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The Internet and socialmedia have enabled themobilization of large
crowds to achieve time-critical feats, ranging from mapping crises
in real time, to organizing mass rallies, to conducting search-
and-rescue operations over large geographies. Despite significant
success, selection bias may lead to inflated expectations of the
efficacy of social mobilization for these tasks. What are the limits
of social mobilization, and how reliable is it in operating at these
limits? We build on recent results on the spatiotemporal structure
of social and information networks to elucidate the constraints
they pose on social mobilization. We use the DARPA Network
Challenge as our working scenario, in which social media were
used to locate 10 balloons across the United States. We conduct
high-resolution simulations for referral-based crowdsourcing and
obtain a statistical characterization of the population recruited,
geography covered, and time to completion. Our results demon-
strate that the outcome is plausible without the presence of mass
media but lies at the limit of what time-critical social mobilization
can achieve. Success relies critically on highly connected individ-
uals willing to mobilize people in distant locations, overcoming
the local trapping of diffusion in highly dense areas. However,
even under these highly favorable conditions, the risk of unsuc-
cessful search remains significant. These findings have implica-
tions for the design of better incentive schemes for social
mobilization. They also call for caution in estimating the reliability
of this capability.

social networks | human dynamics

The Internet and online social media are now credited with the
unprecedented ability to coordinate the mobilization of large

masses of people to achieve incredible feats that require cover-
age of large geographical and informational landscapes in very
limited time. Social media have been used to mobilize volunteers
to map natural disasters in real time (1) and to conduct large-
scale search-and-rescue missions (2). Online social networks also
have been an important tool in the coordination of mass political
rallies (3, 4).
Endeavors such as the Defense Advanced Research Projects

Agency (DARPA) Network Challenge (5) aimed to test the
power of the Internet and social media in time-critical social
mobilization to its absolute limits. The Network Challenge re-
quired competing teams to locate and submit the coordinates of
10 tethered weather balloons dispersed at random locations all
over the continental United States. The winning team, based at
Massachusetts Institute of Technology (MIT), won the challenge
by locating all balloons in less than 9 h. The MIT team used an
incentive scheme to kick start an information and recruitment
cascade that resulted in 4,400 sign-ups to the team’s Web site
within 48 h. Analysis of the diffusion revealed that the recursive
incentive scheme may have played an important role in maxi-
mizing the speed and branching of the diffusion to limits above
what normally are observed in viral propagation schemes (6–8).
More recently, the State Department’s Tag Challenge required

competing teams to locate and photograph five target “thieves”
(actors) in five different cities in the United States and Europe,
based only on a mug shot released at 8:00 AM local time (9). The

targets were visible for only 12 h and followed normal itineraries
around the cities of Stockholm, London, Bratislava, New York,
and Washington DC. Our winning team located three of the five
suspects using social media, without any of the team members
being based in any of the target cities (10), demonstrating yet an-
other example of time-critical social mobilization in tasks that re-
quire coverage of large geographies.
Despite these numerous successes, we still have limited un-

derstanding of the limits of technology-mediated mobilization. If
we are to rely on social media to react to time-critical emergen-
cies, it is important to understand the conditions under which they
can be successful and the risks of failure associated with them. A
particular case, of highly practical importance, is to understand
the extent to which we can expect to cover a certain geographical
area in a given amount of time. For this, we must understand the
complete statistical characterization of the population recruited,
geographical area covered, and completion time it takes for social
mobilization to succeed in a particular task, as well as to quantify
the likelihood of failure.
This lack of understanding is especially prone to selection bias

over few successful social mobilization strategies and may lead to
inflated expectations of the reliability and efficacy of these tech-
niques (11, 12). However, it is beyond experimental capabilities to
perform randomized experimentation with large crowdsourcing
challenges [with notable exceptions emerging recently (13, 14)].
Modeling efforts in the wake of the H1N1 and other global

