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Abstract With the recent explosion of popularity of commercial social-networking
sites like Facebook and MySpace, the size of social networksthat can be studied
scientifically has passed from the scale traditionally studied by sociologists and an-
thropologists to the scale of networks more typically studied by computer scientists.
In this chapter, I will highlight a recent line of computational research into the mod-
eling and analysis of thesmall-world phenomenon—the observation that typical
pairs of people in a social network are connected by very short chains of interme-
diate friends—and the ability of members of a large social network to collectively
find efficient routes to reach individuals in the network. I will survey several recent
mathematical models of social networks that account for these phenomena, with an
emphasis both on provable properties of these social-network models and on the
empirical validation of the models against real large-scale social-network data.

1 Introduction

An intrepid graduate student at a university in Cambridge, MA leaves his department
on a quest for cannoli in the North End, a largely Italian neighborhood of Boston.
This mission requires him to solve a particular navigation problem in the city: from
his background knowledge (his own “mental map” of Boston, including what he
knows about the proximity of particular landmarks to his destination pastry shop,
how he conceives of the margins of the North End district, where he thinks his
office is) and what he gathers at his initial location (streetsigns, perhaps the well-
trodden routes scuffed into the grass outside his office thatlead to the nearest subway
station, perhaps the smell of pesto), he must begin to construct a path towards his
destination.Wayfinding, a word coined by the urban planner Kevin Lynch in the
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1960’s [33], refers to the processes by which a person situates him or herself in an
urban environment and navigates from point to point in that setting. (Incidentally,
wayfinding is particularly difficult in Boston, with its often irregular angles and
patterns: one may become confused about directions—the North End is almost due
east of the West End—or encounter impermeable boundaries like rivers or highways
even while heading in the right cardinal direction.)

This chapter will be concerned with wayfinding in networks—specifically inso-
cial networks, structures formed by the set of social relationships that connect a set
of people. The issues of navigability of a social network areanalogous to the is-
sues of navigability of a city: can a source persons reliably identify a step along
an efficient path “towards” a destination persont from her background knowledge
(a “mental map” of the social network) plus whatever information she gathers from
her immediate proximity? How does one find routes in a social network, and how
easy is it to compute those routes? To borrow another term from Kevin Lynch, is
the “legibility” of a real social network more like Manhattan—a clear grid, easy
navigation—or like Boston?

In later sections, I will describe a more formal version of these notions and ques-
tions, and describe some formal models that can help to explain some of these real-
world phenomena. (The interested reader may also find the recent surveys by Klein-
berg [25] and Fraigniaud [17] valuable.) I will begin with a grid-based model of
social networks and social-network routing due to Jon Kleinberg [23, 26], under
which Kleinberg has fully characterized the parameter values for which the result-
ing social network supports the construction of short pathsthrough the network in
a decentralized, distributed fashion. Geography is perhaps the most natural context
in which to model social networks via a regular grid, so I willthen turn to em-
pirical observations of geographic patterns of friendshipin real large-scale online
social networks. I will then describe some modifications to Kleinberg’s model sug-
gested by observed characteristics of these real-world networks, most notably the
widely varying population density across geographic locations. Finally, I will turn
to other models of social networks and social-network routing, considering both
network models based on notions of similarity that are poorly modeled by a grid
(e.g., occupation) and network models based simultaneously on multiple notions of
person-to-person similarity.

2 The Small-World Phenomenon

Although social networks have been implicit in the interactions of humans for mil-
lennia, and social interactions among humans have been studied by social scien-
tists for centuries, the academic study of social networksqua networks is more
recent. Some of the early foundational contributions date from the beginning of the
twentieth century, including the “web of group affiliations” of Georg Simmel [45],
the “sociograms” of Jacob Moreno [40], and the “topologicalpsychology” of Kurt
Lewin [31]. In the 1950’s, Cartwright and Zander [9] and Harary and Norman [20]
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described an explicitly graph-theoretic framework for social networks: nodes repre-
sent individuals and edges represent relationships between pairs of individuals. We
will use this graph-theoretic language throughout the chapter.

The line of social-network research that is the focus of thischapter can be traced
back to an innovative experiment conceived and performed bythe social psychol-
ogist Stanley Milgram in the 1960’s [38]. Milgram chose 100 “starter” individuals
in Omaha, NE, and sent each one of them a letter. The accompanying instructions
said that the letter holders should choose one of her friends to whom to forward
the letter, with the eventual goal of reaching a target person t, a stockbroker living
near Boston. (For Milgram’s purposes, a “friend” ofs was anyone with whoms
was on a mutual first-name basis.) Each subsequent recipientof the letter would
receive the same instructions, and, presumably, the letterwould successively home
in on t with each step. What Milgram found was that, of the chains that reached
the stockbroker, on average they took about six hops to arrive. That observation was
the origin of the phrase “six degrees of separation.” Of course, what this careful
phrasing glosses over is the fraction of chains—about 80%—that failed to reach
the target; Judith Kleinfeld has raised an interesting and compelling set of critiques
about the often overbroad conclusions drawn from these limited data [27]. Still, Mil-
gram’s small-world results have been replicated in a variety of settings—including
a recent large-scale email-based study by Dodds, Muhamad, and Watts [13]—and
Milgram’s general conclusions are not in dispute.

