
When you build or buy an agent for the

Web, you want it to perform as well as possi-

ble. Increasingly, this means your agent should

take advantage not only of the Web’s infor-

mation resources, but also of all the other

agents that might be operating there.

And soon there will be a lot of them. The computational
architecture that seems to be evolving out of an informa-
tionally chaotic Web consists of numerous agents repre-
senting users, services, and data resources. A typical pat-
tern of usage shows resource agents advertising to the
services, user agents using the services to find resource
agents and then querying the resource agents or the
information needed.

Agents representing different users might collaborate in
finding and fusing information, but compete for goods
and resources. Similarly, service agents may collaborate or
compete with user, resource, and other service agents.
Whether they are collaborators or competitors, the agents
must interact purposefully with each other. Most purpose-
ful interactions—whether to inform, query, or deceive—
require the agents to talk to one another, and talking
intelligibly requires a mutually understood language.

LINGUA FRANCA
Agent projects investigated languages for many years.
Early on, agents were local to each project, and their lan-
guages were mostly idiosyncratic. Now the challenge is to
have your agent talk to any other agent, not just to your
own. The obvious solution is a lingua franca—ideally, all
the agents that implement the (same) lingua franca will be
mutually intelligible.

What should such a lingua franca be like? It needs an
unambiguous syntax, so the agents can all parse sentences
the same way. It should have a well-defined semantics or
meaning, so the agents can all understand sentences the
same way. It should be well known, so different designers
can implement it and so it has a chance of encountering
another agent who knows the same language. And it
should have the expressive power to communicate the
kinds of things agents may need to say to one another.

As you can see, this is a nontrivial list of requirements.
Coming up with an unambiguous syntax is the easiest.
Being well known is not so much a technical as a politi-
cal requirement on a language—committees and consor-
tia are expected to ensure that their results will be wide-
ly adopted. Ensuring the expressive power of a lan-
guage is potentially very difficult, but we can borrow a
lot of good ideas from the study of human language.

That leaves the question of meaning—no one has quite
figured that out, and we will soon explain why.

THE CURRENT CHOICES
So what language should you give your agent (or teach
it—the subject of a future column) so that it will under-
stand and be understood? At the moment, there are two
main choices: Knowledge Query and Manipulation
Language (KQML)✷ and the Foundation for Intelligent
Agents (FIPA)✷ specification. Both are attempts to sepa-
rate the domain-dependent part of a communication—
the content—from the domain-independent part—the
packaging—and then to provide a standard for the
domain-independent part.

Both are based on “speech acts” (see the sidebar).
Neither has been completed, although KQML was begun
earlier and is more mature. Both are being formalized,
so that independently developed agents conforming to
the standard will understand each other. Both have pro-
totype implementations, initial applications, and their
own adherents.

KQML
The Knowledge Query and Manipulation Language
(KQML) was defined under the DARPA-sponsored
Knowledge Sharing Effort.1 KQML assumes a layered
architecture with the functionality for message transport
or communication at the bottom and, at the top, the
content to be specified by the applications—typically in
some formal language, such as the Knowledge
Interchange Format (KIF)✷ or Structured Query
Language (SQL) for databases. Between these two layers
are the primitives with which agents can exchange
meaningful message. Basically, KQML provides a way to
structure the messages, but lets the agent designers
worry about what is in them.

In a slight misuse of terminology (see the sidebar), we
say that KQML provides between 31 and 41 “performa-

CONVERSATIONAL
AGENTS

CONVERSATIONAL
AGENTS

A G E N T S O N T H E W E B

Michael N. Huhns • University of Southern Carolina • huhns@sc.edu
Munindar P. Singh • North Carolina State University • singh@ncsu.edu

73

IEEE INTERNET COMPUTING h t tp ://compu te r.o rg/ in te rne t/ MARCH • APRIL 1997

.

tives.”2 Although varied, KQML’s performatives are all
assertives and directives. They fall into a few major class-
es. One class—which includes “tell,” “evaluate,” and “sub-
scribe”—is geared toward the actual communication of
content. Another class includes primitives to control the
flow of information, for example, by sending an explicit
“next” each time another answer is wanted from a source
agent. A third class supports recruiting agents and per-
forming other brokering and facilitating functions.

