Wayfinding in Social Networks

David Liben-Nowell

Abstract With the recent explosion of popularity of commercial séciatworking
sites like Facebook and MySpace, the size of social netwibidiscan be studied
scientifically has passed from the scale traditionally tddby sociologists and an-
thropologists to the scale of networks more typically séaddy computer scientists.
In this chapter, | will highlight a recent line of computai&l research into the mod-
eling and analysis of themall-world phenomenenthe observation that typical
pairs of people in a social network are connected by verytatimins of interme-
diate friends—and the ability of members of a large soci&ivoek to collectively
find efficient routes to reach individuals in the network. ll\survey several recent
mathematical models of social networks that account fasdtphenomena, with an
emphasis both on provable properties of these social-mktmodels and on the
empirical validation of the models against real large-ssalcial-network data.

1 Introduction

Anintrepid graduate student at a university in CambridgA,|baves his department
on a quest for cannoli in the North End, a largely Italian hégrhood of Boston.
This mission requires him to solve a particular navigatioobfem in the city: from
his background knowledge (his own “mental map” of Bostomrjuding what he
knows about the proximity of particular landmarks to histdegion pastry shop,
how he conceives of the margins of the North End district, nehee thinks his
office is) and what he gathers at his initial location (stgghs, perhaps the well-
trodden routes scuffed into the grass outside his officd¢laatto the nearest subway
station, perhaps the smell of pesto), he must begin to agetstrpath towards his
destination Wayfinding a word coined by the urban planner Kevin Lynch in the
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1960’s [33], refers to the processes by which a person siguaitm or herself in an
urban environment and navigates from point to point in tledtirsy. (Incidentally,
wayfinding is particularly difficult in Boston, with its ofteirregular angles and
patterns: one may become confused about directions—thid o is almost due
east of the West End—or encounter impermeable boundakteesvers or highways
even while heading in the right cardinal direction.)

This chapter will be concerned with wayfinding in networkgsesifically inso-
cial networks structures formed by the set of social relationships tbanhect a set
of people. The issues of navigability of a social network analogous to the is-
sues of navigability of a city: can a source persmeliably identify a step along
an efficient path “towards” a destination perddinom her background knowledge
(a “mental map” of the social network) plus whatever infotioa she gathers from
her immediate proximity? How does one find routes in a soa#alork, and how
easy is it to compute those routes? To borrow another term fevin Lynch, is
the “legibility” of a real social network more like Manhatta-a clear grid, easy
navigation—or like Boston?

In later sections, | will describe a more formal version adgk notions and ques-
tions, and describe some formal models that can help to exgtene of these real-
world phenomena. (The interested reader may also find teatsarveys by Klein-
berg [25] and Fraigniaud [17] valuable.) | will begin with asidtbased model of
social networks and social-network routing due to Jon Kleng [23, 26], under
which Kleinberg has fully characterized the parametereslior which the result-
ing social network supports the construction of short p#ihaugh the network in
a decentralized, distributed fashion. Geography is perlia@® most natural context
in which to model social networks via a regular grid, so | wiien turn to em-
pirical observations of geographic patterns of friendshipeal large-scale online
social networks. | will then describe some modifications teikberg’s model sug-
gested by observed characteristics of these real-worldarks, most notably the
widely varying population density across geographic lmeet. Finally, | will turn
to other models of social networks and social-network rmjticonsidering both
network models based on notions of similarity that are poorbdeled by a grid
(e.g., occupation) and network models based simultangoughultiple notions of
person-to-person similarity.

2 The Small-World Phenomenon

Although social networks have been implicit in the intei@as of humans for mil-
lennia, and social interactions among humans have beeredtbg social scien-
tists for centuries, the academic study of social netwapka networks is more
recent. Some of the early foundational contributions datmfthe beginning of the
twentieth century, including the “web of group affiliatidref Georg Simmel [45],

the “sociograms” of Jacob Moreno [40], and the “topologisychology” of Kurt

Lewin [31]. In the 1950’s, Cartwright and Zander [9] and Hgrand Norman [20]
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described an explicitly graph-theoretic framework forigbnetworks: nodes repre-
sent individuals and edges represent relationships betpaies of individuals. We
will use this graph-theoretic language throughout the tdrap

The line of social-network research that is the focus of thigpter can be traced
back to an innovative experiment conceived and performetheysocial psychol-
ogist Stanley Milgram in the 1960’s [38]. Milgram chose 1@&@drter” individuals
in Omaha, NE, and sent each one of them a letter. The acconmggingtructions
said that the letter holdex should choose one of her friends to whom to forward
the letter, with the eventual goal of reaching a target petsa stockbroker living
near Boston. (For Milgram’s purposes, a “friend” ®fvas anyone with whons
was on a mutual first-name basis.) Each subsequent recipig¢he letter would
receive the same instructions, and, presumably, the ltiatd successively home
in ont with each step. What Milgram found was that, of the chains teached
the stockbroker, on average they took about six hops toaafTikat observation was
the origin of the phrase “six degrees of separation.” Of seuwhat this careful
phrasing glosses over is the fraction of chains—about 80P&tfailed to reach
the target; Judith Kleinfeld has raised an interesting amdpelling set of critiques
about the often overbroad conclusions drawn from thesedolrdata [27]. Still, Mil-
gram’s small-world results have been replicated in a wanétsettings—including
a recent large-scale email-based study by Dodds, Muhamddjatts [13]—and
Milgram'’s general conclusions are not in dispute.