The small-world problem—why is it that a random resident of Omaha should
be only a few hops removed from a stockbroker living in a suburb of Boston?—
was traditionally answered by citing, explicitly or implicitly, the voluminous body
of mathematical literature that shows that random graphs have small diameter. But
that explanation suffers in two important ways: first, social networks are poorly
modeled by random graphs; and, second, in the language of Kevin Lynch, Milgram’s
observation is much more about wayfinding than about diameter. The first objection,
that social networks do not look very much like random graphs, was articulated by
Duncan Watts and Steve Strogatz [49]. Watts and Strogatz quantified this objection
in terms of the highclusteringin social networks: many pairs of people who share a
common friend are also friends themselves. The second objection, that the Milgram
experiment says something about the efficiency of wayfindingin a social network
and not just something about the network’s diameter, was raised by Jon Kleinberg
[23, 26]. Kleinberg observed that Milgram’s result is better understood not just as
an observation about the existence of short paths from source to target, but rather
as an observation about distributed algorithms: somehow people in the Milgram
experiment have collectively managed toconstructshort paths from source to target.

How might people be able to accomplish this task so efficiently? In a social
network—or indeed in any network—finding short paths to a target t typically
hinges on making some form of measurable progress towardst. Ideally, this measure
of progress in a social network would simply be graph distance: at every step, the
path would move to a node with smaller graph distance tot—i.e., along a shortest
path tot. But the highly decentralized nature of a social network means that only a
handful of nodes (the targett himself, the neighbors oft, and perhaps a few neigh-
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bors of the neighbors oft) genuinely know their graph distance tot. Instead one
must use some guide other than graph distance to home in ont.

The key idea in routing in this context—frequently cited by the participants in
real small-world experiments as their routing strategy [13, 21]—is to use similarity
of characteristics (geographic location, hobbies, occupation, age, etc.) as a measure
of progress, a proxy for the ideal but unattainable graph-distance measure of prox-
imity. The success of this routing strategy hinges on the sociological observation
of the crucial tendency towardshomophilyin human relationships: the friends of a
typical personx tend to be similar tox. This similarity tends to occur with respect
to race, occupation, socioeconomics, and geography, amongother dimensions. See
the survey of McPherson, Smith-Lovin, and Cook [36] for an excellent review of
the literature on homophily. Homophily makes characteristic-based routing reason-
able, and in fact it also gives one explanation for the high clustering of real social
networks: ifx’s friends tend to be similar tox, then they also tend to be (somewhat
less) similar to each other, and therefore they also tend to know each other directly
with a (somewhat) higher probability than a random pair of people.

Homophily suggests a naturalgreedy algorithmfor routing in social networks.
If a persons is trying to construct a path to a targett, thens should look at all
of her friendsΓ (s) and, of them, select the friend inΓ (s) who is “most like” the
targett. This notion is straightforward when it comes to geography:the sources
knows both where her friends live and wheret lives, and thusscan just compute the
geographic distance between eachu ∈ Γ (s) andt, choosing theu minimizing that
quantity. Routing greedily with respect to occupation is somewhat murkier, though
one can imagines choosingu based on distance within an implicit hierarchy of
occupations ins’s head. (Milgram’s stockbroker presumably falls into something
like the service industry→ financial services→ investment→ stocks.) Indeed, the
greedy algorithm is well founded as long as an individual hassufficient knowledge
of underlying person-to-person similarities to compare the distances between each
of her friends and the target.