KQML assumes the message transport is reliable and pre-
serves the order of messages, but does not guarantee
delivery times. For this reason, the underlying paradigm of
communication is asynchronous. At the application level,
the effect of synchronous communication is achieved by
tagging messages to relate them. For example, you can
link responses to queries. In this way, KQML supports
some elementary interaction protocols, although more
sophisticated protocols must be built external to KQML.

The KQML semantics is given informally, although for-
malizations are under way. KQML agents are assumed to
have a virtual knowledge base (VKB) containing beliefs

and goals. They can communicate about their own and
others’ virtual knowledge bases. Thus, a “tell” reports on
the contents of the sender’s VKB, and an “evaluate”
directs the recipient to report on its VKB.

FIPA
The Foundation for Intelligent Physical Agents (FIPA), a
consortium with a number of European and Asian, and
some American members, proposed an alternative
speech-act-based language. FIPA specifies a smaller set
of performatives than KQML—just six—but they can be
composed to enable agents to express more complex
beliefs and expectations. For example, an agent can
request to be informed about one of several alternatives.
The performatives deal explicitly with actions, so
requests are for communicative actions to be done by
the message recipient.

The FIPA specification comes with a formal semantics.
This, in general, is a strong point. For example, it guar-
antees that there is only one way to interpret an agent’s
communications. Without this guarantee, agents (and
their designers) would have to choose among several
alternatives, leading to potential misunderstandings and
unnecessary work.

However, the FIPA semantics is specific to a certain
kind of agent, behaving in a certain manner. The
agents must be sincere and must not make assertions

A G E N T S O N T H E W E B

74

MARCH • APRIL 1997 h t tp ://compu te r.o rg/ in te rne t/ IEEE INTERNET COMPUTING

Speech acts have to do with communication—they
have nothing to do with speech as such, except that
human communication often involves speech.

Speech act theory was invented in the fifties and six-
ties to help understand human language. The idea
was that with language you not only make state-
ments, but also perform actions.1 For example,
when you request something, you don’t just report
on a request; you actually cause the request. When a
justice of the peace declares a couple man and wife,
she is not reporting on their marital status, but
changing it.

The stylized syntactic form for speech acts that
begins “I hereby request . . .” or “I hereby declare . .
.” is called a performative. With a performative, liter-
ally, saying it makes it so. Verbs that cannot be put
in this form are not speech acts. For example,
“solve” is not a performative, because “I hereby
solve this problem” just doesn’t work out—or math
students would be a much happier lot!

Several hundred verbs in English correspond to per-
formatives. This obviously calls for classifications,
and many have been given. For most computing
purposes, speech acts are classified into:

■ assertives (informing),
■ directives (requesting or querying),
■ commissives (promising),
■ prohibitives,
■ declaratives (causing events in themselves as,

for example, the justice of the peace does in a
marriage ceremony), and

■ expressives (expressing emotions).

In natural language, it is not easy to determine what
speech act is being performed. For example, if Mike
says “It’s cold here,” he might be telling you about
the temperature, or he may be requesting you to
turn up the heat. This is one of the reasons why nat-
ural language is tricky.

In artificial languages, we do not have this problem.
However, the meanings of speech acts depend on
what the agents believe, intend, and know how to
perform and on the society they live in. It is difficult to
characterize meaning because all of these things are
themselves tricky.

REFERENCE

1. J.L. Austin, How to Do Things with Words, Clarendon
Press, Oxford, UK, 1962.

SPEECH ACTS

✷URLs from these pages:

KQML • www.cs.umbc.edu/kqml/kqmlspec/spec.html
FIPA • drogo.cselt.stet.it/fipa/
KIF • hpdce.stanford.edu/newkif.html
JAT • cdr.stanford.edu/ABE/JavaAgent.html

.

unless they are absolutely certain about their belief.
For example, FIPA restricts the agents regarding
when they can inform another agent (when they
know something and the other party does not). This
would eliminate broadcasts, because an agent would
not know that every listener did not know or was
uncertain about its assertion. Moreover, an engineer
agent could not discuss design possibilities, and a
politician agent might only make assertions when he
is sure his audience already believes what he is say-
ing! This overly legislates the society in which the
agents live. We know which is the right behavior for
our agents—it is not the function of the protocol to
determine the behavior.

