
From the Editors

JULY/AUGUST 2011	 1089-7801/11/$26.00 © 2011 IEEE	 Published by the IEEE Computer Society� 3

I n computer science, the word application
carries two meanings I’d like to explore here.
The first is the traditional meaning in which

an application is any program that runs on top
of an operating system. This program could
be something like Microsoft Word or Mozilla
Thunderbird.

A program is, of course, not an application.
This is where the second and — dare I say — more
sensible meaning comes into play. An application
is a usage. A ceiling fan is an application of elec-
trical motor technology. Person-to-person com-
munication is an application of radio technology.

Software engineering has become good at build-
ing applications-as-programs but not applications-
as-uses. Of course, software engineering is about
building and maintaining programs, and I’m not
arguing to change this. Moreover, any software
engineer worth his or her salt will agree — and
possibly insist on — eliciting clean requirements
describing how and where their program will be
used. But in software engineering, as in the rest of
computer science, the application-as-use idea plays
second fiddle to the application-as-program one.

Software practice has suffered from and
continues to suffer from many shortcomings as
a result. Programs are difficult to design and
build; they often fail to satisfy user require-
ments. If they work adequately at all, it’s more
often due to users adapting to the program than
the program meeting users’ requirements.

The thesis of this column is that software
engineering would be well served if we began
to think of application-as-use as primary. In
particular, if we could develop user interactions
correctly, the application-as-use of a software
artifact would help renew that artifact.

Software Engineering
Let’s consider leading software development
approaches. The classical waterfall approach

proceeds as follows. Capture all requirements,
specify, design, implement, test, and last cross
your fingers and hope it flies. Only rarely
would developers apply the waterfall approach
quite as r igidly as this character ization
suggests, but it is true in spirit.

What we see more often is the traditional
spiral approach, which proceeds somewhat
like the following. Capture some requirements,
specify, design, implement, test, validate and
expand requirements, and iterate. The newer
agile approaches make the spiral tighter, but
they don’t fundamentally alter it.

Software development approaches are valu-
able but rather micro in their orientation. At first
blush, software engineering as a micro activity
might seem like a contradiction in terms. But
software engineering is only a small part of
the overall value network. Remember, there are
users, too. For most successful software prod-
ucts, the number of users far exceeds the num-
ber of developers — about the only exceptions
might be one-of-a-kind engineering efforts such
as NASA’s. This is understandable — in most set-
tings, a gain in productivity is software’s pri-
mary value proposition.

Renewal via Application
I claim that any artifact put to good use must
represent the user’s needs and changing situa-
tion in some form. Let’s call such a representa-
tion a model. A model might be explicit, as in
a database schema, or implicit, as in a hard-
coded prejudice about how the user needs a
screen laid out. We can trace most software
artifact shortcomings to poor (that is, errone-
ous or incomplete) models. The trouble with
models is that they tend to drift from real-
ity. Users’ needs change — and most often you
don’t know those needs well enough to begin
with.

Self-Renewing Applications

Munindar P. Singh • North Carolina State University

IC-15-04-EIC.indd 3 6/6/11 4:36 PM

From the Editors

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

The common feature of existing
software engineering approaches
is that the construction of a soft-
ware program — or generally any
artifact — precedes its use. Whether
the construction happens all in one
shot or incrementally is irrelevant
for our present purposes. Thus the
approaches I’ve mentioned tacitly
assume that their models will either
be perfect at the outset (waterfall) or
evolve through repeated developer
intervention.

Recalling that there are — or
ought to be — more users than devel-
opers for almost any software prod-
uct, and further recognizing that
the users’ needs continually evolve,
it stands to reason that the con-
struction and maintenance of these
models by developers simply can’t
keep up.

This leads us to the vision of
what I call self-renewal. To accom-
plish self-renewal, we must design
our software artifacts so that the act
of using them updates and expands
their models. This presupposes that
the models are clear and explicit
and that the application-as-program
supports user manipulation. Self-
renewal as I propose it is inextri-
cably tied to Internet computing
because it relies fundamentally on
interactions between users and mod-
els, and especially between multiple
users. Let me be the first to admit,
however, that this vision is still
quite incomplete and that we have
a long way to go before self-renewal
in its general sense can become
practical.

Simple forms of self-renewal
have been emerging for a few years.