3 Kleinberg’s Small-World Model: The Navigable Grid

Although homophily is a key motivation for greedy routing, homophily alone does
not suffice to ensure that the greedy algorithm will find shortpaths through a so-
cial network. As a concrete example, suppose that every sociologist studying social
networks knows every other such sociologist and nobody else, and every computer
scientist studying social networks knows every other such computer scientist and
nobody else. This network has an extremely high degree of homophily. But the net-
work is not even connected, let alone navigable by the greedyalgorithm. For the
greedy algorithm to succeed, the probability of friendshipbetween peopleu andv
should somehow vary more smoothly as the similarity ofu andv decreases. Intu-
itively, there is a tension between having “well-scattered” friends to reach faraway
targets and having “well-localized” friends to home in on nearby targets. Without
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Fig. 1 Kleinberg’s small-world model [23, 26]. A population ofn people is arranged on ak-
dimensional grid, and each personu is connected to her immediate neighbors in each direction.
Each personu is also connected to a long-range friendv, chosen with probability∝ d(u,v)−α ,
whered(·, ·) denotes Manhattan distance andα ≥ 0 is a parameter to the model. The example
two-dimensional network here was generated withα = 2.

the former, a large number of steps will be required to span the large gap from a
sources to an especially dissimilar targett; without the latter, similarity will be only
vaguely related to graph-distance proximity, and thus the greedy algorithm will be
a poor approximation to a globally aware shortest-path algorithm.

A rigorous form of this observation was made by Jon Kleinberg[23,26], through
formal analysis of this tradeoff in an elegant model of social networks. Here is
Kleinberg’s model, in its simplest form. (See Section 6 for generalizations.) Con-
sider ann-person population, and arrange these people as the points in a regular
k-dimensional grid. Each personu in the network is connected to 2k “local neigh-
bors,” the people who live one grid point above and belowu in each of thek cardinal
directions. (People on the edges of the grid will have fewer local neighbors, or we
can treat the grid as a torus without substantively affecting the results.) Each per-
sonu will also be endowed with a “long-range link” to one other personv in the net-
work. That personv will be chosen probabilistically, where Pr[u→ v] ∝ d(u,v)−α ,
whered(·, ·) denotes Manhattan distance in the grid, andα ≥ 0 is a parameter to
the model. (Changing the model to endow each person with any constant number
of long-range links does not qualitatively change the results.) See Figure 1 for an
example network, withk = α = 2. Notice that the parameterα operationalizes the
tradeoff between highly localized friends and highly scattered friends: settingα = 0
yields links to av chosen uniformly from the network, while lettingα → ∞ yields
only links from personu to personv if d(u,v) = 1.

A local-information algorithmis one that computes a path to a target without
global knowledge of the graph. When a personu chooses a next stepv in the path
to the targett, the personu has knowledge of the structure of the grid, including
the grid locations ofu herself,u’s local neighbors,u’s long-range contact, and the
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targett. However, the remaining structure of the graph—that is, thelong-range links
for nodes other thanu—are not available tou when she is making her routing choice.
(The results are not affected by expanding the knowledge of each nodeu to include
the list of all people previously on the path from the original sources to u, or even
the list of long-range links for each of those people.)

Kleinberg was able to give a complete characterization of the navigability of
these networks by local-information algorithms:

Theorem 1 (Kleinberg [23, 26]).Consider an n-person network with people ar-
ranged in a k-dimensional grid, where each person has2k local neighbors and one
long-range link chosen with parameterα ≥ 0, so thatPr[u→ v] ∝ d(u,v)−α . For an
arbitrary source person s and an arbitrary target person t:

• If α 6= k, then there exists some constantε > 0, whereε depends onα and k but
is independent of n, such that the expected length of the pathfrom s to t found by
any local-information algorithm isΩ(nε).

• If α = k, then the greedy algorithm—i.e., the algorithm that chooses the next step
in the path as the contact closest to the target t under Manhattan distance in the
grid—finds a path from s to t of expected length O(log2n).

The proof that greedy routing finds a path of lengthO(log2n) whenα = k proceeds
by showing that the probability of halving the distance to the target at any step of the
path isΩ(1/ logn). Thus, in expectation, the distance to the target is halved every
O(logn) steps. The path reaches the target after the distance is halved logn times,
and thereforeO(log2n) total steps suffice to reach the target in expectation.

For our purposes, we will broadly treat paths of length polynomial in the loga-
rithm of the population size as “short,” and paths of length polynomial in the popu-
lation size as “long.” (We will use standard terminology in referring to these “short”
paths as havingpolylogarithmiclength—that is, lengthO(logc n) for some constant
exponentc, in a population of sizen.) There has been significant work devoted
to tightening the analysis of greedy routing in Kleinberg’snetworks—for exam-
ple, [7,35]—but for now we will focus on the existence of algorithms that find paths
of polylogarithmic length, without too much concern about the precise exponent of
the polynomial. A network in which a local-information algorithm can find a path
of polylogarithmic length is callednavigable. Theorem 1, then, can be rephrased as
follows: ak-dimensional grid-based social network with parameterα is navigable
if and only if k = α.

