
COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 107

A popular techies’ tale goes
as follows. A user calls
customer support with a

problem: “The program says
‘press any key to continue’ but I
can’t find the any key on the key-
board.”

Stupid user.
We suppose this story is apoc-

ryphal. Most people have a rea-
sonable understanding of
language even if they aren’t
familiar with computers. But
we’re not surprised if some user
has had this very difficulty figur-
ing out the “any” key.

Our point is that although an
actual user may or may not be as
ill-informed as the apocryphal
one, virtually all real program-
mers are insensitive. And we
don’t mean personal insensitivity.
We mean technical insensitivity,
the kind that results from view-
ing a problem solely from one’s
own perspective.

We imagine the programmer
writing the instructions to press
any key wants to delay process-
ing until the user has acknowl-
edged reading some message.
(This is called a dialogue,
although it doesn’t allow much in
the way of conversation.) The
programmer writes a simple pro-
gram to achieve this effect—let’s

call this desired behavior
“acknowledged continuation.”
This program might look some-
thing like the following in
pseudo code:

<stuff done before>
display(“press any key to continue”);
get_character() <implied wait>
<stuff done after>

This is a nice program and
gives every indication of being
reliable. The program displays a
message and awaits an input
from the user. As soon as an
input, any input, arrives, the
program can continue.

When the user sees the mes-
sage “press any key to continue,”
he or she (usually) has a readily
available keyboard. By definition,
one would expect, a keyboard is
something with keys.

But not all keys are alike.
Experienced users know to press
a key that works, such as the
space bar or the enter key. How-
ever, this is more a matter of a
user having been trained through
past experience to press the right
keys than a matter of the specifi-
cation itself being clear.

For instance, some of the keys
have no effect. Press the shift or
control key and nothing hap-

pens. Press the caps lock key and
it may affect what you type later,
but the program still doesn’t
budge. On some computers,
when the alt key is pressed,
something weird may happen.
Ditto with the function keys.

Press the power on-off key,
which exists on some keyboards,
and the results may be far more
dramatic than desired. It is fair
to say the program will not con-
tinue as promised.

Some key combinations count
as one key. Press shift and a letter
(say, j), and it works fine, as any
programmer would expect. How-
ever, some key combinations are
dangerous. In the Windows
world, the control-alt- delete
combination opens up a window
listing running programs that the
user may kill. A second control-
alt-delete can reset the computer.
In the Unix world, control-C can
kill a program and control-Z sus-
pends it. Control-S can suspend
any output.

The gist of this is that a speci-
fication saying “press any key to
continue” is far from unambigu-
ous to the user. It may seem clear
from the programmer’s perspec-
tive because the program receives
an input only under circum-
stances that the underlying oper-

Deconstructing the
“Any” Key

Munindar P. Singh and Mona Singh

ating system deems appropriate,
that is, only when an acceptable
key is pressed. So the right dis-
play message ought to be, “press
any acceptable key to continue.”
However, such an instruction
would be meaningless, because
the term “acceptable” has no
obvious interpretation.

The moral? We as program-
mers should take into account
alternative perspectives, especially

the users’ perspective. To under-
stand a communication from the
perspective of its recipient is one
of the lessons of deconstruction
theory.

A lot of people talk of the
importance of being user-cen-
tered. Here is a case where being
user-centered has direct conse-
quences on our programs.
Although thinking from another
perspective is rarely as easy as in

the case of the “any” key, we
must keep trying.

As for the matter of acknowl-
edged continuation, just ask the
user to press the space bar.

Munindar P. Singh (singh@ncsu.edu)

teaches computer science at North Carolina

State University in Raleigh.

Mona Singh (mona.singh@ericsson.com) is

with the Ericsson New Concepts group in

Research Triangle Park, NC.

