships with our sponsors in order to
develop prototype systems that address their specific
problems. This not only serves to test our research
ideas, but also suggests important research problems
to work on. We did one such application partnership
with one of our clients, a telecommunications com-
pany. In this paper, we describe the key ideas of our
ongoing research, as well as how they were applied to
the problems of this client. In Section 2, we describe
how workflows and AI fit into heterogeneous informa-
tion systems. In Section 3, we describe the specific
problem we addressed and, in Section 4, our solution
to it.

405

2 Background

Classical transaction processing in databases deals
with executing access and update tasks on a single
database. Such tasks are traditionally assumed to
have the so-called ACID properties: atomicity, where
each task happens either fully or not at all; consis-
tency, where each task takes the database from a con-
sistent state to a consistent state; isolation, where the
intermediate results of a task are not visible to an-
other task; and durability, where the changes caused
by a task are persistent.

These assumptions help simplify transaction man-
agement considerably. However, they prove to be
overly restrictive in loosely coupled heterogeneous en-
vironments. For example, one of the ways in which
ACID tasks may be coordinated is through mutual
commit protocols, which ensure that either all of a
given set of tasks commit or none do. Such proto-
cols, the classical example of which is the two-phase
commit protocol, are notoriously inefficient when ex-
ecuted over networks. Further, to execute such a
protocol, one requires access to the internal states
of transactions, such as their precommit states. A
transaction is in its precommit state when it is inter-
nally ready to commit, but is awaiting permission from
the transaction manager to do so. Most commercial
database systems do not provide access to such inter-
nal states, thereby making direct implementations of
commit protocols extremely difficult.

The ACID properties are naturally realized when
the correctness of database transactions is character-
ized through some purely syntactic or structural crite-
rion, such as serializability [3]. However, serializabil-
ity cannot be efficiently implemented in distributed
systems whose component systems are autonomous.
Instead of attempting to characterize correctness cri-
teria purely syntactically, following [7], we attempt to
characterize them semantically. This allows us to spe-
cialize the correctness criteria to the given application
a t the cost of building a deeper model of the applica-
tion domain. This helps simplify several coordination
requirements. For example, instead of executing mu-
tual commit protocols, we can optimistically commit
different tasks. If this action should prove erroneous,
we undo the effects of incorrectly committed tasks.
This is achieved by means of compensating transac-
tions, whose definition depends on the semantics of
the underlying domain.

Consequently, in heterogeneous environments, the
unit of relevant activity is not a single database
transaction, but rather a workflow that executes over
a set of database and information resources. The

constituent tasks of a workflow may be individually
ACID, but the overall workflow usually is not. The
problem is to ensure that no semantic constraint of
the information model is violated despite this.

The activities that comprise a workflow of interest
are typically already being carried out in the given
organization. However, they are usually carried out
by hand, with people intervening in several crucial
stages to ensure that the necessary tasks are done and
that organization-wide consistency constraints are en-
forced. The semantics that we alluded to above is sup-
plied by the people or is implicitly encoded in different
business procedures. The canonical examples of work-
flows are document flows through organizations. For
instance, when an order is received, it must be entered
into the system and several decisions must be taken to
process it properly. These decisions would typically
involve access to several information resources within
an enterprise and possibly some outside of it. For ex-
ample, a request to transfer money from one account
to another requires that the authorization be verified,
the account numbers be validated, and the source ac-
count be tested to have the required balance. Exter-
nal sources of information would be accessed for other
requests, such as loan applications, where a credit bu-
reau’s databases may be consulted to determine the
credit worthiness of an applicant.

It is of great importance to be able to handle the
myriad error conditions that may arise in different
workflows. The exception conditions in workflows are
ones that are the hardest to automate. It is in iden-
tifying and resolving such conditions and managing
control and data flow appropriately that AI technol-
ogy can contribute substantially.