pandemics also have provided a valuable insight into time-sensi-
tive human dynamics on a large scale, via spatial simulation (15) or
network-based diffusion (16, 17). In common with these efforts,
we model the interaction and connection of large numbers of
agents; however, we consider the propagation of a message that
may be transmitted without direct physical proximity and generally
shorter “incubation” times, leading to faster spreading. Thus, the
mechanism of “infection” (recruitment) is independent of human
mobility patterns (18–20), which, in our case, contribute only to
the area searched.
In this work, we build on recent results on social network

structure, information diffusion, and urban economics to eluci-
date the constraints they pose on social mobilization. In partic-
ular, we conduct high-resolution simulations of the DARPA
Network Challenge. We obtain statistical characterizations of the
population recruited, geography covered, and time to locate the
10 balloons, together with their dependencies on the instrumental
variables.
Our results demonstrate, surprisingly, that the DARPA Net-

work Challenge outcome is plausible and thus not simply a fluke
that can be explained only by the role of mass media. Therefore,
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the challenge lies at the limit of what time-critical social mobili-
zation can achieve. Mobilization requires highly connected, highly
active individuals to be motivated to propagate the message
to many friends and to mobilize people in distant locations,
overcoming the local trapping of diffusion in highly dense areas.
Moreover, even under highly favorable conditions, the risk of
mobilization failure remains significant. These findings have
implications for the design of better incentive schemes for social
mobilization. They also call for caution in estimating the re-
liability of this capability.

Simulation Model
In seeking to understand social mobilization, we must consider the
many different dynamics that underpin such a process, particularly
the branching dynamics of recruitment, the temporal dynamics of
message propagation, the geographical spread of social networks,
and the scales and aspects of humanmobility. A full accountability
of each process will render the simulation and its understanding
impossible, and thus we concentrate on the main ingredients that
explain the observed behavior in each of the processes.

Recruitment
Examination of the dynamics of the branching recruitment pro-
cess in empirical data from the challenge (6) suggests several key
features. After a large initial round of recruitment from the seed
node, the reproductive number is well below the tipping point (SI
Appendix). Thus, many subtrees first are created spreading from
the root node, then steadily die out. To describe the typical
branching recruitment process, we fit to the observed branching
data assuming an atypical burst of recruitment when the search
commences. We find a power law distribution with a mean
hRoi= 0:89. (See Materials and Methods for details of fit.)

Response Time
The importance of the heterogeneity in response times in viral
recruitment processes has been demonstrated (21). In a study of
a viral e-mail campaign, the time taken to forward a message was
found to be log-normally distributed, as opposed to the com-
monly used Gaussian assumption, with a mean of 1.5 d with an
SD of 5.5 d. This large heterogeneity has a deep impact on the
propagation of information: cascade dynamics may be halted by
the few individuals with very long response times, and thus re-
cruitment events may continue up to the order of years after the
seed node starts the cascade. The waiting-time distribution in
a time-critical campaign such as the DARPA Network Challenge
might differ fundamentally because it necessarily must end by
a fixed deadline regardless of whether the campaign is successful.
However, we use the distribution of ref. 21 as a reasonable ap-
proximation. We do not apply a cutoff at large times, although
the tail of the distribution may be effectively truncated because
a search may terminate if all balloons are found before recruits
with waiting times drawn from the tail of the distribution can act.
The role of burstiness in diffusion in temporal networks was
investigated systematically in ref. 22 by characterizing tie
strength due to both topological and temporal characteristics.
Paradoxically, burstiness was found to promote efficient diffu-
sion at small scales but to hinder it on large scales.