© 2000 ACM 0002-0782/00/0400 $5.00

c

108 April 2000/Vol. 43, No. 4 COMMUNICATIONS OF THE ACM

This is in response to “Myths
about Rough Set Theory”
(Nov. 1998, p. 102) by

W.W. Koczkodaj, M. Orlowski,
and V.W. Marek. The authors
raise some important issues and
express some legitimate concerns.
We are surprised they list rough
set theory as the only discipline in
which there are two of the cited
problems—the discipline in which
discretization is necessary or which
deals with complex data. The
third problem raised by the
authors is associated with the dif-
ference between objective and sub-
jective approaches to uncertainty.

Let us start with discretization.
Many people deal with discretiza-
tion unknowingly. For example, in
grading student work, there are
usual cut-points (90% for an “A,”
80% for a “B,” and so forth); orig-
inal scores are replaced by inter-
vals, coded by “A,” “B,” and so
on. The authors are probably con-
fused by the fact that in some

applications of rough set theory,
discretization is used as a prepro-
cessing. However, discretization is
required in all rule (or tree) induc-
tion systems. Such systems consti-
tute the core of data mining (or
knowledge discovery). Many such
well-known systems (such as
C4.5, based on conditional
entropy or CART, based on Bayes
rule) are equipped with their own
discretization schemes. Neither
C4.5 nor CART use rough set
theory. Practically every machine
learning system uses discretization
while very few of them are based
on rough set theory. To compli-
cate matters, discretization meth-
ods used in rule induction systems
based on rough set theory, such as
KDD-R or LERS, are not based
on rough set theory (for example,
both KDD-R and LERS use sta-
tistical methods). Furthermore,
these discretization methods could
be used in other systems, (in C4.5
or CART). On the other hand, all

existing discretization methods,
based on many different
approaches to uncertainty, could
be used as preprocessing for
KDD-R and LERS. Discretization
is a technique used in many areas,
including machine learning and
learning in Bayesian networks,
and is definitely not restricted to
rule induction systems based on
rough set theory.

To illustrate the complexities
involved in data analysis, the
authors refer to an example of a
table with 10 attributes, each with
20 values, which is likely to lead
to a large “number of possible
instances.” However, one could
cite this kind of example to illus-
trate potential problems occurring
in all disciplines dealing with data,
starting from statistics, through
database management, and ending
with machine learning (for the
sake of correctness, it is not clear
what the authors mean by “the
number of possible instances.”

Jerzy W. Grzymala-Busse and Wojciech Ziarko

Data Mining and Rough
Set Theory

COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 109

Most likely they refer to the num-
ber of possible different cases
(rows) of the table. They are mis-
taken. The correct number is
2010^10 = 1.024*10^13). In all
of these areas we may deal with
big data sets and with potentially
large number of different data
sets. Again, the problem is com-
mon to all of these disciplines and
by no means occurs just in rough
set theory. Fortunately, rough set
theory offers algorithms with
polynomial time complexity and
space complexity with respect to
the number of attributes and the
number of cases.

Finally, regarding the authors’
comments about objectivity of
rough set theory, we are puzzled
why they assume objectivity
means superiority. They confuse
daily life with science. In real life
we would like to have objective
managers, for example, giving
salary raises based on merit. But
this is not how the subjective or
objective approach is understood
in science. Probability theory is a
good example. It is an example of

well-established calculus of uncer-
tainty. For a long time there was a
dispute (and still is) between the
objective approach to the defini-
tion of probability (based on
experiments and relative frequen-
cies of outcomes) and the subjec-
tive approach (based on experts’
opinions). For example, an indi-
vidual may observe a game based
on a random process and evaluate
probabilities. This is the objective
approach. Or, the individual may
ask a gambler how he or she will
bet his or her own money. This is
the subjective approach. Cur-
rently, subjectivism prevails in
probability theory. The propo-
nents of the subjective approach
do not show any inferiority com-
plex. The problem is definitely
not which approach is superior.
The Dempster-Shafer theory uses
the subjective approach to uncer-
tainty because its fundamental
tool, a belief function, should be
estimated by experts. There are
close relations between the Demp-
ster-Shafer theory and the rough
set theory. Both theories describe

the same phenomena. However, in
rough set theory the basic tools are
sets: lower and upper approxima-
tions of the concept. These sets
are well defined and are computed
directly from the input data.
Thus, rough set theory is objec-
tive, but it does not mean that it is
superior (or inferior). For exam-
ple, if input data were pre-
processed and numerical attributes
were discretized by an expert, the
resulting data might be subjective.
But again, this preprocessing is
not a part of rough set theory, as
we explained previously. Input
data must be given to initiate
rough set theory procedures, and,
when rough set theory comes into
the picture, its methods are objec-
tive with respect to given data.