3 The Problem: Workflows for Service
Provisioning

One of our clients provides a variety of telecommu-
nication services. We studied the workflow for pro-
visioning one such service that establishes a telecom-
munication link between two specified points. In the
extant workflow, a set of paper forms is received that
gives a number of relevant details about the service be-
ing ordered. These forms are entered into the system.
A test is then performed to determine if certain essen-
tial telecommunication equipment is already in place.
If it is, the service can be provided relatively quickly;
otherwise, the processing must be delayed until the
equipment is added.

Service provisioning typically takes several weeks

406

Senriceorder

e1-m Circuit

ahcation zhcation

Figure 1: Abbreviated Semantic Model of the Provisioning Environment

and requires coordination among many operation-
support systems and network elements. Configuring
the operation-support systems so that they can per-
form such a task often takes several months to com-
plete. This proves to be of competitive significance
in the business environment in which our client op-
erates. Many of its competitors were formed in the
last decade or so. Unlike our client, these companies
are not encumbered with legacy systems and typically
have more modern computational facilities.

We investigated ways to improve the provisioning
of one type of communication facility-digital services
(DSl). Provisioning OS-1 takes more than two weeks
and involves 48 separate operations-23 of which are
manual-against 16 different database systems. Our
goals were to reduce this time to less than two hours
and to provide a way in which new services could
be introduced more easily. Our strategy for accom-
plishing these goals was to (1) interconnect and inter-
operate among the previously independent systems,
(2) replace serial operations by parallel ones by mak-
ing appropriate use of relaxed transaction processing
[4, 6, 11, and (3) automate previously manual oper-
ations, thereby reducing the incidence of errors and
delays.

An important goal of our project was to exhibit the
feasibility of a workflow management approach that
applies to workflows in general. Our specific chal-

lenge was to automate the DS-1 workflow as a test-
case to achieve the efficiencies of our client’s competi-
tors without discarding its legacy systems. We should
note, however, our implementation is not meant at this
stage for production use, but as a proof-of-concept ex-
ercise.

Figure 1 presents an entity-relationship diagram
that shows the most relevant components of the se-
mantic model of the provisioning problem. Fig-
ure 2 presents the basic structure of the workflow we
studied-it shows the admissible executions when ev-
erything works correctly. Each node denotes a task.
The partial order reflects the dependencies among the
different tasks. Tasks cannot be initiated until all their
dependencies are met; ordinarily, they must be initi-
ated if those dependencies are satisfied.

4 The Carnot Solution

We defined a distributed agent architecture, shown
in Figure 3, for intelligent workflow management that
functions on top of Carnot’s distributed execution en-
vironment. An important constraint on our design
was to use existing procedures as much as possible
so as to ensure that other applications were not ad-
versely affected by our system. This turned out to
be easily accommodated by our architecture; indeed,
we welcomed not having to worry about the details of

407

Figure 2: The Provisioning Workflow Automated

the mainframe systems on which we ran various tasks.
Since the actual applications executed by the workflow
were assumed to be defined already, our goal was to
manage the overall structure of the applications in as
domain-independent a manner as possible.

Our multiagent system consists of four agents that
interact to produce the desired behavior. Figure 3
shows the key components of our architecture. The
databases mentioned on the figure are assumed to in-
clude the relevant data and application programs that
execute on them. The necessary applications are exe-
cuted by the schedule processing agent; the user inter-
face agent queries the systems to help a user fi l l in an
order form completely and correctly, and to provide
feedback about progress. This enables the detection
of data inconsistencies. It is highly desirable to resolve
inconsistencies early in the process.

The present architecture is enabled by our previous
integration of an expert system shell, which has for-
ward and backward chaining capabilities, a type sys-
tem, and truth maintenance, into Carnot’s distributed
execution environment. This environment provides
the basic message passing facility that our agents use
to interact with other agents anywhere on the net-
work. We used this facility to implement a scheme by

which agents can exchange assertions, thereby trigger-
ing or disabling rules in each other. We augmented our
scheme so that agents that are not expert systems can
also participate in interactions, provided they satisfy
a simple protocol. This enabled us to integrate trans-
parently a graphical interaction agent, which is not an
expert system shell, into the multiagent system.

