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Abstract 

Workflows are the structured activities that take 
place in information systems in typical business en- 
vironments. These activities frequently involve several 
database systems, user interfaces, and application pro- 
grams. Tkaditional database systems do not support 
workflows 20 any reasonable extent. Usually human 
beings must intervene to ensure their proper execution. 
W e  have developed an architecture based on A I  tech- 
nology that automatically manages workflows. This 
architecture executes on top of a distributed computing 
environment. It has been applied t o  automating service 
provisioning workffows; an implementation that oper- 
ates on one such workflow has been developed. This 
work advances the C a m o t  Project’s goal of develop- 
ing technologies f o r  integrating heterogeneous database 
systems. It is notable in i ts  marriage of A I  approaches 
with standard distributed database techniques. 

1 Introduction 

The Carnot Project a t  MCC seeks to develop a vari- 
ety of technologies that enable the integration of het- 
erogeneous data and information resources. Project 
deliverables include an environment for the develop- 
ment of complex multisystem applications that ac- 
cess information stored in preexisting heterogeneous 
systems and maintain consistency constraints across 
them [5, 81. An important component of this effort is 
a facility for workflow management [2, 10, 111. Briefly, 
workflows consist of tasks, appropriately structured. 
A task is any unit of computation that performs some 
useful function in a system. The tasks that are of par- 
ticular interest are database transactions, but other 
computations, e.g., those that generate visualizations, 
can be presented in the same framework. 
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Integrating preexisting systems is in general a 
harder problem than designing distributed systems 
afresh. Many systems, especially those based on older 
mainframe architectures, allow data  to be accessed 
only through arcane interfaces of limited functional- 
ity. The systems and their interfaces cannot be easily 
modified, and our work assumes they cannot. This is 
because of two main reasons: (1) the complexity of the 
programming effort that would be required to achieve 
any modifications, and (2) the constraint that older 
applications continue to run as before, since they t y p  
ically have a wide user base that relies heavily upon 
them. Thus, the integration must permit newly de- 
veloped applications to coexist with previous applica- 
tions. 

The major goal of the Carnot Project is to cre- 
ate general principles and approaches for integration 
of heterogeneous information resources. The Carnot 
Project is distinguished from other database research 
projects not only in terms of its goals, but also in 
having a larger and more significant AI component 
than is perhaps typical. We also undertake various 
application partnerships with our sponsors in order to 
develop prototype systems that  address their specific 
problems. This not only serves to  test our research 
ideas, but also suggests important research problems 
to work on. We did one such application partnership 
with one of our clients, a telecommunications com- 
pany. In this paper, we describe the key ideas of our 
ongoing research, as well as how they were applied to 
the problems of this client. In Section 2, we describe 
how workflows and AI fit into heterogeneous informa- 
tion systems. In Section 3, we describe the specific 
problem we addressed and, in Section 4, our solution 
to it. 
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2 Background 

Classical transaction processing in databases deals 
with executing access and update tasks on a single 
database. Such tasks are traditionally assumed to 
have the so-called ACID properties: atomicity,  where 
each task happens either fully or not at all; consis- 
tency,  where each task takes the database from a con- 
sistent state to a consistent state; isolation, where the 
intermediate results of a task are not visible to an- 
other task; and durability, where the changes caused 
by a task are persistent. 

These assumptions help simplify transaction man- 
agement considerably. However, they prove to be 
overly restrictive in loosely coupled heterogeneous en- 
vironments. For example, one of the ways in which 
ACID tasks may be coordinated is through mutual 
commit protocols, which ensure that either all of a 
given set of tasks commit or none do. Such proto- 
cols, the classical example of which is the two-phase 
commit protocol, are notoriously inefficient when ex- 
ecuted over networks. Further, to execute such a 
protocol, one requires access to the internal states 
of transactions, such as their precommit states. A 
transaction is in its precommit state when it is inter- 
nally ready to  commit, but is awaiting permission from 
the transaction manager to do so. Most commercial 
database systems do not provide access to such inter- 
nal states, thereby making direct implementations of 
commit protocols extremely difficult. 