Note that this definition of navigability, and hence Kleinberg’s result, describes
routing performance asymptotically in the population sizen. Real networks, of
course, are finite. Aaron Clauset and Cristopher Moore [11] have shown via sim-
ulation that in finite networks, greedy routing performs well even under what The-
orem 1 identifies as “non-navigable” values ofα. Following [11], defineαopt as
the value ofα that produces the network under which greedy routing achieves the
shortest path lengths. Clauset and Moore’s simulations show thatαopt is somewhat
less thank in large but finite networks; furthermore, althoughαopt approachesk as
the population grows large, this convergence is relativelyslow.
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4 Geography and Small Worlds

Now that we have formal descriptions of mathematical modelsof social networks,
we can turn to evaluating the correspondence between these models’ predictions
and real social-network data. To begin, consider physical-world geographic prox-
imity as the underlying measure of similarity between people. Geographic distance
is a natural metric on which to focus both because of its simplicity and because of its
observed importance in empirical studies: participants inreal-world Milgram-style
experiments of social-network routing frequently cite geographic proximity as the
reason that they chose a particular friend as the next step ina chain [13, 21]. (Typ-
ically, people who were early in these chains cited geography as a principal reason
for their choice, and those who appeared later in the chains more frequently reported
that their choice was guided by similarity of occupation.)

Although the description of Kleinberg’s model in Section 3 is couched in ab-
stract terms, there is a very natural geographic interpretation to the model’s under-
lying grid. Geographic distance on the surface of the earth is well modeled by a
2-dimensional grid under Manhattan distance, where we imagine grid points as the
intersections of evenly spaced lines of longitude and latitude. The grid is of course a
simplification of real proximity in the real world, but it is plausible as a first approx-
imation. Thus we have a mathematical model of social-network routing based on
geographic proximity, and real-world evidence that peoplewho (at least partially)
successfully route through social networks do so (at least partially) based on geo-
graphic proximity. We are now in a position to test the mathematical model against
real social networks.

Much of the empirical work described here will be based on data from the Live-
Journal blogging community, found online atlivejournal.com. LiveJournal is
an appealing domain for study in part because it contains reasonably rich data about
its users, even if one ignores the detailed accounts of users’ personal lives frequently
found in their blog posts. LiveJournal users create profilesthat include demographic
information such as birthday, hometown, and a list of interests/hobbies. Each user’s
profile also includes an explicit list of other LiveJournal users whom that user con-
siders to be a friend.

The analysis that follows—performed in joint work with Jasmine Novak, Ravi
Kumar, Prabhakar Raghavan, and Andrew Tomkins [32]—was based on a crawl of
LiveJournal performed in February 2004, comprising about 1.3 million user profiles.
(As of this writing, there are slightly more than 17 million LiveJournal accounts.)
Of those 1.3 million users, approximately 500,000 users declared a hometown that
we were able to locate in a database of longitudes and latitudes in the continental
United States. These data yield a large-scale social network with geographic loca-
tions, using the explicitly listed friendships to define connections among this set of
500,000 people. Figure 2 contains a visual representation of this network.

Using this 500,000-person network, we can simulate the Milgram experiment,
using the purely geographic greedy routing algorithm. There is some subtlety in set-
ting up this simulation—for example, what happens if the simulated chain reaches
a personu who has no friends closer to the target thanu herself?—and, because
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Fig. 2 The LiveJournal social network [32]. A dot is shown for each geographic location that was
declared as the hometown of at least one of the≈500,000 LiveJournal users whom we were able to
locate at a longitude and latitude in the continental UnitedStates. A random 0.1% of the friendships
in the network are overlaid on these locations.

the resolution of geographic locations is limited to the level of towns and cities, we
try only to reach the city of the targett rather thant herself. We found that, sub-
ject to these caveats, the geographic greedy algorithm was able to find short paths
connecting many pairs of people in the network. (See [32] formore detail.)

With the above observations (people are arranged on a 2-dimensional geographic
grid; greedy routing based on geography finds short paths through the network) and
Theorem 1, we set out—in retrospect, deeply naı̈vely—to verify that the probabil-
ity of friendship between peopleu andv grows asymptotically asd(u,v)−2 in the
LiveJournal network. In other words, in the language of Kleinberg’s theorem, we
wanted to confirm thatα = 2. The results are shown in Figure 3, which displays
the probabilityP(d) of friendship between two people who live a given distanced
apart—i.e., the fraction of pairs separated by distanced who declare a friendship in
LiveJournal.