Today’s Web 2.0 approaches illus-
trate limited levels of self-renewal.
These approaches help users col-
laborate to maintain a rather mini-
mal common model. An example is
category labels or tags on pictures,
for instance, as supported and pro-
moted by websites such as Flickr
(www.flickr.com). In social tagging,
users assign tags to pictures to facil-
itate subsequent search by others.
Users can see the tags others have
applied on the pictures they like, and
can thus choose the popular tags for
their pictures. Because users have an
interest in having others find their
pictures, they have an incentive to
choose tags that are popular. In this
manner, popular tags gain additional
use. Thus, with respect to the tags,
Flickr supports the self-renewing
application of picture sharing by

Editor in Chief
Michael Rabinovich • misha@eecs.cwru.edu

Associate Editors in Chief
M. Brian Blake • mb7@cse.nd.edu
Siobhán Clarke • siobhan.clarke@cs.tcd.ie
Maarten van Steen • steen@cs.vu.nl

Editorial Board
Virgilio Almeida • virgilio@dcc.ufmg.br
Elisa Bertino • bertino@cerias.purdue.edu
Azer Bestavros • best@cs.bu.edu
Vinton G. Cerf • vint@google.com
Fred Douglis* • f.douglis@computer.org
Schahram Dustdar • dustdar@infosys.tuwien.ac.at
Stephen Farrell • stephen.farrell@cs.tcd.ie
Robert E. Filman* • filman@computer.org
Juliana Freire • juliana@cs.utah.edu
Carole Goble • cag@cs.man.ac.uk
Michael N. Huhns • huhns@sc.edu
Barry Leiba • barryleiba@computer.org
Samuel Madden • madden@csail.mit.edu
Cecilia Mascolo • cecilia.mascolo@cl.cam.ac.uk
Pankaj Mehra • pankaj.mehra@ieee.org
Chris Metz • chmetz@cisco.com
Dejan Milojičić • dejan@hpl.hp.com
George Pallis • gpallis@cs.ucy.ac.cy
Charles J. Petrie* • petrie@stanford.edu
Gustavo Rossi • gustavo@lifia.info.unlp.edu.ar
Amit Sheth • amit.sheth@wright.edu
Munindar P. Singh* • singh@ncsu.edu
Oliver Spatscheck • oliver@spatscheck.com
Torsten Suel • suel@poly.edu
Craig W. Thompson • cwt@uark.edu

Shengru Tu • shengru@cs.uno.edu
Doug Tygar • tygar@cs.berkeley.edu
Steve Vinoski • vinoski@ieee.org
* EIC emeritus

CS Magazine Operations Committee
Dorée Duncan Seligmann (chair), Erik Altman, Isabel

Beichl, Krish Chakrabarty, Nigel Davies, Simon Liu,
Dejan Milojičić, Michael Rabinovich, Forrest Shull,
John R. Smith, Gabriel Taubin, Ron Vetter, John Viega,
Fei-Yue Wang, Jeffrey R. Yost

CS Publications Board
David A. Grier (chair), Alain April, David Bader, Angela

R. Burgess, Jim Cortada, Hakan Erdogmus, Frank E.
Ferrante, Jean-Luc Gaudiot, Paolo Montuschi, Dorée
Duncan Seligmann, Linda I. Shafer, Steve Tanimoto,
George Thiruvathukal

Staff
Editorial Management: Rebecca Deuel-Gallegos
Lead Editor: Linda World, lworld@computer.org
Editorial Business Operations Manager: Robin Baldwin,

rbaldwin@computer.org
Publications Coordinator: internet@computer.org
Contributors: Thomas Centrella, Molly Gamborg,

Greg Goth, and Nancy Talbert

Director, Products & Services: Evan Butterfield
Senior Manager, Editorial Services: Lars Jentsch
Manager, New Media & Production: Steve Woods
Senior Business Development Manager: Sandy Brown
Membership Development Manager: Cecelia Huffman
Senior Advertising Supervisor: Marian Anderson,

manderson@computer.org

Technical cosponsor:

IEEE Internet Computing
IEEE Computer Society Publications Office
10662 Los Vaqueros Circle
Los Alamitos, CA 90720 USA

Editorial. Unless otherwise stated, bylined articles,
as well as product and service descriptions, reflect
the author’s or firm’s opinion. Inclusion in IEEE
Internet Computing does not necessarily constitute
endorsement by IEEE or the IEEE Computer Society.
All submissions are subject to editing for style,
clarity, and length.
Submissions. For detailed instructions, see the author
guidelines (www.computer.org/internet/author.htm)
or log onto IEEE Internet Computing’s author center
at ScholarOne (https://mc.manuscriptcentral.com/
cs-ieee). Articles are peer reviewed for technical merit.
Letters to the Editors. Email lead editor Linda World,
lworld@computer.org
On the Web. www.computer.org/internet/.
Subscribe. Visit www.computer.org/subscribe/.
Subscription Change of Address. Send requests to
address.change@ieee.org.
Missing or Damaged Copies. Contact help@
computer.org.
To Order Article Reprints. Email internet@computer.
org or fax +1 714 821 4010.
IEEE prohibits discrimination, harassment, and
bullying. For more information, visit www.ieee.org/
web/aboutus/whatis/policies/p9-26.html.