The ACID properties are naturally realized when 
the correctness of database transactions is character- 
ized through some purely syntactic or structural crite- 
rion, such as serializability [3]. However, serializabil- 
ity cannot be efficiently implemented in distributed 
systems whose component systems are autonomous. 
Instead of attempting to characterize correctness cri- 
teria purely syntactically, following [7], we attempt to 
characterize them semantically. This allows us to spe- 
cialize the correctness criteria to the given application 
a t  the cost of building a deeper model of the applica- 
tion domain. This helps simplify several coordination 
requirements. For example, instead of executing mu- 
tual commit protocols, we can optimistically commit 
different tasks. If this action should prove erroneous, 
we undo the effects of incorrectly committed tasks. 
This is achieved by means of compensating transac- 
tions, whose definition depends on the semantics of 
the underlying domain. 

Consequently, in heterogeneous environments, the 
unit of relevant activity is not a single database 
transaction, but rather a workflow that executes over 
a set of database and information resources. The 

constituent tasks of a workflow may be individually 
ACID, but the overall workflow usually is not. The 
problem is to ensure that no semantic constraint of 
the information model is violated despite this. 

The activities that  comprise a workflow of interest 
are typically already being carried out in the given 
organization. However, they are usually carried out 
by hand, with people intervening in several crucial 
stages to ensure that the necessary tasks are done and 
that organization-wide consistency constraints are en- 
forced. The semantics that we alluded to above is sup- 
plied by the people or is implicitly encoded in different 
business procedures. The canonical examples of work- 
flows are document flows through organizations. For 
instance, when an order is received, it must be entered 
into the system and several decisions must be taken to 
process it properly. These decisions would typically 
involve access to several information resources within 
an enterprise and possibly some outside of it. For ex- 
ample, a request to transfer money from one account 
to another requires that the authorization be verified, 
the account numbers be validated, and the source ac- 
count be tested to have the required balance. Exter- 
nal sources of information would be accessed for other 
requests, such as loan applications, where a credit bu- 
reau’s databases may be consulted to determine the 
credit worthiness of an applicant. 

It is of great importance to be able to  handle the 
myriad error conditions that may arise in different 
workflows. The exception conditions in workflows are 
ones that are the hardest to automate. It is in iden- 
tifying and resolving such conditions and managing 
control and data flow appropriately that AI technol- 
ogy can contribute substantially. 

3 The Problem: Workflows for Service 
Provisioning 

One of our clients provides a variety of telecommu- 
nication services. We studied the workflow for pro- 
visioning one such service that establishes a telecom- 
munication link between two specified points. In the 
extant workflow, a set of paper forms is received that 
gives a number of relevant details about the service be- 
ing ordered. These forms are entered into the system. 
A test is then performed to determine if certain essen- 
tial telecommunication equipment is already in place. 
If it is, the service can be provided relatively quickly; 
otherwise, the processing must be delayed until the 
equipment is added. 

Service provisioning typically takes several weeks 
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Figure 1: Abbreviated Semantic Model of the Provisioning Environment 

and requires coordination among many operation- 
support systems and network elements. Configuring 
the operation-support systems so that they can per- 
form such a task often takes several months to com- 
plete. This proves to be of competitive significance 
in the business environment in which our client op- 
erates. Many of its competitors were formed in the 
last decade or so. Unlike our client, these companies 
are not encumbered with legacy systems and typically 
have more modern computational facilities. 

We investigated ways to improve the provisioning 
of one type of communication facility-digital services 
(DSl). Provisioning OS-1 takes more than two weeks 
and involves 48 separate operations-23 of which are 
manual-against 16 different database systems. Our 
goals were to reduce this time to less than two hours 
and to provide a way in which new services could 
be introduced more easily. Our strategy for accom- 
plishing these goals was to (1) interconnect and inter- 
operate among the previously independent systems, 
(2) replace serial operations by parallel ones by mak- 
ing appropriate use of relaxed transaction processing 
[4, 6, 11, and (3) automate previously manual oper- 
ations, thereby reducing the incidence of errors and 
delays. 