Figure 4 describes our implementation at a high-
level as an entity-relationship diagram. A key point
to note is that the different tasks that correspond to
the nodes of Figure 2 are modeled as database transac-
tions. Each such transaction is initiated by an agent.
Each task has associated with it a message type. The
message type essentially encodes the computation that
the underlying IMS databases must execute. When an
agent executes a task, it does so by passing along the
relevant message, i.e., the name of the file that con-
tains it.

The graphical-
interaction agent helps a user fill in an order form cor-
rectly and completely, and checks inventories to give
the user an estimate of when the order will be com-
pleted. It also informs the user about the progress of
the order. The scheduling agent constructs the ini-
tial schedule for the given request, doing so on the as-

The agents operate as follows.

408

..
Graphical Transaction

Agent Agent 1 Scheduling User Interaction

Figure 3: A Distributed AI System for Workflow Management

sumption that the relevant subtasks will succeed. The
tasks are scheduled with the maximum concurrency
possible, while still satisfying all required precedence
constraints.

The schedule processing agent executes the sched-
ule by invoking different tasks as necessary. It main-
tains connections to the databases involved in telecom-
munication provisioning, and implements transactions
on them. The schedule processor also ensures that
different workflows do not interact spuriously. This is
akin to the problem of concurrency control in tradi-
tional database systems. Concurrency control has to
do with ensuring that different transactions that ac-
cess the same data items do not access them in relative
orders for which there are no equivalent serial execu-
tions. With a workflow, we need to ensure that sub-
tasks on each database can be serialized in the same
order. This may require delaying, or aborting and
retrying, different subtasks.

If the schedule processor encounters an unexpected
condition, e.g., the failure of a task, it notifies the
scheduling agent, which communicates with the sched-
ule repairing agent for advice on how to fix the prob-
lem. The advice can be information on how to restart
a transaction, how to abort a transaction, how to com-
pensate for a previously committed transaction, or
how to clean-up a failed transaction. These actions
are meant to restore semantic consistency across the
system. For example, if the system is unable to allo-

cate a span to a given service request, it aborts it. The
billing task, if already begun, is aborted. On the other
hand, if the billing task fails, while the span allocation
succeeds, the service order is allowed to proceed and
the billing task is retried later. A conceptual model
for the knowledge of the schedule-repairing agent is
shown in Figure 5.

In our approach, the initial schedule is constructed
on the assumption that things will succeed as ex-
pected. This leads to a small, easily executable, sched-
ule. If error conditions should arise, they are accom-
modated at run-time by repairing the initial sched-
ule as appropriate. Some of this is automatic, since
the undesirable and unexecuted parts of the schedule
are disabled by the truth maintenance system of the
scheduling agent when their preconditions fail to hold.

The basic structure of this system is domain-
independent. The details of the messages are clearly
domain-dependent. Certain parameters, e.g., the
identifier of the service request, are known to the
scheduler, but most of the data is passed through
the file system. The files are uniquely named using
the known identifier, thereby allowing different re-
quests to execute concurrently. The other domain-
dependent components of the system are the proce-
dures required to convert data formats from those pro-
duced by one application to those expected by the
next. These translation routines were written using
the tools Lex and Yacc. They are invoked as neces-

409

I ‘ IF..
Class

Figure 4: Description of the Transaction-Scheduling Agent’s Implementation

sary by the schedule-processing agent. The remaining
domain-dependent aspect of the provisioning workflow
is in the resource constraints, which guide the schedul-
ing and repairing processes.

tem that could be tested. Having an implementation
will help us understand the needed components and
the interfaces among them. This will aid in the design
and testing of industrial-strength modules.