Jerzy W. Grzymala-Busse
(jerzy@eecs.ukans.edu) is a professor in the

Department of Electrical Engineering and

Computer Science at the University of Kansas.

Wojciech Ziarko (ziarko@cs.uregina.ca) is

a professor in the Computer Science department

at the University of Regina, Canada.

© 2000 ACM 0002-0782/00/0400 $5.00

c

Friedrich Steimann

Abstract Class Hierarchies,
Factories, and Stable Designs

Much of the debate about
the general aptness of
class hierarchies is rooted

in the different objectives taxon-
omists and implementers are
thought to pursue. Designers of
conceptual hierarchies tend to
embrace Aristotle’s principle of
genus et differentiae leading to a
taxonomic hierarchy of categories
or types [7], while those with

implementation in mind focus
on the reuse of class definitions
and polymorphism as made pos-
sible by subclassing and inheri-
tance. This has led to an
extensive discussion (see [1, 4, 5,
8]) as to whether Square should
be a subclass of Rectangle or vice
versa, a dilemma that is, of
course, precedential in character.

Despite the different perspec-

tives there appears to be a broad
consensus that, in principle at
least,

• both a conceptual type and a
class (as a programming con-
struct) are intensions the exten-
sions of which are sets of
instances; and

• the extensions of subtypes are
subsets of the extensions of

their supertypes, so that the
instances of a subtype can occur
wherever instances of its super-
types are expected (principle of
substitutability).

Depending on the program-
ming language, the latter may not
be the case for class hierarchies so
that conceptual type hierarchies
and class hierarchies are not gen-
erally isomorphic to each other
[6]. However, as Grosberg right-
fully observed [4], the discrepan-
cies can easily be resolved by
adhering to one simple rule: by
requiring that only the leaf classes
can have instances.

Abstract Class
Hierarchies
This rule is not as arbitrary as it
may seem. In fact, it only para-
phrases a common constraint on
subtyping, namely that the
extension of a supertype is totally
covered by the extensions of its
subtypes, thus rendering the
supertype a mere abstraction. For
example, applied to the class
hierarchy of Figure 1a, it is
implied that all instances of type
Person must either be an instance
of class Female or of class Male.

Following this principle, the
Rectangle/Square dilemma is
resolved as shown in Figure 1b),
where OtherRectangle denotes
the set of rectangles that are not
squares. Surely, this is going to
affront many system modelers
and most implementers: why
waste the name Rectangle for an
abstract class which cannot have
instances, and why introduce an
additional class oddly named
OtherRectangle which will create
most of the instances of Rectan-
gle? First, not having class Other-
Rectangle is a bit like having
classes Person and Female, but

not Male. Second, OtherRectan-
gle could, of course, just as well
be named NonSquareRectan-
gle—the point here is there is
always a sibling class that holds
the remainder otherwise assigned
to the superclass. And third,

when creating a particular rec-
tangle, its clients need not see or
know about (unless they desire
to) the distinction between
Square and OtherRectangle—
they simply resort to a factory.

Factories
A factory is an object-oriented
programming construct provid-
ing for the creation of instances
without specifying their concrete
classes. Factories come in many
different guises, the most com-
mon of which have been stereo-
typed in the form of design
patterns [2, 3]. Here we think of
a factory as an abstract class

whose creator methods (called
factory methods) return instances
of its concrete subclasses. In the
geometrical shape example,
squares and (nonsquare) rectan-
gles might be created by calls to
factory methods of class Shape as
shown in Figure 2.