An important goal of our project was to exhibit the 
feasibility of a workflow management approach that 
applies to workflows in general. Our specific chal- 

lenge was to automate the DS-1 workflow as a test- 
case to achieve the efficiencies of our client’s competi- 
tors without discarding its legacy systems. We should 
note, however, our implementation is not meant at this 
stage for production use, but as a proof-of-concept ex- 
ercise. 

Figure 1 presents an entity-relationship diagram 
that shows the most relevant components of the se- 
mantic model of the provisioning problem. Fig- 
ure 2 presents the basic structure of the workflow we 
studied-it shows the admissible executions when ev- 
erything works correctly. Each node denotes a task. 
The partial order reflects the dependencies among the 
different tasks. Tasks cannot be initiated until all their 
dependencies are met; ordinarily, they must be initi- 
ated if those dependencies are satisfied. 

4 The Carnot Solution 

We defined a distributed agent architecture, shown 
in Figure 3, for intelligent workflow management that 
functions on top of Carnot’s distributed execution en- 
vironment. An important constraint on our design 
was to use existing procedures as much as possible 
so as to ensure that other applications were not ad- 
versely affected by our system. This turned out to 
be easily accommodated by our architecture; indeed, 
we welcomed not having to worry about the details of 
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Figure 2: The Provisioning Workflow Automated 

the mainframe systems on which we ran various tasks. 
Since the actual applications executed by the workflow 
were assumed to be defined already, our goal was to 
manage the overall structure of the applications in as 
domain-independent a manner as possible. 

Our multiagent system consists of four agents that 
interact to produce the desired behavior. Figure 3 
shows the key components of our architecture. The 
databases mentioned on the figure are assumed to in- 
clude the relevant data and application programs that 
execute on them. The necessary applications are exe- 
cuted by the schedule processing agent; the user inter- 
face agent queries the systems to help a user fi l l  in  an 
order form completely and correctly, and to provide 
feedback about progress. This enables the detection 
of data inconsistencies. It is highly desirable to resolve 
inconsistencies early in the process. 

The present architecture is enabled by our previous 
integration of an expert system shell, which has for- 
ward and backward chaining capabilities, a type sys- 
tem, and truth maintenance, into Carnot’s distributed 
execution environment. This environment provides 
the basic message passing facility that our agents use 
to interact with other agents anywhere on the net- 
work. We used this facility to implement a scheme by 

which agents can exchange assertions, thereby trigger- 
ing or disabling rules in each other. We augmented our 
scheme so that agents that are not expert systems can 
also participate in interactions, provided they satisfy 
a simple protocol. This enabled us to integrate trans- 
parently a graphical interaction agent, which is not an 
expert system shell, into the multiagent system. 

Figure 4 describes our implementation at a high- 
level as an entity-relationship diagram. A key point 
to note is that the different tasks that correspond to 
the nodes of Figure 2 are modeled as database transac- 
tions. Each such transaction is initiated by an agent. 
Each task has associated with it a message type. The 
message type essentially encodes the computation that 
the underlying IMS databases must execute. When an 
agent executes a task, it  does so by passing along the 
relevant message, i.e., the name of the file that con- 
tains it. 

The graphical- 
interaction agent helps a user fill in an order form cor- 
rectly and completely, and checks inventories to give 
the user an estimate of when the order will be com- 
pleted. It also informs the user about the progress of 
the order. The scheduling agent constructs the ini- 
tial schedule for the given request, doing so on the as- 

The agents operate as follows. 
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Figure 3: A Distributed AI System for Workflow Management 

sumption that the relevant subtasks will succeed. The 
tasks are scheduled with the maximum concurrency 
possible, while still satisfying all required precedence 
constraints. 