The small-world problem—why is it that a random resident of Omaha should
be only a few hops removed from a stockbroker living in a sblofr Boston?—
was traditionally answered by citing, explicitly or impilly, the voluminous body
of mathematical literature that shows that random grapkie keall diameter. But
that explanation suffers in two important ways: first, sbciatworks are poorly
modeled by random graphs; and, second, in the language @f Kgvch, Milgram’s
observation is much more about wayfinding than about diamgte first objection,
that social networks do not look very much like random graples articulated by
Duncan Watts and Steve Strogatz [49]. Watts and Strogatatifjed this objection
in terms of the higltlusteringin social networks: many pairs of people who share a
common friend are also friends themselves. The secondtajethat the Milgram
experiment says something about the efficiency of wayfindirg social network
and not just something about the network’s diameter, wagdaby Jon Kleinberg
[23, 26]. Kleinberg observed that Milgram’s result is bette@derstood not just as
an observation about the existence of short paths from sdortarget, but rather
as an observation about distributed algorithms: somehawplpen the Milgram
experiment have collectively managedatmstructshort paths from source to target.

How might people be able to accomplish this task so effiggenth a social
network—or indeed in any network—finding short paths to aeat typically
hinges on making some form of measurable progress towaldisally, this measure
of progress in a social network would simply be graph distamt every step, the
path would move to a node with smaller graph distance-tae., along a shortest
path tot. But the highly decentralized nature of a social network msahat only a
handful of nodes (the targehimself, the neighbors df and perhaps a few neigh-
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bors of the neighbors df) genuinely know their graph distance tolnstead one
must use some guide other than graph distance to hometin on

The key idea in routing in this context—frequently cited I tparticipants in
real small-world experiments as their routing strategy, Pli3—is to use similarity
of characteristics (geographic location, hobbies, octapaage, etc.) as a measure
of progress, a proxy for the ideal but unattainable grastadice measure of prox-
imity. The success of this routing strategy hinges on theosagical observation
of the crucial tendency towardsomophilyin human relationships: the friends of a
typical persorx tend to be similar to. This similarity tends to occur with respect
to race, occupation, socioeconomics, and geography, awtheg dimensions. See
the survey of McPherson, Smith-Lovin, and Cook [36] for aceadbent review of
the literature on homophily. Homophily makes charactgribased routing reason-
able, and in fact it also gives one explanation for the higistelring of real social
networks: ifX's friends tend to be similar tg, then they also tend to be (somewhat
less) similar to each other, and therefore they also tenah¢ovieach other directly
with a (somewhat) higher probability than a random pair afde.

Homophily suggests a naturgteedy algorithifor routing in social networks.
If a persons is trying to construct a path to a targetthens should look at all
of her friendsl” (s) and, of them, select the friend n(s) who is “most like” the
targett. This notion is straightforward when it comes to geograghe: sources
knows both where her friends live and whetwes, and thus can just compute the
geographic distance between each I (s) andt, choosing thai minimizing that
guantity. Routing greedily with respect to occupation imiewhat murkier, though
one can imagine choosingu based on distance within an implicit hierarchy of
occupations irs's head. (Milgram’s stockbroker presumably falls into sdnieg
like the service industry- financial services— investment— stocks.) Indeed, the
greedy algorithm is well founded as long as an individual w#§icient knowledge
of underlying person-to-person similarities to compare distances between each
of her friends and the target.

3 Kleinberg's Small-World Model: The Navigable Grid

Although homophily is a key motivation for greedy routingarhophily alone does
not suffice to ensure that the greedy algorithm will find sh@ths through a so-
cial network. As a concrete example, suppose that everpagist studying social
networks knows every other such sociologist and nobody aefse& every computer
scientist studying social networks knows every other sumhputer scientist and
nobody else. This network has an extremely high degree obiphiity. But the net-
work is not even connected, let alone navigable by the gredgtyrithm. For the
greedy algorithm to succeed, the probability of frienddhiween people andv
should somehow vary more smoothly as the similarityu@ndyv decreases. Intu-
itively, there is a tension between having “well-scattérieig@nds to reach faraway
targets and having “well-localized” friends to home in orari®y targets. Without
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Fig. 1 Kleinberg's small-world model [23, 26]. A population of people is arranged on k&
dimensional grid, and each persans connected to her immediate neighbors in each direction.
Each personu is also connected to a long-range friemdchosen with probability 1 d(u,v)~
whered(-,-) denotes Manhattan distance amd> O is a parameter to the model. The example
two-dimensional network here was generated with 2.

the former, a large number of steps will be required to spanldihge gap from a
sourcesto an especially dissimilar targetwithout the latter, similarity will be only
vaguely related to graph-distance proximity, and thus tteedy algorithm will be
a poor approximation to a globally aware shortest-pathrétiyo.

A rigorous form of this observation was made by Jon Kleinj28)26], through
formal analysis of this tradeoff in an elegant model of sboietworks. Here is
Kleinberg’s model, in its simplest form. (See Section 6 fengralizations.) Con-
sider ann-person population, and arrange these people as the paoirtsegular
k-dimensional grid. Each persanin the network is connected tk2local neigh-
bors,” the people who live one grid point above and beldweach of the cardinal
directions. (People on the edges of the grid will have feweal neighbors, or we
can treat the grid as a torus without substantively affgctive results.) Each per-
sonu will also be endowed with a “long-range link” to one othergamv in the net-
work. That persowv will be chosen probabilistically, where [Br— v| 0 d(u,v)~ 7,
whered(-,-) denotes Manhattan distance in the grid, @an& O is a parameter to
the model. (Changing the model to endow each person with angtant number
of long-range links does not qualitatively change the itssuSee Figure 1 for an
example network, withkk = a = 2. Notice that the parameteroperationalizes the
tradeoff between highly localized friends and highly seatl friends: setting =0
yields links to av chosen uniformly from the network, while lettirag — o yields
only links from persoru to persorvif d(u,v) = 1.