One immediate observation from the plot in Figure 3 is that the probabilityP(d)
of friendship between two people in LiveJournal separated by distanced really does
decrease smoothly and markedly asd increases. This relationship already reveals
a nonobvious fact about LiveJournal; there was no particular reason to think that
geographic proximity would necessarily play an important role in friendships in a
completely virtual community like this one. Section 7 includes some discussion of
a few possible reasons why geography remains so crucial in this virtual setting, but
for now it is worth noting that the “virtualization” of real-world friendships (that
is, the process of creating digital records of existing physical-world friendships)
seems to explain only some of the role of geography. For example, it seems hard for
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Fig. 3 The probabilityP(d) of a friendship between two people in LiveJournal as a function of
the geographic distanced between their declared hometowns [32]. Distances are rounded into
10-kilometer buckets. The solid line corresponds toP(d) ∝ 1/d. Note that Theorem 1 requires
P(d) ∝ 1/d2 for a network of people arranged in a regular 2-dimensional grid to be navigable.

this process to fully account for the marked difference in link probability between
people separated by 300 versus 500 kilometers, a range at which regular physical-
world interactions seem unlikely.

A second striking observation from the plot in Figure 3 is that the probability
P(d) of friendship between people separated by distanced is very poorly modeled
by P(d) ∝ 1/d2, the relationship required by Theorem 1. This probability is better
modeled asP(d) ∝ 1/d, and in fact is even better modeled asP(d) = ε +Θ(1/d),
for a constantε ≈ 5.0×10−6. Apropos the discussion in the previous paragraph, this
additive constant makes some sense: the probability that peopleu andv are friends
can be thought of as the sum of two probabilities, one that increases with their
geographic proximity, and one that is independent of their geographic locations.
But, regardless of the presence or absence of the additiveε, the plot in Figure 3
does not match—or even come close to matching—the navigableexponent required
by Kleinberg’s theorem.

Similar results have also been observed in another social-networking context. In
a study of the email-based links among about 450 members of Hewlett–Packard Re-
search Labs [1], Lada Adamic and Eytan Adar found that the link probabilityP(d)
between two HP Labs researchers was also closely matched byP(d) ∝ 1/d, where
d measured the Manhattan distance between the cubicle locations of the employees.
In this setting, too, geographic greedy routing found shortpaths to most targets—
though not as short as those found by routing greedily according to proximity in
the organizational hierarchy of the corporation (see Section 7)—again yielding a
greedily navigable network that does not match Theorem 1.
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5 Variable Population Density and Rank-Based Friendship

The observations from the previous section lead to a seemingpuzzle: a navigable
two-dimensional grid, which must have link probabilities decaying as 1/d2 to be
navigable according to Theorem 1, has link probabilities decaying as 1/d. But an-
other look at Figure 2 reveals an explanation—and reveals the naı̈vete of looking
for P(d) ∝ 1/d2 in the LiveJournal network. Although a 2-dimensional grid is a
reasonable model of geographic location, auniformly distributedpopulation on a
2-dimensional grid is a very poor model of the geographic distribution of the Live-
Journal population. Population density varies widely across the United States—from
over 10,000 people/km2 in parts of Manhattan to approximately 1 person/km2 in
places like Lake of the Woods County, in the far northern reaches of Minnesota. Two
Manhattanites who live 500 meters apart have probably nevereven met; two Lake
of the Woods residents who live 500 meters apart are probablynext-door neighbors,
and thus they are almost certain to know each other. This widespectrum suggests
that distance cannot be the whole story in any reasonable geographic model of so-
cial networks: although Pr[u→ v] should be a decreasing function of the geographic
distance betweenu andv, intuitively the rate of decrease in that probability should
reflect something about the population in the vicinity of these people.

One way to account for variable population density isrank-based friendship[6,
28, 32], which models social networks as follows. The grid-based model described
here is the simplest version of rank-based friendship; as with Kleinberg’s distance-
based model, generalizations that do not rely on the grid have been studied. (See
Section 6.) We continue to measure person-to-person distances using Manhattan
distance in ak-dimensional grid, but we will now allow an arbitrary positive number
of people to live at each grid point. Each person still has 2k local neighbors, one in
each of the two directions in each of thek dimensions, and one long-range link,
chosen as follows. Define therank of a personv with respect tou as the number
of people who live at least as close tou asv does, breaking ties in some consistent
way. (In other words, personu sorts the population in descending order of proximity
to u; the rank ofv is her index in this sorted list.) Now each personu chooses her
long-range link according to rank, so that Pr[u→ v] is inversely proportional to the
rank ofv with respect tou. See Figure 4 for an example rank-based network.

Rank-based friendship generalizes the navigableα = k setting in the distance-
based Theorem 1: in ak-dimensional grid with constant population at each point,
the rank ofv with respect tou is Θ(d(u,v)k). But even under non-uniform popu-
lation densities, social networks generated according to rank-based friendship are
navigable by the greedy algorithm:

Theorem 2 (Liben-Nowell, Novak, Kumar, Raghavan, Tomkins [28, 32]).Con-
sider an n-person network where people are arranged in a k-dimensional grid so
that at least one person lives at every grid point x. Suppose each person has2k
local neighbors and one long-range link chosen via rank-based friendship. Fix any
source person s and choose a target person t uniformly at random from the popula-
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(a) Concentric balls around a cityC, where
each ball’s population increases by a factor of
four. A resident ofC choosing a rank-based
friend is four times more likely to choose a
friend at the boundary of one ball than a friend
at the boundary of the next-larger ball.