Geography of Ties
Several studies have been made of geographical scaling laws for
friendship (23–25). Liben-Nowell et al. (26) analyzed a blogging
network and the relationship between friendship and distance.
They concluded that friendship correlates more strongly with
a person’s rank, a measure of the number of closer people, than
simply with the distance between people:

Pij ∝
1

P
k:rik<rij pk

; [1]

where Pij is the probability of friendship between agents in two
distinct grid cells i and j, pk is the population in cell k, and rik is
the distance from cell i to cell k. The quantity on the right-hand
side is the rank of an agent in i with respect to agent in j; it is
a measure of the number of people located between i and j.
Thus, the spatial distribution of a person’s friends is now strongly
dependent on the local population density, with the effect that
two people separated by a given large distance are more likely to
be friends in a rural region than in a dense, urban environment.
It also was noted that friends could be classified into two distinct
types. One group comprises rank-based friends chosen because
of geographical proximity (e.g., a shared workplace) in accor-
dance with rank scaling. The authors also observed a “back-
ground” probability that an agent might be friends with any other
randomly chosen agent from across the country; in this case,
friendships are independent of geography. Further, these two
types of friends were found to exist in a ratio of 2.5 distance-
independent friendships to 5.5 rank-based friendships among the
user average of 8 friends. In our simulation, we apply this model
of friendship to high-resolution population density data derived
from census data (27, 57) (Materials and Methods).

Passive Recruitment
In addition to the branching, temporal, and friendship mecha-
nisms described above, we investigated the role of two other
mechanisms: passive recruitment and mobility. We describe these
in turn below. The data collected during the DARPA Network
Challenge recorded each person who officially registered with the
MIT team, allowing them to recruit others and to report findings.
However, this is only a subset of all the people who became aware
of the search; the record of sign-ups gives a measure of the number
of new recruits each individual successfully invites, but not the
larger hidden network of individuals who search but do not sign up
or recruit others. We refer to this process as passive recruitment,
quantified by the number of passive recruits per individual npass.
There was a considerable number of single nodes reporting find-
ings directly, separate from any recruitment tree (5 of the 10
balloons were reported in this way). The reported traffic to the
MIT team’s Web site of more than 100,000 individuals given only
4,400 sign-ups is further evidence of an unreported, hidden net-
work. This suggests that in addition to the observable chain of
individuals who actively recruit others after being recruited them-
selves, there is a supplementary process whereby individuals be-
come aware of the search and the associated incentives and will
report any balloons in their vicinity, yet are not sufficiently moti-
vated to recruit others. Thismay be the result of low affinity with the
potential parent node from which they became aware of the search
(28–30). The effect of mass media and possibly word of mouth
would manifest itself similarly. By definition, the participation of
these individuals is difficult to measure unless they report a balloon,
but given the large number of submissions attributed to single nodes
that were not part of a recruitment chain, we expect that a sizable
number of passive recruits also were participating in the search.
This process gives rise to an interesting multiplicative factor, sep-
arate from the exponential growth of recruits due to branching.
Although the number of passive recruits a person can mobilize

is intrinsically hard to quantify, a good measure of this number is
the number of friends of a user of a typical social networking
service, such as Facebook. The average degree of the entire global
network is around 200, with a large range, but it is observed to be
up to 400 among the most active users (31). It is these users who
have been observed to drive such viral recruitment processes (21).
As discussed in SI Appendix, we study this parameter for a wide
range of passive recruits: however, because we aim to test the
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behavior of successful social mobilizations, we set it to the upper
limit of 400 friends. Note also that maintaining a large social
network requires a high level of activity (31). Thus, by selecting this
level of passive recruitment, we ensure that those users also are the
most “temporally active” population.