A local-information algorithmis one that computes a path to a target without
global knowledge of the graph. When a persbchooses a next stapin the path
to the target, the persoru has knowledge of the structure of the grid, including
the grid locations ofi herself,u's local neighborsy’s long-range contact, and the
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targett. However, the remaining structure of the graph—that is|ahg-range links
for nodes other than—are not available ta when she is making her routing choice.
(The results are not affected by expanding the knowledgedf @odeu to include
the list of all people previously on the path from the oridisaurcesto u, or even
the list of long-range links for each of those people.)

Kleinberg was able to give a complete characterization efrhvigability of
these networks by local-information algorithms:

Theorem 1 (Kleinberg [23, 26]).Consider an n-person network with people ar-
ranged in a k-dimensional grid, where each person Blakcal neighbors and one
long-range link chosen with parameter> 0, so thatPriu — v] O d(u,v)~“. For an
arbitrary source person s and an arbitrary target person t:

e If a #Kk, then there exists some constant 0, wheree depends o and k but
is independent of n, such that the expected length of theffmatths to t found by
any local-information algorithm i€2 (né).

e If a =k, then the greedy algorithm—i.e., the algorithm that clesdhe next step
in the path as the contact closest to the target t under Maahatistance in the
grid—finds a path from s to t of expected lengttia@?’n).

The proof that greedy routing finds a path of len@ifiog® n) whena = k proceeds
by showing that the probability of halving the distance te thrget at any step of the
path isQ(1/logn). Thus, in expectation, the distance to the target is halvedye
O(logn) steps. The path reaches the target after the distance ischialgn times,
and therefor@®(log? n) total steps suffice to reach the target in expectation.

For our purposes, we will broadly treat paths of length polyial in the loga-
rithm of the population size as “short,” and paths of lengttypomial in the popu-
lation size as “long.” (We will use standard terminology &farring to these “short”
paths as havingolylogarithmiclength—that is, lengtl®(log®n) for some constant
exponentc, in a population of sizen.) There has been significant work devoted
to tightening the analysis of greedy routing in Kleinberg&tworks—for exam-
ple, [7,35]—but for now we will focus on the existence of aigfums that find paths
of polylogarithmic length, without too much concern abd precise exponent of
the polynomial. A network in which a local-information alithm can find a path
of polylogarithmic length is calledavigable Theorem 1, then, can be rephrased as
follows: ak-dimensional grid-based social network with parametés navigable
if and only ifk = a.

Note that this definition of navigability, and hence Kleinige result, describes
routing performance asymptotically in the population sizeReal networks, of
course, are finite. Aaron Clauset and Cristopher Moore [BElehshown via sim-
ulation that in finite networks, greedy routing performs heslen under what The-
orem 1 identifies as “non-navigable” values @f Following [11], defineagpt as
the value ofa that produces the network under which greedy routing aesi¢le
shortest path lengths. Clauset and Moore’s simulationg shat oyt is somewhat
less thark in large but finite networks; furthermore, although: approachek as
the population grows large, this convergence is relatigtdyv.
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4 Geography and Small Worlds

Now that we have formal descriptions of mathematical modékocial networks,
we can turn to evaluating the correspondence between thedelsh predictions
and real social-network data. To begin, consider physigald geographic prox-
imity as the underlying measure of similarity between peo@eographic distance
is a natural metric on which to focus both because of its sitpland because of its
observed importance in empirical studies: participanteal-world Milgram-style
experiments of social-network routing frequently cite gephic proximity as the
reason that they chose a particular friend as the next steghain [13, 21]. (Typ-
ically, people who were early in these chains cited geograsha principal reason
for their choice, and those who appeared later in the chaore fnequently reported
that their choice was guided by similarity of occupation.)

Although the description of Kleinberg’s model in Sections3couched in ab-
stract terms, there is a very natural geographic interficetao the model's under-
lying grid. Geographic distance on the surface of the eartiveéll modeled by a
2-dimensional grid under Manhattan distance, where we iingagyid points as the
intersections of evenly spaced lines of longitude andidét The grid is of course a
simplification of real proximity in the real world, but it idgusible as a first approx-
imation. Thus we have a mathematical model of social-nétwouting based on
geographic proximity, and real-world evidence that peapt® (at least partially)
successfully route through social networks do so (at leagiglly) based on geo-
graphic proximity. We are now in a position to test the mathtoal model against
real social networks.

Much of the empirical work described here will be based omadiatm the Live-
Journal blogging community, found onlineldatvej our nal . com LiveJournal is
an appealing domain for study in part because it contairsoresbly rich data about
its users, even if one ignores the detailed accounts of ysensonal lives frequently
found in their blog posts. LiveJournal users create profilasinclude demographic
information such as birthday, hometown, and a list of irges#hobbies. Each user’s
profile also includes an explicit list of other LiveJourngkus whom that user con-
siders to be a friend.

The analysis that follows—performed in joint work with JdamNovak, Ravi
Kumar, Prabhakar Raghavan, and Andrew Tomkins [32]—wasdan a crawl of
LiveJournal performed in February 2004, comprising aboBidillion user profiles.
(As of this writing, there are slightly more than 17 millionvieJournal accounts.)
Of those 1.3 million users, approximately 500,000 usersaded a hometown that
we were able to locate in a database of longitudes and lastidthe continental
United States. These data yield a large-scale social nktwith geographic loca-
tions, using the explicitly listed friendships to define nentions among this set of
500,000 people. Figure 2 contains a visual representafitmsonetwork.