The schedule processing agent executes the sched- 
ule by invoking different tasks as necessary. It main- 
tains connections to  the databases involved in telecom- 
munication provisioning, and implements transactions 
on them. The schedule processor also ensures that 
different workflows do not interact spuriously. This is 
akin to the problem of concurrency control in tradi- 
tional database systems. Concurrency control has to 
do with ensuring that different transactions that ac- 
cess the same data items do not access them in relative 
orders for which there are no equivalent serial execu- 
tions. With a workflow, we need to ensure that sub- 
tasks on each database can be serialized in the same 
order. This may require delaying, or aborting and 
retrying, different subtasks. 

If the schedule processor encounters an unexpected 
condition, e.g., the failure of a task, it  notifies the 
scheduling agent, which communicates with the sched- 
ule repairing agent for advice on how to fix the prob- 
lem. The advice can be information on how to restart 
a transaction, how to abort a transaction, how to com- 
pensate for a previously committed transaction, or 
how to clean-up a failed transaction. These actions 
are meant to restore semantic consistency across the 
system. For example, if the system is unable to allo- 

cate a span to a given service request, it aborts it. The 
billing task, if already begun, is aborted. On the other 
hand, if the billing task fails, while the span allocation 
succeeds, the service order is allowed to proceed and 
the billing task is retried later. A conceptual model 
for the knowledge of the schedule-repairing agent is 
shown in Figure 5. 

In our approach, the initial schedule is constructed 
on the assumption that things will succeed as ex- 
pected. This leads to a small, easily executable, sched- 
ule. If error conditions should arise, they are accom- 
modated at run-time by repairing the initial sched- 
ule as appropriate. Some of this is automatic, since 
the undesirable and unexecuted parts of the schedule 
are disabled by the truth maintenance system of the 
scheduling agent when their preconditions fail to hold. 

The basic structure of this system is domain- 
independent. The details of the messages are clearly 
domain-dependent. Certain parameters, e.g., the 
identifier of the service request, are known to the 
scheduler, but most of the data is passed through 
the file system. The files are uniquely named using 
the known identifier, thereby allowing different re- 
quests to execute concurrently. The other domain- 
dependent components of the system are the proce- 
dures required to convert data formats from those pro- 
duced by one application to those expected by the 
next. These translation routines were written using 
the tools Lex and Yacc. They are invoked as neces- 
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Figure 4: Description of the Transaction-Scheduling Agent’s Implementation 

sary by the schedule-processing agent. The remaining 
domain-dependent aspect of the provisioning workflow 
is in the resource constraints, which guide the schedul- 
ing and repairing processes. 

tem that could be tested. Having an implementation 
will help us understand the needed components and 
the interfaces among them. This will aid in the design 
and testing of industrial-strength modules. 

The benefits realized from automatic workflow p r e  
cessing include 

5 Conclusions 
0 Improved turnaround time. 

We have a prototype implementation, which we 
treat as a proof-of-concept exercise, rather than a 
deployable system. The prototype is being reimple- 
mented for installation in a restricted production en- 
vironment (one switching center). If it  is successful, it 
will be deployed in all switching centers by our client. 

Certain desired features will call for AI technology 
in the final implementation: these include schedule 
repair and other senantical aspects of the domain. 
Because of business constraints, we do not expect to 
use our present Lisp-based system for these, although 
the ideas will be reimplemented in a C++ or Rosette- 
based constraint processor. Certain other features, no- 
tably those to do with schedule processing, do not re- 
ally require AI approaches, even though AI approaches 
are useful for rapidly prototyping them. 

I t  is safe to conclude that AI technology helped us 
sort out various issues and easily build a working sys- 

0 Error checking of the initial input; validation of 
fields with respect to other fields and information 
in customer databases. 

Streamlining of the present procedures by remov- 
ing redundant data gathering and processing. 

0 Ability to modify the structure of the overall pro- 
cedure easily. 

We believe that as information systems become 
more complex, there will be an increasing demand for 
AI technologies to manage them. It is likely, however, 
that AI technologies will have to take a somewhat dif- 
ferent, possibly more mundane, form in applications, 
than might have been initially envisioned by the peo- 
ple who developed them. 
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