(b) A rank-based social network generated
from this population distribution. For visual
simplicity, edges are depicted as connecting
cities; the complete image would show each
edge connecting one resident from each of its
endpoint cities.

Fig. 4 Two images of a sample rank-based social network with variable population density. Each
blue circle represents a city with a population whose size isproportional to the circle’s radius.
Distances between cities, and hence between people, are computed using Manhattan distance. A
rank-based friendship for each personu is formed probabilistically, where Pr[u → v] is inversely
proportional to the number of people who live closer tou thanv is, breaking ties consistently. The
local neighbors—for each personu, one friend in the neighboring city in each cardinal direction—
are not shown.

tion. Then under greedy routing the expected length of the path from s to the point xt
in which t lives is O(log3n).

A few notes about this theorem are in order. First, relative to Theorem 1, rank-
based friendship has lost a logarithmic factor in the lengthof the path found by
greedy routing. Recently, in joint work with David Barbella, George Kachergis,
Anna Sallstrom, and Ben Sowell, we were able to show that a “cautious” variant on
greedy routing finds a path of expected lengthO(log2n) in rank-based networks [6],
but the analogous tightening for greedy routing itself remains open.

Second, Theorem 2 makes a claim about the expected length of the path found by
the greedy algorithm for a randomly chosen targett, where the expectation is taken
over both the random construction of the networkand the random choice of the
target. In contrast, Theorem 1 makes a claim about the expected length of the path
found by the greedy algorithm forany target, where the expectation is taken only
over the random construction of the network. Intuitively, some targets in a rank-
based network may be very difficult to reach: if a persont lives in a region of the
network that has a comparatively very sparse population, then there will be very few
long-range links to people neart. Thus making progress towards an isolated target
may be very difficult. However, the difficulty of reaching an isolated target liket is
offset by the low probability of choosing such a target; almost by definition, there
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Fig. 5 The probabilityP(r) of a friendship between two peopleu andv in LiveJournal as a function
of the rank ofv with respect tou [32]. Ranks are rounded into buckets of size 1300, which is the
LiveJournal population of the city for a randomly chosen person in the network, and thus 1300
is in a sense the “rank resolution” of the dataset. (The unaveraged data are noisier, but follow the
same trend.) The solid line corresponds toP(r) ∝ 1/r. Note that Theorem 2 requiresP(r) ∝ 1/r
for a rank-based network to be navigable.

cannot be very many people who live in regions of the network that have unusually
low density. The proof of Theorem 2 formalizes this intuition [28,32].

This technical difference in the statements of Theorems 1 and 2 in fact echoes
points raised by Judith Kleinfeld in her critique of the overly expansive interpreta-
tion of Milgram’s experimental results [27]. Milgram’s stockbroker was a socially
prominent target, and other Milgram-style studies performed with less prominent
targets—the wife of a Harvard Divinity School student, in one study performed by
Milgram himself—yielded results much less suggestive of a small world.

It is also worth noting that, although the “isolated target”intuition suggests why
existing proof techniques are unlikely to yield a “for all targets” version of Theo-
rem 2, there are no known population distributions in which greedy routing fails to
find a short path to any particular target in a rank-based network. It is an interest-
ing open question to resolve whether there are population distributions and source–
target pairs for which greedy routing fails to find a path of short expected length in
rank-based networks (where, as in Theorem 1, the expectation is taken only over the
construction of the network).

These two ways in which Theorem 2 is weaker than Theorem 1 are of course
counterbalanced by the fact that Theorem 2 can handle varying population densities.
But the real possible benefit is the potential for a better fit with real data. Figure 5 is
the rank analogue of Figure 3: for any rankr, the fraction of LiveJournal users who
link to their rth-most geographically proximate person is displayed. (Some averag-
ing has been done in Figure 5: because a random person in the LiveJournal network
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lives in a city with about 1300 residents, the data do not permit us to adequately
distinguish among ranks that differ by less than this number.)

As it was with distance, the link probabilityP(r) between two people is a
smoothly decreasing function of the rankr of one with respect to the other. And
just as before, link probability levels off to aboutε = 5.0× 10−6 as the rank gets
large, soP(r) is well modeled byP(r) = Θ(1/r)+ ε. But unlike the distance-based
model of Figure 3 and Theorem 1, the fit between Figure 5 and Theorem 2 is no-
table: people in the LiveJournal network really have formedlinks with a geographic
distribution that is a remarkably close match to rank-basedfriendship.