Mobility
Census data provide a record of where individuals live, but limiting
an individual’s effective search area to his or her home ignores that
individual’s ability to search his or her vicinity because of his or her
mobility. Because of the high resolution of the simulations (1 km2),
it is fair to expect that recruits will find a balloon instantaneously in
their own cell. However, agents likely will be mobile during the
course of a search, allowing them to locate balloons in nearby cells.
We quantify this with a radius of gyration (rmob). The realistic
modeling of individual mobility patterns on short timescales
(≈ 101h) is nontrivial. These patterns have a proven seasonal
nature due to commuting patterns, circadian rhythms (32), and
friendship (33), but an exact individual agent-scale model would
require a complex probabilistic treatment to account for differ-
ences in mobility between rural and urban areas (34), putting it
beyond the scope of this model. Therefore, we define a fixed
mobility radius allowing agents to locate balloons within a neigh-
borhood of size rmob. The radius of gyration has been investigated
extensively using mobile phone data, although typically these
studies have focused on the statistical properties of mobility over
the course of weeks and months. However, a recent study found
that on timescales appropriate for time-critical social mobilization
(i.e., up to 12 h), radii of gyration reached 1–2 km (35), with a large
range. Because a large spread in radii around themean is expected
on this timescale, we also investigate radii in the range of 0–5 km in
our simulations. This parameter also assimilates other mecha-
nisms, such as recruited agents becoming aware of a balloon via
face-to-face, word-of-mouth communication.
In light of recent results finding variability in mobility radius

with respect to rank (34) and population density (36), we in-
vestigated a variable mobility radius in inverse proportion to local
population density (SI Appendix). Although the number of passive
recruits is unknown, it likely would follow a distribution because
the number of active recruits in the branching recruitment process
demonstrated a large range. Therefore, we also investigated the
effect of a distribution of passive recruits. Our findings are in-
sensitive to the introduction of both a variable mobility radius and
a distribution of passive recruits (SI Appendix).

Results
DARPA Balloon Challenge Feasibility. We conducted 500 searches
for the 10 DARPA Network Challenge balloon locations using
parameters of rmob = 2 km and npass = 400. We found a success rate
of 89%. A large variation was seen in completion times (Fig. 1,
main plot); however, the median completion time among suc-
cessful searches was 2.3 d, demonstrating a remarkable agreement
with the observed time of 48 h between the beginning of re-
cruitment and completion (6). The combined effect of the heavy
tailed distribution for branching factor and large heterogeneity in
response time gives rise to a large spread in the time for the pure
branching process to terminate (21). Successful searches termi-
nate upon completion, which naturally leads to a completion time
distribution that is truncated with respect to the underlying dis-
tribution of termination times of the pure branching process. It is
against this “natural” range of termination times of the branching
(Fig. 1, Inset) that the truncated distribution of completion times
for successful searches must be compared. The full range of
parameters is investigated in SI Appendix. We find that minimum
values for mobility radius and passive recruits of 2 km and 200,
respectively, are required for a reasonable level of success.

General Balloon Locations.We investigated the hypothesis that the
specific balloon locations chosen in the DARPA balloon chal-
lenge contributed positively to the speed with which the balloons
were found. We randomly chose cells, uniformly sampling a large
range of the population. Further, we simulated the search for
a single balloon in each simulation to clearly isolate the effect of
the balloon’s location on the number of recruits needed to locate
it. Fig. 2 plots the number of recruits needed to locate a balloon
as a function of the population density of the balloon cell.
Although the plot contains some noise, there is a clear trend
showing that balloons in sparsely populated areas both require
significantly more people to find and are less likely to be found
at all, compared with those in well-populated areas. This is the
result of a combination of effects; a cell containing fewer

Fig. 1. Histogram of completion times for successful searches out of 500
instances with parameters npass = 400 and rmob = 2 km (blue) and (Inset) for
the remaining unsuccessful searches that fail to locate all 10 balloons (red).
Dashed vertical line shows completion time of DARPA Network Challenge
after MIT team recruitment commenced. The search continues until all
agents have acted; because of the heavy tailed waiting time distribution, this
may take as long as several years. However, because most recruits act on
much shorter timescales, the searches that succeed in locating all the bal-
loons drastically truncate this distribution.