IC-15-04-EIC.indd 4 6/6/11 4:36 PM

Self-Renewing Applications

JULY/AUGUST 2011� 5

letting users maintain a model — a
set of tags constituting a rudimen-
tary vocabulary.

A related but distinct idea is
crowdsourcing. In its current forms,
crowdsourcing involves a task man-
ager (a user or a company) who first
persuades (through suitable incen-
tives) several people to work on a
task and then combines their results
to produce an overall solution. That
is, the task manager drives the entire
process, including aggregating results.
A recent crowdsourcing success was
the DARPA balloon-locating chal-
lenge that a team from MIT won
(https://networkchallenge.darpa.mil/
Default.aspx).

These two approaches offer some
interesting contrasts. Flickr argu-
ably illustrates a better architecture.
It’s bottom up, and although it’s clear
that the Flickr site has something to
do with the task, users themselves
initiate picture uploading and assign
tags. Crowdsourcing today is top-
down but offers the possibility of
supporting far greater structure in
the results than does tagging. By and
large, both these approaches help
find consensus among users.

I envision self-renewing appli-
cations as a generalization of these
approaches: the renewal might not
be driven by one party, the models
they build would generally carry
greater structure, and the par-
ticipants might well be strategic —
that is , have an interest in the
outcome beyond the explicit incen-
tives offered to them to provide the
true (honest and accurate) answer.
I expect that an essential basis of
self-renewal will reside in the inter-
active nature of the desired uses and
how they influence the underlying
model. If a user is merely supposed
to construct a model that a software
developer would otherwise construct,
no gain in productivity would occur:
a trained software developer could
do a better job and faster than a typ-
ical user.

Users would self-organize into
communities of practice and con-
tinually develop and refine through
applications-as-programs the mod-
els needed for their applications-
as-uses. In the business process
management setting, users (admin-
istrative staff) would identify best
practices and thus refine their busi-
ness process by exercising it. In the
healthcare setting, users (physicians)
can create clinical guidelines refined
for patients with related ailments but
differing attributes. In a marketing
setting, users (analysts) might cre-
ate analytical queries and marketing
campaigns that refine and aggregate
key market segments. What these
examples have in common is the
largely cooperative but also compet-
itive creation of structured practical
knowledge, exactly as has been hap-
pening in communities of practice
since before the dawn of computing,
but at greater scales of speed, depth,
and size.

Challenges
The vision of self-renewal is a natu-
ral outgrowth of the notion of the
pragmatic Web, which I’ve been
advocating for nearly a decade.1 But
it’s far from mature as an idea and
raises more questions than answers.
Today’s approaches involve interac-
tions that are flat and yield models
that are unstructured. How might
we expand the variety of interac-
tions to incorporate richer and truer
organizational models? How can
we develop and maintain models
that involve greater subtlety than
simple aggregations and statistics,
as in the current approaches? How
might we support multiple user per-
spectives along with consensus — in
particular, how might we deal with
self-interested users? These aren’t
clear-cut technical problems at this
stage but can form the basis of a
new research agenda that gives more
than lip service to the importance of
users and uses.

H ere’s a quick way to contrast self-
renewal with current software

engineering approaches:

•	 Traditional — build it, and they
will come.

•	 Agile — build it partially, and
they will come; build it some
more, and some more will come.

•	 Self-renewing — they will come,
and they will build it.

To accomplish self-renewal requires
not just improvements in model rep-
resentations and model-driven soft-
ware but also a change in attitude.
Today’s software approaches are
paternalistic, and this paternalism
pervades our profession. We con-
tinually seek to impose “correct”
solutions on users. If self-renewal is
to take hold, paternalism must go.
Users organizing into ad hoc com-
munities of practice should be able
to determine the solutions that they
can best put to use. After all, this is
what it means for anything to be an
application.�

Acknowledgments
I’m indebted to Michael Huhns and Amit

Chopra for comments on a previous version.

Reference
1.	 M.P. Singh, “The Pragmatic Web,” IEEE

Internet Computing, vol. 6, no. 3, 2002,

pp. 4–5.

Munindar P. Singh is a professor of computer

science at North Carolina State Univer-

sity. His research interests include multi-

agent systems applied in social networks

and organizations. Singh is a fellow

of IEEE and a former editor-in-chief of

IEEE Internet Computing. Contact him at

singh@ncsu.edu.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-15-04-EIC.indd 5 6/6/11 4:36 PM