6 Going off the Grid

Until now, our discussion has concentrated on models of proximity that are based
on Manhattan distance in an underlying grid. We have argued that these grid-based
models are reasonable for geographic proximity. Even in thegeographic context,
though, they are imperfect: the 2-dimensional grid fails toaccount for real-world
geographic features like the third dimension of a high-riseapartment complex or
the imperfect mapping between geographic distance and transit-time distance be-
tween two points. But in a real Milgram-style routing experiment, there are numer-
ous other measures of proximity that one might use as a guide in selecting the next
step towards a target: occupation, age, hobbies, and alma mater, for example. The
grid is a very poor model for almost all of these notions of distance. In this section,
we will consider models of social networks that better matchthese non-geographic
notions of similarity. Our discussion will include both non-grid-based models of
social networks and ways to combine multiple notions of proximity into a single
routing strategy.

Non-Grid-Based Measures of Similarity

Excluding geographic proximity to the target, similarity of occupation is the most-
cited reason for the routing choices made by participants inMilgram-style routing
experiments [13,21]. Consider, then, modeling person-to-person proximity accord-
ing to occupation. A hierarchical notion of similarity is natural in this context: imag-
ine a treeT whose leaves correspond to particular occupations (“cannoli chef” or
“urban planner,” perhaps), where each personu “lives” at the leafℓu that represents
her occupation. The occupational proximity ofu andv is given by the height of the
least common ancestor (LCA) ofℓu andℓv in T, which we will denote bylca(u,v).

Hobbies can be modeled in a similar hierarchical fashion, though modeling
hobby-based proximity is more complicated: a typical person has many hobbies but
only one occupation. Measuring the similarity of two alma maters is more compli-
cated still. There are many ways to measure the similarity oftwo schools, paralleling
many ways to measure the similarity of two people: geography, “type of school” like
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liberal arts college versus research university, athleticconference, strength of com-
puter science department, etc. But even with these complications, similarity of any
of occupation, hobbies, or alma mater is more naturally modeled with a hierarchy
than with a grid.

Navigability in social networks derived from a hierarchical metric has been ex-
plored through analysis, through simulation, and through empirical study of real-
world interactions. Kleinberg has shown a similar result toTheorem 1 for the tree-
based setting, characterizing navigable networks in termsof a single parameter that
controls how rapidly the link probability between people drops off with their dis-
tance [24]. As in the grid, Kleinberg’s theorem identifies anoptimal middle ground
in the tradeoff between having overly parochial and overly scattered connections:
if T is a regularb-ary tree and Pr[u→ v] ∝ b−β ·lca(u,v), then the network is naviga-
ble if and only if β = 1. Watts, Dodds, and Newman [48] have explored a similar
hierarchical setting, finding the ranges of parameters thatwere navigable in simula-
tions. (Their focus was largely on the combination of multiple hierarchical measures
of proximity, an issue to which we will turn shortly.) Routing in the hierarchical
context has also been studied empirically by Adamic and Adar, who considered the
role of proximity in the organizational structure of Hewlett–Packard Labs in social
links among HP Labs employees [1]. (Because a company’s organizational structure
forms a tree where people more senior in the organization aremapped to internal
nodes instead of to leaves, Adamic and Adar consider a minor variation on LCA to
measure person-to-person proximity.) Adamic and Adar found that, as with geog-
raphy, there is a strong trace of organizational proximity in observed connections,
and that, again as with geography, greedy routing towards a target based on organi-
zational proximity was generally effective. (See Section 7for some discussion.)

The question of navigability of a social network derived from an underlying mea-
sures of distance has also been explored beyond the contextsof the grid and the tree.
Many papers have considered routing in networks in which person-to-person dis-
tances are measured by shortest-path distances in an underlying graph that has some
special combinatorial structure. These papers then typically state bounds on naviga-
bility that are based on certain structural parameters of the underlying graph; exam-
ples include networks that have low treewidth [16], boundedgrowth rate [14,15,42],
or low doubling dimension [19,47]. The results on rank-based friendship, including
generalizations and improvements on Theorem 2, have also been extended to the
setting of low doubling dimension [6, 28]. However, a complete understanding of
the generality of these navigability results in terms of properties of the underlying
metric remains open.