Using this 500,000-person network, we can simulate the felitgexperiment,
using the purely geographic greedy routing algorithm. &isisome subtlety in set-
ting up this simulation—for example, what happens if theudated chain reaches
a personu who has no friends closer to the target thaherself?—and, because
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Fig. 2 The LiveJournal social network [32]. A dot is shown for eaglographic location that was
declared as the hometown of at least one of#8€0,000 LiveJournal users whom we were able to
locate at a longitude and latitude in the continental Un8&ates. A random 0.1% of the friendships
in the network are overlaid on these locations.

the resolution of geographic locations is limited to theclesf towns and cities, we
try only to reach the city of the targétrather thart herself. We found that, sub-
ject to these caveats, the geographic greedy algorithm blasta find short paths
connecting many pairs of people in the network. (See [32hfore detail.)

With the above observations (people are arranged on a 2ndimeal geographic
grid; greedy routing based on geography finds short patlsitr the network) and
Theorem 1, we set out—in retrospect, deeply naively—tdfwénat the probabil-
ity of friendship between people andv grows asymptotically ad(u,v)~2 in the
LiveJournal network. In other words, in the language of Kirbrg's theorem, we
wanted to confirm thatr = 2. The results are shown in Figure 3, which displays
the probabilityP(d) of friendship between two people who live a given distadce
apart—i.e., the fraction of pairs separated by distahedno declare a friendship in
LiveJournal.

One immediate observation from the plot in Figure 3 is thatghobabilityP(d)
of friendship between two people in LiveJournal separatedistanced really does
decrease smoothly and markedlydigncreases. This relationship already reveals
a nonobvious fact about LiveJournal; there was no partiaglason to think that
geographic proximity would necessarily play an importaierin friendships in a
completely virtual community like this one. Section 7 inbds some discussion of
a few possible reasons why geography remains so crucialdwittiual setting, but
for now it is worth noting that the “virtualization” of realrorld friendships (that
is, the process of creating digital records of existing tglsworld friendships)
seems to explain only some of the role of geography. For el@rtigseems hard for
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Fig. 3 The probabilityP(d) of a friendship between two people in LiveJournal as a fumctf
the geographic distanag between their declared hometowns [32]. Distances are exlricto
10-kilometer buckets. The solid line correspondsPtd) [0 1/d. Note that Theorem 1 requires
P(d) O 1/d? for a network of people arranged in a regular 2-dimensionidl @ be navigable.

this process to fully account for the marked difference ik Iprobability between
people separated by 300 versus 500 kilometers, a range ahwdgular physical-
world interactions seem unlikely.

A second striking observation from the plot in Figure 3 istttitee probability
P(d) of friendship between people separated by distahisevery poorly modeled
by P(d) O 1/d?, the relationship required by Theorem 1. This probabikityetter
modeled a$?(d) 00 1/d, and in fact is even better modeledR@) = € + ©(1/d),
for a constant ~ 5.0 x 10~8. Apropos the discussion in the previous paragraph, this
additive constant makes some sense: the probability tioatl@e andv are friends
can be thought of as the sum of two probabilities, one thatames with their
geographic proximity, and one that is independent of thewggaphic locations.
But, regardless of the presence or absence of the addititlee plot in Figure 3
does not match—or even come close to matching—the navigaplenent required
by Kleinberg’s theorem.

Similar results have also been observed in another soetstarking context. In
a study of the email-based links among about 450 memberswittePackard Re-
search Labs [1], Lada Adamic and Eytan Adar found that tHepimbability P(d)
between two HP Labs researchers was also closely matchBdhyl 1/d, where
d measured the Manhattan distance between the cubicledosaif the employees.
In this setting, too, geographic greedy routing found sipaths to most targets—
though not as short as those found by routing greedily adegrisd proximity in
the organizational hierarchy of the corporation (see $act)—again yielding a
greedily navigable network that does not match Theorem 1.
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5 Variable Population Density and Rank-Based Friendship

The observations from the previous section lead to a seemiagle: a navigable
two-dimensional grid, which must have link probabilitiescdying as 1d® to be
navigable according to Theorem 1, has link probabilitiesagéng as 1d. But an-
other look at Figure 2 reveals an explanation—and reveas#ivete of looking
for P(d) O 1/d? in the LiveJournal network. Although a 2-dimensional gridai
reasonable model of geographic locatioryraformly distributedpopulation on a
2-dimensional grid is a very poor model of the geographitrithistion of the Live-
Journal population. Population density varies widely asribe United States—from
over 10,000 people/kfin parts of Manhattan to approximately 1 personfkm
places like Lake of the Woods County, in the far northernheaof Minnesota. Two
Manhattanites who live 500 meters apart have probably nevemn met; two Lake
of the Woods residents who live 500 meters apart are probabirdoor neighbors,
and thus they are almost certain to know each other. This spaéetrum suggests
that distance cannot be the whole story in any reasonabligrgglbic model of so-
cial networks: although Rr — v] should be a decreasing function of the geographic
distance between andyv, intuitively the rate of decrease in that probability shbul
reflect something about the population in the vicinity ofsh@eople.

One way to account for variable population densityaisk-based friendshifs,
28, 32], which models social networks as follows. The gradséd model described
here is the simplest version of rank-based friendship; #is Kieinberg’s distance-
based model, generalizations that do not rely on the gri@ leeen studied. (See
Section 6.) We continue to measure person-to-person dissansing Manhattan
distance in &-dimensional grid, but we will now allow an arbitrary posginumber
of people to live at each grid point. Each person still hiato2al neighbors, one in
each of the two directions in each of thadlimensions, and one long-range link,
chosen as follows. Define thrank of a persorv with respect tau as the number
of people who live at least as closeu@sv does, breaking ties in some consistent
way. (In other words, persamsorts the population in descending order of proximity
to u; the rank ofv is her index in this sorted list.) Now each peraonhooses her
long-range link according to rank, so thafP+ V] is inversely proportional to the
rank ofv with respect tas. See Figure 4 for an example rank-based network.