The benefits realized from automatic workflow p r e
cessing include

5 Conclusions
0 Improved turnaround time.

We have a prototype implementation, which we
treat as a proof-of-concept exercise, rather than a
deployable system. The prototype is being reimple-
mented for installation in a restricted production en-
vironment (one switching center). If it is successful, it
will be deployed in all switching centers by our client.

Certain desired features will call for AI technology
in the final implementation: these include schedule
repair and other senantical aspects of the domain.
Because of business constraints, we do not expect to
use our present Lisp-based system for these, although
the ideas will be reimplemented in a C++ or Rosette-
based constraint processor. Certain other features, no-
tably those to do with schedule processing, do not re-
ally require AI approaches, even though AI approaches
are useful for rapidly prototyping them.

I t is safe to conclude that AI technology helped us
sort out various issues and easily build a working sys-

0 Error checking of the initial input; validation of
fields with respect to other fields and information
in customer databases.

Streamlining of the present procedures by remov-
ing redundant data gathering and processing.

0 Ability to modify the structure of the overall pro-
cedure easily.

We believe that as information systems become
more complex, there will be an increasing demand for
AI technologies to manage them. It is likely, however,
that AI technologies will have to take a somewhat dif-
ferent, possibly more mundane, form in applications,
than might have been initially envisioned by the peo-
ple who developed them.

410

DBTransaction

Figure 5: Conceptual Model for Schedule-Repairing Agent

References

[l] Mansoor Ansari, Marek Rusinkiewicz, Linda
Ness, and Amit Sheth, “Executing Multidatabase
Transactions,” Proceedings 25th Hawaii Int ’I.
Conf. on Systems Sciences, January 1992.

[2] Paul C. Attie, Munindar P. Singh, Amait P.
Sheth, and Marek Rusinkiewicz, “Specifying and
Enforcing Intertask Dependencies,” Proceedings
of the 19th V L D B Conference, 1993.

[3] Philip A. Bernstein, Vassos Hadzilacos, and
Nathan Goodman, Concurrency Control and Re-
covery in Database Systems, Addison Wesley
Publishing Co., 1987.

[7] Hector Garcia-Molina and K. Salem, “Sagas,”
Proceedings of A C M SIGMOD Conference on
Management of Data, 1987.

[8] Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk,
Wei-Min Shen, Munindar Singh, and Philip Can-
nata, “Integrating Enterprise Information Models
in Carnot,” International Conference on Intelli-
gent and Cooperative Information Systems (ICI-
CIS), Rotterdam, The Netherlands, June 1993.

[9] W. Woody Jin, L. Ness, M. Rusinkiewicz, and
A. Sheth, “Executing Service Provisioning Appli-
cations as Multidatabase Flexible Transactions,”
Bellcore Tech. Report (unpublished), 1993.

[lo] Christine Tomlinson, Paul Atie, Philip Can-
nata, Greg Meredith, Amit Sheth, Munindar
Singh, and-Darrell Woelk, “Workflow Support in
Carnot,” IEEE Data Engineering, 1993. [4] Omran A. Bukhres, Jiansan Chen, Weimin Du,

Ahmed K. Elmagarmid, and Robert Pezzoli, “In-
terBase: An Execution Environment for Het-
erogeneous Software Systems,” IEEE Computer,
Vol. 26, NO. 8, Aug. 1993, pp. 57-69.

[ll] Darrell Woelk, Paul Attie, Philip Cannata, Greg
Meredith, Munindar Singh, and Christine Tom-
linson, “Task Scheduling Using Intertask Depen-
dencies in Carnot,” A C M SIGMOD, 1993.

[5] Philip E. Cannata, “The Irresistible Move t e
wards Interoperable Database Systems,” First In-
ternational Workshop on Inieroperability in Mul-
tidatabase Systems, Kyoto, Japan, April 1991.

[6] Ahmed K. Elmagarmid, ed., Database nansac -
tion Models for Advanced Applications, Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1992.

411

