S
=
3
o
=
<
Q)
<
L]
a1

From the Editor-in-Chief . . .

Engineering

Interoperation

The Web connects services (informa-
tion resources, vendors, brokers, and
such) to users and to each other. Users
want related services to work
together—that is, to interoperate.
Interoperation differs from integra-
tion, which requires multiple services
to be combined into a single logical
service. While a unified conceptual
view is desirable, integration is essen-
tially an old-world concept. On the
Web, where the services are heterogeneous, dynami-
cally changing, and autonomous, integration can be
messy, fragile, or impossible—depending on the
extent of our ambitions.

By contrast, interoperation requires no more than
arms-length relationships among services, so it is the
more viable alternative. Unfortunately, while pro-
grammers often successfully achieve interoperation,
their task is rarely pleasant, and their solutions are
seldom elegant. This is because current programming
models are ill-suited to building systems of compo-

On the Web, integration can be
messy, fragile, or impossible—
depending on the extent

of our ambitions.

MAY « JUNE 2000

nents that implement heterogeneous, dynamically
changing, autonomous services. To engineer interop-
eration, we need a programming model to specify it
and a behavior model to make it operational.

Component Interactions

Software components interact in various ways, and
their interactions can be desirable or undesirable.
For example, they may deadlock, feed others their
results, or wait for others to release resources.
Sharing results and resources is usually desirable, but
deadlock isn't. More importantly, however, interac-

http://computer.org/internet/

Munindar P. Singh ¢ singh@ncsu.edu

tions can be involuntary for at least
one of the participants, or they can be
voluntary (autonomy-preserving) for
all. Communications are the latter
kind, because the participants choose
whether and when to speak and
whether to pay heed when spoken to.

Preserving autonomy is where an
agent-based approach can help. A
major distinction between agents and
objects is that objects must do as they
are told, while agents needn’t comply. When you
invoke a method on an object, it had better com-
pute. But you don't invoke a method on an agent,
you communicate with it: you request it to do
something for you, and it may accept, deny, modi-
fy, or simply ignore your request.

Requirements for Interoperation

Given that communication is the right way to
achieve interoperation among autonomous compo-
nents, what requirements should the communica-
tions meet so that interoperation can be engi-
neered—that is, specified and robustly achieved
with reduced development effort?

For autonomous components to interact and
function in an unpredictable world, they should be
prepared to handle exceptions, and exception han-
dling is where current approaches break down.
Handling exceptions presupposes the ability to try a
task more than once and in different ways. This
requirement forces components to be persistent and
possibly nonterminating. When components are
long-lived, other components can't wait for them to
terminate. This means that components must
release some results early. And if they do, they must
also be able to revise those results in response to
changes in their environment, exceptions they
encounter, and even revisions made by other com-
ponents. Thus, communications must be structured
so that components can naturally interact as
described above.

Programming Model

Meeting these interoperation requirements calls for
a programming model that includes a small inter-

IEEE INTERNET COMPUTING

face consisting of patterns of interaction among inter-
operating components. The following are the more
fundamental patterns:

= entertain (specified kinds of) requests from other
components,

= notify others of specified information when it
becomes available, and

= renotify others when a specified condition is achieved
(or, equivalently, violated).

These patterns embody enough flexibility to accommo-
date many practical situations. However, some addi-
tional power would be required for cases of greater
complexity. To this end, a component may participate
in additional interactions; for example, it may attempt
to satisfy application-level constraints and jointly (with
other components) attempt to satisfy some mutual con-
straints.

A component may choose which patterns it will
support and for which other components. By volun-
tarily committing to specific instantiated patterns, the
components enter into customized contracts that
make for interoperation in settings with autonomous
services.

Operational Characterization

Underlying services, especially if preexisting, would
generally not include the capability to support the
above interface. Consequently, the component or
agent responsible for a service would have to imple-
ment the necessary interface. Because the patterns
mentioned above are process oriented, accommodat-
ing them presupposes a sufficiently expressive behav-
ior model for the components. Interestingly, the
required behavior model can be captured as a state-
chart (a well-known software engineering formalism).
Statecharts provide a natural operational characteriza-
tion for the patterns, which makes it easier to put
them into practice.