Fig. 2. Scatter plot of the number of recruits at completion in a search for
a single randomly placed balloon as a function of the population in the cell
in which the balloon is placed for 5,000 randomly selected balloon locations.
Black dots represent only successful searches (Upper). The histogram repre-
sents the probability of successfully finding the balloon. Dashed black ver-
tical lines indicate the populations of the locations used in the DARPA
Balloon Challenge. The red line represents the mean number of recruits for
each histogram bin (Lower).
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potential recruits has a greater likelihood of being searched later.
However, this is exacerbated by the fact that the population is far
from homogeneously distributed, demonstrating strong spatial
autocorrelation (SI Appendix). Rather, a sparsely populated cell
likely is surrounded by other sparsely populated cells; thus, there
are considerably fewer opportunities for recruitment into that
cell from its neighbors. Conversely, well-populated cells in urban
areas experience the opposite effect. We have highlighted the
extent to which a balloon becomes more easily found as it is
moved to a location with higher density. In this context, it may be
seen that a few of the chosen balloon locations were in chal-
lenging locations but that overall success was expected.

Searchability, Blendability, and Findability. To draw more general
conclusions about the probability of searching a location, we
move away from the specific balloon locations. We now can
measure the ease with which each cell may be searched over the
course of many different search realizations. With this in mind,
we map the searchability (s) of each cell i as

si =
nsearchedi

N
; [2]

where nsearchedi is the number of instances in which someone is
recruited in cell i out of N searches (N = 10; 000 for the following
results). We see (Fig. 3) that cells located in dense metropolitan
areas are easily searchable because there are many more po-
tential searchers to recruit in those cells, whereas the opposite is
true for sparsely populated areas. Fig. 3 (black points) demon-
strates this saturating trend above cell population ≈ 104 km−2.
This is far from a linear mapping, as some places are highly
searchable despite having only intermediate population. Adding
more people to a cell located in a small town increases the
searchability a great deal; however, the payoff for adding more
people to a cell in a large city is negligible.
Intuitively, we also might expect an added difficulty in locating

a target in a region of high population density, such as Manhattan,
despite its density-driven high searchability. We model this diffi-
culty to locate a target at a given place successfully by the blend-
ability bi of a cell i. There are (at least) two distinct sources for this
difficulty. One is a characteristic of the city itself: the increased
density leads to increased complexity of the physical urban envi-
ronment (37–39), providing more possibilities for a target to be
concealed (e.g., an adobe house in Santa Fe, NM vs. a skyscraper

inManhattan). The other contributor to the degree of blendability
of a location comes from the individual perspective: sensory
overload in busy places, leading to inattentional blindness (40–42),
diminished feelings of individual responsibility to report sightings
in large crowds (43, 44), and/or reduced cognitive processing
ability due to stress (45). In all the above cases, we may infer safely
that the larger the population of a cell pi, the larger its blendability
bi. We assume that bi ∼ pβi , similar to how other urban indicators
scale with population (46, 47), e.g., wages and crime with β= 1:25.
We also consider walking speed with β= 1 in SI Appendix.
Thus, if we define the blendability per person, we obtain

b̂i =
pβi
pi

= pβ−1i ; [3]

and we rescale
�
b̂i
�
to lie in the range ½0; 1�.

The tension between the searchability and blendability of
places is modeled by the findability per cell i:

fi =
si
b̂i
: [4]

Again we scale ffig to be in the range ½0; 1� and plot Eq. 4 as
the red points in Fig. 3 for β= 1:25 (we repeat the analysis using
β= 1 in SI Appendix). We isolate a regime of high findability
defined by a value greater than 0.8, which corresponds to the
gray-shaded region, with a population density in the range of
1,100–13,500 km−2. We emphasize that the exact findability
threshold is not important, as the blendability is defined only up
to a constant. Comparing midtown Manhattan (population
density, 36,627 km−2) with nearby Asbury Park, NJ (population
density, 4,975 km−2), we see (Fig. 3) that, counterintuitively, it
may be easier to hide in the former than in the latter. The origin
of this result is that if β≥ 1, then for a large pi, the rate at which
searchability increases with population is insufficient to over-
come the rate at which blendability increases with population;
thus, the findability is maximized in places of intermediate
density (which happens when b̂ is an increasing function of pi;
a detailed derivation of the condition for β to display this be-
havior may be found in SI Appendix).
Finally, in Fig. 4 we visualize the variation of the searchability,