Rank-based friendship generalizes the navigabte k setting in the distance-
based Theorem 1: in ledimensional grid with constant population at each point,
the rank ofv with respect tou is ©(d(u,v)¥). But even under non-uniform popu-
lation densities, social networks generated accordin@gmk-based friendship are
navigable by the greedy algorithm:

Theorem 2 (Liben-Nowell, Novak, Kumar, Raghavan, Tomkins £8, 32]).Con-
sider an n-person network where people are arranged in ankedisional grid so
that at least one person lives at every grid point x. Suppesh @erson hagk
local neighbors and one long-range link chosen via rankeofsiendship. Fix any
source person s and choose a target person t uniformly ataamfilom the popula-
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(&) Concentric balls around a cit@, where (b) A rank-based social network generated
each ball’s population increases by a factor ofrom this population distribution. For visual
four. A resident ofC choosing a rank-based simplicity, edges are depicted as connecting
friend is four times more likely to choose acities; the complete image would show each
friend at the boundary of one ball than a friendedge connecting one resident from each of its
at the boundary of the next-larger ball. endpoint cities.

Fig. 4 Two images of a sample rank-based social network with vigipbpulation density. Each
blue circle represents a city with a population whose sizpragportional to the circle’s radius.
Distances between cities, and hence between people, afutetinusing Manhattan distance. A
rank-based friendship for each persois formed probabilistically, where Rr— v] is inversely
proportional to the number of people who live closeutthanv is, breaking ties consistently. The
local neighbors—for each persaonone friend in the neighboring city in each cardinal dirent—
are not shown.

tion. Then under greedy routing the expected length of thiefpam s to the point;x
in which t lives is Qlog*n).

A few notes about this theorem are in order. First, relatvelheorem 1, rank-
based friendship has lost a logarithmic factor in the leraftithe path found by
greedy routing. Recently, in joint work with David Barbell@eorge Kachergis,
Anna Sallstrom, and Ben Sowell, we were able to show that atimas” variant on
greedy routing finds a path of expected len@tog? n) in rank-based networks [6],
but the analogous tightening for greedy routing itself rere@pen.

Second, Theorem 2 makes a claim about the expected lendta path found by
the greedy algorithm for a randomly chosen tartgethere the expectation is taken
over both the random construction of the netwarkd the random choice of the
target. In contrast, Theorem 1 makes a claim about the exgdength of the path
found by the greedy algorithm fanytarget, where the expectation is taken only
over the random construction of the network. Intuitivelgjee targets in a rank-
based network may be very difficult to reach: if a persdines in a region of the
network that has a comparatively very sparse populatieam there will be very few
long-range links to people nearThus making progress towards an isolated target
may be very difficult. However, the difficulty of reaching aoiated target like is
offset by the low probability of choosing such a target; adtnoy definition, there
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Fig. 5 The probabilityP(r) of a friendship between two peopleandv in LiveJournal as a function
of the rank ofv with respect tai [32]. Ranks are rounded into buckets of size 1300, whiches th
LiveJournal population of the city for a randomly chosensperin the network, and thus 1300
is in a sense the “rank resolution” of the dataset. (The ua@esl data are noisier, but follow the
same trend.) The solid line correspondsP(@) O 1/r. Note that Theorem 2 requirdXr) O 1/r

for a rank-based network to be navigable.

cannot be very many people who live in regions of the netwbak have unusually
low density. The proof of Theorem 2 formalizes this intuiti28, 32].

This technical difference in the statements of TheoremsdL2aim fact echoes
points raised by Judith Kleinfeld in her critique of the dyesxpansive interpreta-
tion of Milgram’s experimental results [27]. Milgram’s stikbroker was a socially
prominent target, and other Milgram-style studies perfedmvith less prominent
targets—the wife of a Harvard Divinity School student, irestudy performed by
Milgram himself—yielded results much less suggestive ahalsworld.

It is also worth noting that, although the “isolated targettition suggests why
existing proof techniques are unlikely to yield a “for altdgets” version of Theo-
rem 2, there are no known population distributions in whickegly routing fails to
find a short path to any particular target in a rank-based odwt is an interest-
ing open question to resolve whether there are populatsmilolitions and source—
target pairs for which greedy routing fails to find a path obgrexpected length in
rank-based networks (where, as in Theorem 1, the expectatiaken only over the
construction of the network).

These two ways in which Theorem 2 is weaker than Theorem 1 fatewse
counterbalanced by the fact that Theorem 2 can handle \@apyipulation densities.
But the real possible benefit is the potential for a betterifitheal data. Figure 5 is
the rank analogue of Figure 3: for any rankhe fraction of LiveJournal users who
link to theirrth-most geographically proximate person is displayedn{&averag-
ing has been done in Figure 5: because a random person inviaolirnal network
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lives in a city with about 1300 residents, the data do not jteusito adequately
distinguish among ranks that differ by less than this number

As it was with distance, the link probabilit?(r) between two people is a
smoothly decreasing function of the ranlof one with respect to the other. And
just as before, link probability levels off to abogit= 5.0 x 10 as the rank gets
large, soP(r) is well modeled byP(r) = ©(1/r) + €. But unlike the distance-based
model of Figure 3 and Theorem 1, the fit between Figure 5 andrEme 2 is no-
table: people in the LiveJournal network really have forrtiekls with a geographic
distribution that is a remarkably close match to rank-bdseddship.