The proposed programming model distills a lot of
prior work on multiagent interaction and workflow
management.! What | like about it is that it is concep-
tually clean, combines well with traditional software
engineering, and offers a natural implementation of
high-level abstractions.? .

REFERENCES

1. M.N. Huhns, “Agent Teams Building and Implementing
Software,” IEEE Internet Computing, Vol. 4, No. 1, Jan. 2000,
pp. 93-95.

2. F Wan et al., “Handling Semantic Exceptions in the Large,” in
Agent-Oriented Information Systems, G. Wagner and E. Yu, eds.,
MIT Press, Cambridge, Mass., to appear.

rticle, visit

t/edguide.htm
for author guidelines.

IEEE INTERNET COMPUTING

IEEE INTERNET COMPUTING
IEEE Computer Society Publications Office
10662 Los Vaqueros Circle, PO Box 3014
Los Alamitos, CA 90720-1314
EDITOR-IN-CHIEF
Munindar P. Singh e singh@ncsu.edu

ASSOCIATE EDITOR-IN-CHIEF
Robert Filman e rfilman@arc.nasa.gov

EDITORIAL BOARD

Salah Aidarous salah@rss.dl.nec.com
(IEEE Communications Society Liaison)

Miroslav Benda « Miro@Amazon.com
Scott Bradner ¢ sob@harvard.edu
K. Mani Chandy * mani@cs.caltech.edu

Fred Douglis « douglis@research.att.com
(Liaison to IEEE CS Technical Committee on the Internet)

Stuart I. Feldman e sif@us.ibm.com
Li Gong * gong@games.eng.sun.com
Seif Haridi e seif@it.kth.se
Michael N. Huhns ¢ huhns@sc.edu
Ray W. Johnson e rayj@best.com
Gail E. Kaiser e kaiser@cs.columbia.edu
Leonard Kleinrock ¢ Ik@cs.ucla.edu
Doug Lea « di@altair.cs.oswego.edu
Frank Maurer « maurer@cpsc.ucalgary.ca
Charles E. Perkins e charliep@iprg.nokia.com

Charles J. Petrie petrie@nrc.stanford.edu
(EIC emeritus)

Agostino Poggi ¢ poggi@ce.unipr.it
William Regli « wregli@mcs.drexel.edu
Helmuth Ritzer e ritzer@str.daimler-benz.com
Anthony Michael Rutkowski « amr@chaos.com
Ravi Sandhu « sandhu@gmu.edu
Brian Thomas « brian@spie.org

STAFF

Managing Editor: Linda World
Iworld@computer.org

Staff Editor: Joan Taylor
jtaylor@computer.org

Editorial Asst./IC Online Design: Steve Woods
swoods@computer.org

Magazine Assistant: Hazel Kosky
hkosky@computer.org

Art Director: Joseph Daigle
Cover Design: Joseph Daigle
Graphic Artist: Ken Duckworth

Contributing Editors: Guy Boulton,
David Clark, Keri Schreiner, Martin Zacks

Publisher: Angela Burgess
Membership/Circulation Marketing Manager: Georgann Carter
Advertising Supervisor: Marian Anderson

CS MAGAZINE OPERATIONS COMMITTEE

Gul Agha (chair), William Everett (vice chair),
James H. Aylor, Jean Bacon, Wushow Chou,
George Cybenko, William 1. Grosky, Steve McConnell,
Daniel E. O’Leary, Ken Sakamura, Munindar P. Singh,
James J. Thomas, Yervant Zorian

CS PUBLICATIONS BOARD

Ben Wah (chair), Jon Butler, Carl Chang, Alan Clements,
Dante Del Corso, Richard Eckhouse, William Everett,
Francis Lau, Dave Pessel, Sorel Reisman BP A

4