blendability, and findability in the vicinity of Manhattan and
Asbury Park (see SI Appendix for a full map of the continental
United States). Manhattan has extremely high population density
(strong red shading in upper circle), leading to high searchability.
However, this again is counteracted by a very high blendability,
resulting in a relatively lower findability than intuitively expected
(medium shading in findability map). In contrast, the intermediate
population density in Asbury Park leads to a fairly high search-
ability (medium shading in lower circle). However, because the
blendability is very low (blue shading of blendability map), the
findability is very high. In general, it can be seen that areas of
intermediate population have high findabilities.

Discussion
Our goal is to understand the practical limits of time-critical social
mobilization, and to do so in light of contemporary wisdom about
the factors that may affect it: the structure and geographical dis-
tribution of social ties, the branching and temporal dynamics of
information diffusion via social media, and urban economics.
Where possible, we used parameters measured from large-scale
empirical results to create a realistic, high-resolution simulation of
a mobilization scenario akin to the DARPA Network Challenge.
The popular reaction to the DARPA Network Challenge was

that it would be impossible without mass media. Our main finding
is that success actually is expected only with social media and
under realistic parameters. Assuming an initial burst of motivated

Fig. 3. Scatter plot of searchability (black), population-scaled blendability
function (blue), and their ratio, defined as findability (red), as a function of
population for all 5,060,288 cells. The shaded region marks the range of
population density for which cells have a findability greater than 0.8. The
vertical dashed lines represent midtown Manhattan, NY, and Asbury Park,
NJ. [The cells within 15 km of the starting cell at MIT have been removed
because they are extraordinarily searchable due to their privileged position
close to the source of the search (SI Appendix).]
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individuals, success takes place despite the branching factor being
lower than the critical point.
That being said, we found two sobering and instructive qualifiers.

First, despite the average completion time coinciding with the ex-
perience in the actual challenge, the long tail distribution of com-
pletion time suggests that the risk of failing to locate the targets
within a short time frame also is significant. Second, the challenge
lies at the limits of what social mobilization can achieve. Success
relies on all parameters being at their practical limits: highly con-
nected individuals must be motivated to propagate the message to
many friends and to mobilize people in distant locations, over-
coming the local trapping of diffusion in highly dense areas.
Our results have implications for the use of social mobilization

to achieve time-critical tasks, such as mapping crises in real time
or conducting search-and-rescue operations over large geogra-
phies. Novel mobilization mechanisms need to focus on in-
centivizing the elements of the network that are most conducive
to successful mobilization: highly connected people with distant
friends, and rapid reaction time. These characteristics may be
exploited in a new measure of influence. One may envisage var-
iants of the winning team’s recursive incentive strategy that pro-
vide network centrality, distance, and/or time-sensitive rewards to
recruit such influentials.
We studied the tension between the benefits and difficulties of

searching for physical objects in highly populated areas by defining
measures of searchability, blendability, and findability. On one
hand, hiding in a sparsely populated town makes it less likely for
someone from that town to be recruited to find the target. How-
ever, as soon as someone gets recruited, identification becomes
trivial. On the other hand, in a city with high density, one might be
able to “blend into the crowd.” Our results show that, short of
hiding “in themiddle of nowhere,” one’s best bet is to hide “in plain
sight.”The role of human mobility in the context of blendability
is not completely clear and certainly warrants further in-
vestigation using a more detailed treatment. Models of geo-
graphical ties and mobility should explicitly account for
variations in density, particularly the deviation from pure rank