EVALUATION
So which should you choose? KQML still suffers from
poorly defined semantics. As a result, each of the many
KQML implementations seems unique. This makes com-
munication difficult, and your KQML agent might not be
understood. Nor has security been addressed in KQML.
There are no provisions to authenticate agents or guar-
antee the integrity of KQML messages.

The FIPA specification, by contrast, attempts to formalize
the semantics and provides a security model. However,
in view of its recency, it has not been widely tested or
adopted. As a result, your FIPA agent might not find
anyone to communicate with.

The essential semantic difference is that with the FIPA
specification, Agent A tells Agent B something, because
A wants B to believe it, whereas with KQML, Agent A
tells Agent B something, because A wants B to know A
believes it. KQML is, in this sense, more cautious.

If you don’t have the option of waiting for a consensus
to emerge, we suggest that you choose KQML because
of its current lead in market share. Then you can hope
for continued effort in standardizing its semantics. And
when dealing with agents designed by others, be sure to
use the same dialect!

SYSTEM OF THE BIMONTH
There is a shell available for download that lets you con-
struct Java applets that can converse in KQML. It’s called
the Java Active Template.✷ Check it out! ■

REFERENCES

1. R.S. Patil, et al., “The DARPA Knowledge Sharing Effort: Progress Report,”

Proc.Third Int’l Conf. on Principles of Knowledge Representation and

Reasoning.

2. J. Mayfield, Y. Labrou, and T. Finin, “Evaluation of KQML as an Agent Communi-

cation Language,” in Intelligent Agents II: Agent Theories, Architectures, and

Languages, J.P. Muller and M. Tambe, eds, Springer-Verlag, Berlin, 1996.

IEEE INTERNET COMPUTING

Graphic JAVATM

Mastering the AWT
by David M. Geary
and Alan L. McClellan

With Graphic Java you will
explore the Java AWT (Abstract
Window Toolkit) in detail and
learn how to extend it to create
the custom components you
need for your Java applets
and applications. Written for
experienced programmers, Graphic Java provides detailed
coverage of every aspect
of the AWT. The book also comes with a complete user
interface toolkit built on top of the AWT, The Graphic
Java Toolkit (GJT) provides more than 30 custom
components. The accompanying CD-ROM includes
the complete source code for the GJT, along with all
the example code from the book ready to run.

Contents: Applets and Applications • Graphics, Colors,
and Fonts • Event Handling • Menus • Images
• Components, Containers, and Layout Managers
• Introducing the Graphic Java Toolkit • Separators
and Barguages • Borders • Image Buttons • Toolbars
• Rubberbanding • Dialogs • Scrollers • Sprite Animation

System Requirements: Runs on Windows 95, Windows
NT, Solaris 2, and Macintosh (System 7.5). Does not run
on Windows 3.1.

640 pages. 7" x 9" Softcover. Color. 1997. ISBN 0-13-565847-0.
Catalog # RS00123 — $37.95 Members / $39.95 List

JavaTM Security
Hostile Applets, Holes,
and Antidotes
by Gary McGraw
and Edward Felten

Helps programmers and
application managers sort
out fact from fiction when
it comes to Java security
and decide where their own
vulnerabilities lie. The authors explain why cryptography
alone is not a security solution, and how to incorporate
both organizational and technical fixes into an effective
safety management program. They cover in detail why
Java security is an important issue, the new Java security
API, weaknesses and pitfalls in the current models, and
malicious applets. This is the first book on secure program-
ming practices for today's hottest programming language.

Contents: Do You Know Where Your Browser Is Pointing
• The Java Security Model • Serious Holes in the Security
• Malicious Applets • Antidotes and Guidelines for Java
Users • Tomorrow's Java Security

240 pages. 7" x 10" Softcover. 1997. ISBN 0-471-17842-X.
Catalog # RS00132 — $18.95 Members / $19.95 List

Order Today!
Call toll-free:

+1.800.CS.BOOKS

Online Catalog:
http://computer.org/cspress

.