6 Going off the Grid

Until now, our discussion has concentrated on models ofipribx that are based
on Manhattan distance in an underlying grid. We have arghatthese grid-based
models are reasonable for geographic proximity. Even ingegraphic context,
though, they are imperfect: the 2-dimensional grid failatzount for real-world
geographic features like the third dimension of a high-apartment complex or
the imperfect mapping between geographic distance andititime distance be-
tween two points. But in a real Milgram-style routing expeeint, there are numer-
ous other measures of proximity that one might use as a gaoidelécting the next
step towards a target: occupation, age, hobbies, and alrtex, fa example. The
grid is a very poor model for almost all of these notions otalige. In this section,
we will consider models of social networks that better matase non-geographic
notions of similarity. Our discussion will include both ngnid-based models of
social networks and ways to combine multiple notions of prity into a single
routing strategy.

Non-Grid-Based Measures of Similarity

Excluding geographic proximity to the target, similaritiyaccupation is the most-
cited reason for the routing choices made by participanidilgram-style routing
experiments [13, 21]. Consider, then, modeling persopeison proximity accord-
ing to occupation. A hierarchical notion of similarity istngal in this context: imag-
ine a treeT whose leaves correspond to particular occupations (“daohef” or
“urban planner,” perhaps), where each peradlives” at the leaf?,, that represents
her occupation. The occupational proximitywéndv is given by the height of the
least common ancestor (LCA) éf and¢, in T, which we will denote byca(u,v).
Hobbies can be modeled in a similar hierarchical fashioougiih modeling
hobby-based proximity is more complicated: a typical peisas many hobbies but
only one occupation. Measuring the similarity of two almatensiis more compli-
cated still. There are many ways to measure the similaritwofschools, paralleling
many ways to measure the similarity of two people: geogrdipaye of school” like
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liberal arts college versus research university, athlgticference, strength of com-
puter science department, etc. But even with these contiplitsa similarity of any
of occupation, hobbies, or alma mater is more naturally rfextiwith a hierarchy
than with a grid.

Navigability in social networks derived from a hierarcHiozetric has been ex-
plored through analysis, through simulation, and througipieical study of real-
world interactions. Kleinberg has shown a similar resulfbeorem 1 for the tree-
based setting, characterizing navigable networks in t&xfnassingle parameter that
controls how rapidly the link probability between peopl®ps off with their dis-
tance [24]. As in the grid, Kleinberg'’s theorem identifiesagmiimal middle ground
in the tradeoff between having overly parochial and ovedgt®red connections:
if T is a regulaib-ary tree and Bu — v] 0 b~#1c2(UV)  then the network is naviga-
ble if and only if 3 = 1. Watts, Dodds, and Newman [48] have explored a similar
hierarchical setting, finding the ranges of parameterswiea¢ navigable in simula-
tions. (Their focus was largely on the combination of mutipierarchical measures
of proximity, an issue to which we will turn shortly.) Rougjrin the hierarchical
context has also been studied empirically by Adamic and Adlao considered the
role of proximity in the organizational structure of Hewdldackard Labs in social
links among HP Labs employees[1]. (Because a company'sia@tonal structure
forms a tree where people more senior in the organizatiomemeped to internal
nodes instead of to leaves, Adamic and Adar consider a midation on LCA to
measure person-to-person proximity.) Adamic and Adar fbtimat, as with geog-
raphy, there is a strong trace of organizational proximitypbserved connections,
and that, again as with geography, greedy routing towardsget based on organi-
zational proximity was generally effective. (See Sectidorisome discussion.)

The question of navigability of a social network derivedfran underlying mea-
sures of distance has also been explored beyond the cooféesgrid and the tree.
Many papers have considered routing in networks in whiclsq@eto-person dis-
tances are measured by shortest-path distances in anyindetaph that has some
special combinatorial structure. These papers then tiipistate bounds on naviga-
bility that are based on certain structural parametersefiiderlying graph; exam-
plesinclude networks that have low treewidth [16], boungiexivth rate [14,15,42],
or low doubling dimension [19,47]. The results on rank-labfsiendship, including
generalizations and improvements on Theorem 2, have akso &dended to the
setting of low doubling dimension [6, 28]. However, a contplanderstanding of
the generality of these navigability results in terms ofgandies of the underlying
metric remains open.

Another way to model person-to-person proximity—and alsanodel varia-
tion in population density, in a different way from rank-kdsfriendship—is the
very generabroup-structuremodel of Kleinberg [24]. Each person in amperson
population is a member of various groups (perhaps defined $tyaged physical
neighborhood, an employer, a hobby), anduRr V] is a decreasing function of
the size of the smallest group containing bathndv. Kleinberg proved that the
resulting network is navigable if Rr— V] is inversely proportional to the size of
the smallest group including bothandv, subject to two conditions on the groups.
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Informally, these conditions are the following. First, ygroupg must be “cov-
ered” by relatively large subgroups (so that once a pathhesgit can narrow in
on a smaller group containing any particular tarjeSecond, groups must satisfy
a sort of “bounded growth” condition (so that a persomas only a limited number
of people who are in a group of a particular size wittand thusi has a reasonable
probability of “escaping” from small groups to reach a fasgwarget).

Simultaneously Using Many Different Notions of Similarity

One of the major advantages of the group-structure moddilasit allows us to
model proximity between two people based on many “dimersSiafi possible
similarity, simply by defining some groups in terms of eachttifse multiple di-
mensions. Combining knowledge of various measures of theipity—age, ge-
ography, and occupation, say—of one’s friends to the tasgeatural, and, indeed,
something that real-world participants in small-worlddias do [13,21, 38]. Identi-
fying plausible models for social networks and good rougitgprithms to find short
paths in these networks when there are many relevant natiosimilarity remains
an interesting and fertile area for research.