The clients of the hierarchy,
cognizant only of class Shape,
will not know or need not care
about the actual type of the
instance they get, but neverthe-
less (through dynamic binding)
receive all the benefits of the dif-
ferent, possibly optimized imple-
mentations of methods for classes
Square and OtherRectangle, such
as the calculation of the area.

One may object: what if I
stretch a square in one dimen-

sion? Does that not imply
instance migration? Well, what if
I shear a rectangle? Indeed,
stretching and shearing should be
viewed and implemented as what
they actually are: mathematical
operations that return new
instances. In this light, every
operator is a small factory
method returning a new instance
of a class determined solely by
the operands (including the
implementor) and the operator
itself. The same principle natu-
rally applies to hierarchies of
numbers, collections, and so
forth, with plenty of opportuni-
ties to exploit the efficiency and

110 April 2000/Vol. 43, No. 4 COMMUNICATIONS OF THE ACM

Figure 1. (subclasses are indented,
leaf classes underlined).

a) Female and Male are the only
subclasses of Person

b) rectangles are either Squares
or OtherRectangles

a)Person

Female

Male

Figure 2. Calls to a factory class creating instances of
the appropriate type.

Shape.rectangle(120,60) // (width, height)

// creates a new instance of class OtherRectangle

Shape.square(80)

// creates a new instance of class Square

Shape.rectangle(80,80)

// also creates a new instance of class Square

b)Shape

Rectangle

Square

OtherRectangle

…

maintainability gains offered by a
clean partitioning of the problem
domain. For instance, depending
on its operands, the division of
two integers may return an inte-
ger or a (noninteger) fraction.

Stable Designs
While the practical benefits of
conceptually sound class hierar-
chies are still arguable, there is
another, very pragmatic reason to
enforce the rule of letting only
leaf classes have instances: it pro-
tects the rest of the class hierarchy
from ad hoc alterations made to
individual class definitions. Given
that most of the many changes
that become necessary in the
course of system evolution per-
tain to the behavior of instances
of individual classes, the propaga-
tion of these changes (through

inheritance) to other classes is not
generally desired. However, espe-
cially if class hierarchies are big
and used by many clients, the
existence of and consequences for
descendant classes are not imme-
diately realized, making inheri-
tance a mixed blessing. By
designing the class hierarchy as a
hierarchy of abstract classes and
by letting its clients manipulate
only the concrete classes attached
as leaves, the effect of modifica-
tions needing to be made by the
clients is always confined to the
instances of single classes. The
need for a (partial) redesign of the
class hierarchy because of practi-
cal requirements is thus greatly
reduced.

Freidrich Steimann (steimann@

acm.org) is a research assistant at the Universität

Hannover, Germany.

References
1. Baclawski, K. and Indurkhya, B. The notion

of inheritance in object-oriented program-
ming. Commun ACM 37, 9 (Sept. 1994),
118–119.

2. Cooper, J.W. Using design patterns. Com-
mun ACM 41, 6 (Jun. 1998), 65–68.

3. Gamma, E., Helm, R., Johnson, R. and Vlis-
sides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley,
Reading, Mass. 1995.

4. Grosberg, J.A. Comment on considering
‘class’ harmful. Commun. ACM 36, 1 (Jan.
1993), 113–114.

5. Halbert, DC. O’Brien, P.D. Using types and
inheritance in object-oriented programming.
IEEE Softw. 4, 5 (May 1987), 71–79.

6. LaLonde, WR and Pugh, JR. Subclassing π
subtyping π is-a. J. Object-Oriented Program.
(Jan. 1991), 57–62.

7. Sowa, J.F. Conceptual Structures: Information
Processing in Mind an Machine. Addison-
Wesley, Reading, Mass., 1984.

8.Winkler, J.F.H. Objectivism: ‘class’ consid-
ered harmful. Commun. ACM 35, 8 (Aug.
1992), 128–130.

© 2000 ACM 0002-0782/00/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 111