scaling (48) demonstrating the increased likelihood of city-based
users to have longer-range ties.
It is worthwhile to put our work in the context of search in

social networks. Milgram’s landmark “small-world” experiment
showed that, in principle, people are findable using six hops on
the global social network (49), a result that has been reaffirmed
in the Internet age (29). However, Milgram searchability relies
on people’s ability to form a reliable estimate of distance to the
target to exploit the large jumps afforded by small-world net-
works (50–52). For example, if the target is known to be a pro-
fessor who lives in Kyoto, one might try to reach her through
a friend who lives in Tokyo, Japan, as he or she is more likely to
know someone who lives in Kyoto, who in turn may know
someone in academia, and so on. However, if information about
a target is scarce (e.g., searching for a person in an entire country
based only on a mug shot), we cannot rely on distance estimates.
In other words, the problem becomes that of “uninformed” (i.e.,
“blind”) search (53) and thus requires large-scale social mobili-
zation. Endeavors such as the Tag Challenge (54), in which search
may benefit from partial knowledge of target location, require
elements of both uninformed and heuristic search, a topic that
deserves further study in the context of social mobilization.
Our work is not without limitations. First, we focused on mo-

bilization processes that are fully driven by social ties. In reality,
however, mobilization often also benefits from the use of mass
media [e.g., AMBER (America’s Missing: Broadcast Emergency
Response) Alerts distributed via radio stations and cable televi-
sion] and social media hubs (e.g., highly followed blogs or Twitter
accounts). Surely, such media can accelerate social mobilization,
as they complement the social diffusion process and seed it over
large areas (55, 56). Second, our work is limited by our use of
a simple model of human mobility. For a task like the Network
Challenge, this is unlikely to be a problem. However, for scenarios
that involve searching for mobile targets, as was the case in the
Tag Challenge (54), more sophisticated models of human mo-
bility should be incorporated (32).

Fig. 4. Maps of Manhattan and Asbury Park showing variation in population density, searchability, blendability, and findability, as well as underlying
satellite and road maps. Black circles indicate locations of Manhattan, NY (Upper), and Asbury Park, NJ (Lower). Population density is on a logarithmic scale; all
others are on a linear scale. Unpopulated cells are not shown.
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Materials and Methods
Materials.High-resolutionpopulation datawere taken frompublicly available
sources (57) based on US census data (27). These data comprise 7,820,528 cells,
each with an area of 1 km2, of which 5,060,288 are populated (i.e., 2,760,240
are empty). Empirical data from ref. 6 were used to parameterize the
branching factor power law distribution as follows. We exclude the first
generation of recruitment directly from the MIT team, as this is anomalously
high (164 child recruits) and, because of the team’s own unique personal
association with the task, likely to be atypical. We also exclude 611 single
nodes who signed up directly and did not recruit any child nodes; we assume
these are examples of passive recruits who signed up independently. The
distribution of the branching factor among a subset of the remaining nodes is
described by a power law with mean ÆRoæ= 0:89 (SI Appendix).

Methods. A set of seed nodes located at MIT is chosen, the number of which
matches those initially recruited by the MIT team. All these nodes are active,
i.e., they continue to recruit themselves in contrast to passive recruits, which
do not continue the recruitment tree. Each newly activated node looks around
in its vicinity (within a distance radius of rmob) and reports any balloon it sees

within that radius. Each newly activated node also chooses an outdegree (a
constant number npass of “passive” recruits and a power law-distributed
number na of “active” recruits, where npass is drawn from the distribution
seen in the MIT Red Balloon team’s recruitment data). Each chosen friend,
passive or active, is chosen to be rank-based with respect to geography,
using 1-km2 population density data across the United States, with proba-
bility 5.5/8 and uniform overpopulation with probability 2.5/8. Each active
new recruit selects a delay, chosen from a log-normally distributed waiting
time distribution with mean 1.5 d and SD 5.5 d (21), becomes activated, and
completes its own recruitment after that time delay.
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