We have already implicitly considered one straightforwaey of incorporating
additional dimensions of similarity by modeling proximity a k-dimensional grid
for k > 2. (Evenk = 2 uses two types of similarity—for geography, longitude and
latitude—and computes person-to-person similarity byctirabination of the two.)
Because the grid-based model uses Manhattan distancéhbesious dimensions
of proximity are combined simply by summing their measuréstathces. Martel
and Nguyen [35, 41], Fraigniaud, Gavoille, and Paul [18]] &arriere et al. [7]
have performed further work in analyzing the grid-basetrsgfor generak. These
authors have shown that if people are given a small amourmnidifianal information
about the long-range links of their friends, thedimensional grids result in shorter
paths as increases. (From Theorem 1, we need to haya Prv] 0 d(u,v) X to
achieve polylogarithmic path lengths; these results éistabmprovements in the
polylogarithmic function a% increases, for a slightly souped-up version of local-
information routing.)

Watts, Dodds, and Newman have explored a model of perspesson simi-
larity based on multiple hierarchies [48]. They consideodection ofk different
hierarchies, where each is a regulmary tree in which the leaves correspond to
small groups of people. The similarity of peopi@ndv is given by their most sim-
ilar similarity: that is, iflcaj(u,v) denotes the height of the LCA aofandv in the
ith hierarchy, then we model(u,v) := min;Icaj(u,v). People are mapped to each
hierarchy so that a person’s position in each hierarchyisrdgned independently
of positions in other hierarchies. Watts, Dodds, and Newstaw via simulation
that usingk > 1 hierarchies yields better performance for greedy routivan us-
ing just one. In particular, using € {2,3} hierarchies gave the best performance.
These experiments show that, for these valuel diie resulting network appears
to be searchable for a broader range of parameters for thaidungiving friend-
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ship probability as a function of distance. As with Theorenthre is provably a
single exponenB = 1 under which greedy routing produces polylogarithmic path
when there is one hierarchy; for two or three hierarchiessé¢hsimulations showed
a wider range of values ¢ that yield navigable networks.

The results in the Watts—Dodds—Newman setting are basetasions, and
giving a fully rigorous theoretical analysis of routing ihi¢ context remains an
interesting open challenge. So too do a variety of genexidizs of that setting: de-
pendent hierarchies, or a combination of grid-based anttuky-based measures
of proximity, or the incorporation of variable populatiopmsity into the multiple-
hierarchy setting. Broader modeling questions remain pfmen One can conceive
of subtler ways of combining multiple dimensions of simifathan just the sum
or the minimum that seem more realistic. For example, it setlhrat making sig-
nificant progress towards a target in one dimension of siitjlat the expense of
large decreases in similarity in several other dimensisasrbuting mistake, even if
it reduces the minimum distance to the target over all theedisions. Realistically
modeling these multidimensional scenarios is an interggipen direction.

From Birds of a Feather to Social Butterflies (of a Feather)

The generalizations that we have discussed so far are ati#cbon greedy routing
under broader and more realistic notions of proximity, bug¢ can also consider en-
riching the routing algorithm itself. For example, algbrits that endow individuals
with additional “semi-local” information about the netwoisuch as awareness of
one’s friends’ friends, have also been studied (e.g., [0838, 35, 47]). But there
is another natural and simple consideration in Milgramestputing that we have
not mentioned thus far: some people have more friends thar®tThis is a signif-
icant omission of the models that we have discussed; peopieese models have a
constant or nearly constant number of friends. In contdegirees in real social net-
works are well modeled by power-law distributionin which the proportion of the
population withf friends is approximately AfY, wherey is a constant around 2
to 2.4 in real networks (see, e.g., [5, 8,12,29, 39]). In the rayitiontext, a popular
person can present a significant advantage in finding a shuath to the target.
A person with more friends has a higher probability of knogvBomeone who is
significantly closer to any target—in virtue of having drammore samples from the
friendship distribution—and thus a more popular persohkiély be able to find a
shorter path to a given target.

Strategies that choose high-degree people in routing hese studied in a num-
ber of contexts, and, largely through simulation, thesseties have been shown to
perform reasonably well [1-3, 22, 46]. Of these, perhapsibst promising algo-
rithm for homophilous power-law networks is tegpected-value navigation (EVN)
algorithm of Simsek and Jensen [46], which explicitly dmmes popularity and
proximity in choosing the next step in a chain. Under EVN, therent nodeu
chooses as the next node in the path its neighilbdrose probability of a direct link
to the target is maximized. The nodecomputes this probability using the knowl-
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edge ofv's proximity tot as well asv's outdegreed,. (An underlying model like
the grid, for example, describes the probabiffythat a particular one ofs friend-
ships will connecw to t; one can then compute the probability-11— p,)% that
one of thed, friendships ofv will connectv tot. EVN chooses the friend maximiz-
ing this probability as the next step in the chain.) Altho@iimsek and Jensen give
empirical evidence for EVN's success, no theoretical agialilas been performed.
Analyzing this algorithm—or other similar algorithms thiatorporate knowledge
of node degree in addition to target proximity—in a rigoraesting is an impor-
tant and open problem. Although a precise rigorous accolEMN has not yet
been given, it is clear that EVN captures something crudalia real routing: the
optimal routing strategy is some combination of gettingseldo a target in terms
of similarity (the people who are more likely to know othergshlike the target)
and of getting to popular intermediate people who have eelaarial circle (the
people who are more likely to know many others in generalg ifiterplay between
popularity and proximity—and incorporating richer notgoaf proximity into that
understanding—is a rich area for further research.

7 Discussion

It is clear that the wayfinding problem for real people in reatial networks is
only approximated by the models of social networks and ofadowtwork rout-
ing discussed in this chapter. In many ways, real wayfindingaisier than it is in
these models: we know which of our friends lived in Japan fgear, or tend to
be politically conservative, or have a knack for knowing jplecin many walks of
life, and we also have some intuitive sense of how to weigbsehconsiderations
in navigating the network towards a particular target perddut real wayfinding
is harder for real people in many ways, too: for example, eseemingly simple
geography-based routing is, at best, a challenge for the tficollege-age Ameri-
cans who were unable to locate Louisiana on a map of the UBti@#s, even after
the extensive press coverage of Hurricane Katrina [43].

The models of similarity and network knowledge that we hawesidered here
are simplistic, and studying more realistic models—moaéth richer notions of
proximity, or models of the errors or inconsistencies inivilials’ mental maps of
these notions of proximity, for example—is very interegtiBut there is, of course,
a danger of trying to model “too well”: the most useful modedsnot reproduce all
of the fine-grained details of a real-world phenomenon, atiter shed light on that
phenomenon through some simple and plausible explanatitaarigin.

With this perspective in mind, | will highlight just one que&s here: why and
how do social networks become navigable? A number of modetseaevolution of
social networks through the “rewiring” of long-range friships in a grid-like set-
ting have been defined and analyzed [10, 11, 44]; these althwe shown that nav-
igability emerges in the network when this rewiring is dopppriately. We have
seen here that rank-based friendship is another way toiexpknavigability of so-
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cial networks, and we have seen that friendships in Livedmluviewed geograph-
ically, are well approximated by rank-based friendshipe@iece is missing from
the rank-based explanation, though: why is it that ranlketdsendship should hold
in a real social network, even approximately? Figure 3 shitvasgeography plays a
remarkably large role in friendships even in Live Journplisely virtual community;
friendship probability drops off smoothly and significandls geographic proximity
decreases. Furthermore Figure 5 shows that rank-based $hé is a remarkably
accurate model of friendship in this network. But are thextiral processes that can
account for this behavior? Why should geographic proxinmtghe flesh-and-blood
world resonate so much in the virtual world of LiveJournal®dAvhy should this
particular rank-based pattern hold?

One explanation for the important role of geography in Laghal is that a
significant number of LiveJournal friendships are onlinenifestations of exist-
ing physical-world friendships, which crucially rely on agraphic proximity for
their formation. This “virtualization” is undoubtedly amportant process by which
friendships appear in a virtual community like LiveJourraadd it certainly explains
some of geography’s key role. But accounting for the corgiéhslow decay in link
probability as geographic separation increases from a fewdted kilometers to a
thousand kilometers, beyond the range of most spontandwysgcal-world interac-
tions, seems to require some additional explanation. Heomé speculative possi-
bility: many interests held by LiveJournal users have radtigreographic centers™—
for example, the city where a professional sports team plarythe town where a
band was formed, or the region where a particular cuisineofsufar. Shared in-
terests form the basis for many friendships. The geografaltior in LiveJournal
could perhaps be explained by showing that the “massi'afdv's shared interests
(appropriately defined) decays smoothly as the geograjstetde betweenandv
increases. Recent work of Backstrom et al. [4] gives somg mériguing evidence
related to this idea. These authors have shown results arethgraphic distribution
of web users who issue various search queries. They charactth the geo-
graphic “centers” of particular search queries and the€agt of those queries, in
terms of how quickly searchers’ interest in that query droffsvith the geographic
distance from the query’s center. Developing a comprekemabdel of friendship
formation on the basis of this underlying geographic natfrenterests is a very
interesting direction for future work.

To close, | will mention one interesting perspective on thesjion of an under-
lying mechanism by which rank-based friendship might aiiskiveJournal. This
perspective comes from two other studies of node linkingalir as a function of
node-to-node similarity, in two quite different contexggure 6(b) shows the results
of the study by Adamic and Adar [1] of the linking probabilibgtween HP Labs
employees as a function of the distance between them in tip@iEde hierarchy.
Their measure of similarity is a variant of LCA, modified tdoaV the calculation
of distances to an internal node representing a manageeiodiporate hierarchy.
LCA distance is in a sense implicitly a logarithmic meastioe:example, in a uni-
formly distributed population in the hierarchy, the numbéipeople at distancd
grows exponentially withd. Thus this semilog plot of link probabilities is on the
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Fig. 6 Three plots of distance versus linking probability: (a) thée of geographic distance be-
tween LiveJournal users [32], a reproduction of Figure 3;t(le role of corporate-hierarchy dis-
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tance between HP Labs employees, from a study by Lada Adardi&gtan Adar [1]; and (c) the
role of lexical distance between pages on the web, from g diudrilippo Menczer [37].
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same scale as the other log—log plots in Figure 6. Figuregh(ayvs the analogous
plot from a study by Filippo Menczer [37] on the linking bel@abetween pages on
the web. Here the similarity between two web pages is congpdsed on the lex-
ical distance of the pages’ content. Because the raw linkalritities are so small,
here the plot shows the probability that neighborhoods ofpages have nonempty
overlap, where a pagg's neighborhood consists of the papgetself, the pages to
which p has a hyperlink, and pages that have a hyperling to

Intriguingly, the LiveJournal linkage pattern, reprodd@s Figure 6(a), and the
HP Labs plot in Figure 6(b) show approximately the same cttaristic shape in
their logarithmic plots: a linear decay in link probabilitgr comparatively similar
people, leveling off to an approximately constant link pablity for comparatively
distant pairs. Figure 6(c) shows the opposite pattern: thbgbility of connection
between two comparatively similar web pages is roughly taortsand then begins
to decay linearly (in the log—log plot) once the pages’ samity drops beyond a
certain level. Figures 6(a) and 6(b) both plot link probipibetween people in a
social network against their (geographic or corporateadise; Figure 6(c) plots
link probability for web pages. Understanding why linkingtferns in social net-
works look different from the web—and, more generally, nmaksense of what
might be generating these distributions—remains a fatioipapen question.
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