Another way to model person-to-person proximity—and also to model varia-
tion in population density, in a different way from rank-based friendship—is the
very generalgroup-structuremodel of Kleinberg [24]. Each person in ann-person
population is a member of various groups (perhaps defined by ashared physical
neighborhood, an employer, a hobby), and Pr[u → v] is a decreasing function of
the size of the smallest group containing bothu andv. Kleinberg proved that the
resulting network is navigable if Pr[u → v] is inversely proportional to the size of
the smallest group including bothu andv, subject to two conditions on the groups.
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Informally, these conditions are the following. First, every groupg must be “cov-
ered” by relatively large subgroups (so that once a path reachesg it can narrow in
on a smaller group containing any particular targett). Second, groups must satisfy
a sort of “bounded growth” condition (so that a personu has only a limited number
of people who are in a group of a particular size withu, and thusu has a reasonable
probability of “escaping” from small groups to reach a faraway targett).

Simultaneously Using Many Different Notions of Similarity

One of the major advantages of the group-structure model is that it allows us to
model proximity between two people based on many “dimensions” of possible
similarity, simply by defining some groups in terms of each ofthese multiple di-
mensions. Combining knowledge of various measures of the proximity—age, ge-
ography, and occupation, say—of one’s friends to the targetis natural, and, indeed,
something that real-world participants in small-world studies do [13,21,38]. Identi-
fying plausible models for social networks and good routingalgorithms to find short
paths in these networks when there are many relevant notionsof similarity remains
an interesting and fertile area for research.

We have already implicitly considered one straightforwardway of incorporating
additional dimensions of similarity by modeling proximityin a k-dimensional grid
for k > 2. (Evenk = 2 uses two types of similarity—for geography, longitude and
latitude—and computes person-to-person similarity by thecombination of the two.)
Because the grid-based model uses Manhattan distance, herethe various dimensions
of proximity are combined simply by summing their measured distances. Martel
and Nguyen [35, 41], Fraigniaud, Gavoille, and Paul [18], and Barrière et al. [7]
have performed further work in analyzing the grid-based setting for generalk. These
authors have shown that if people are given a small amount of additional information
about the long-range links of their friends, thenk-dimensional grids result in shorter
paths ask increases. (From Theorem 1, we need to have Pr[u → v] ∝ d(u,v)−k to
achieve polylogarithmic path lengths; these results establish improvements in the
polylogarithmic function ask increases, for a slightly souped-up version of local-
information routing.)

Watts, Dodds, and Newman have explored a model of person-to-person simi-
larity based on multiple hierarchies [48]. They consider a collection ofk different
hierarchies, where each is a regularb-ary tree in which the leaves correspond to
small groups of people. The similarity of peopleu andv is given by their most sim-
ilar similarity: that is, if lcai(u,v) denotes the height of the LCA ofu andv in the
ith hierarchy, then we modeld(u,v) := mini lcai(u,v). People are mapped to each
hierarchy so that a person’s position in each hierarchy is determined independently
of positions in other hierarchies. Watts, Dodds, and Newmanshow via simulation
that usingk > 1 hierarchies yields better performance for greedy routingthan us-
ing just one. In particular, usingk ∈ {2,3} hierarchies gave the best performance.
These experiments show that, for these values ofk, the resulting network appears
to be searchable for a broader range of parameters for the function giving friend-
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ship probability as a function of distance. As with Theorem 1, there is provably a
single exponentβ = 1 under which greedy routing produces polylogarithmic paths
when there is one hierarchy; for two or three hierarchies, these simulations showed
a wider range of values ofβ that yield navigable networks.

The results in the Watts–Dodds–Newman setting are based on simulations, and
giving a fully rigorous theoretical analysis of routing in this context remains an
interesting open challenge. So too do a variety of generalizations of that setting: de-
pendent hierarchies, or a combination of grid-based and hierarchy-based measures
of proximity, or the incorporation of variable population density into the multiple-
hierarchy setting. Broader modeling questions remain open, too. One can conceive
of subtler ways of combining multiple dimensions of similarity than just the sum
or the minimum that seem more realistic. For example, it seems that making sig-
nificant progress towards a target in one dimension of similarity at the expense of
large decreases in similarity in several other dimensions is a routing mistake, even if
it reduces the minimum distance to the target over all the dimensions. Realistically
modeling these multidimensional scenarios is an interesting open direction.

From Birds of a Feather to Social Butterflies (of a Feather)

The generalizations that we have discussed so far are still based on greedy routing
under broader and more realistic notions of proximity, but one can also consider en-
riching the routing algorithm itself. For example, algorithms that endow individuals
with additional “semi-local” information about the network, such as awareness of
one’s friends’ friends, have also been studied (e.g., [18, 30, 34, 35, 47]). But there
is another natural and simple consideration in Milgram-style routing that we have
not mentioned thus far: some people have more friends than others. This is a signif-
icant omission of the models that we have discussed; people in these models have a
constant or nearly constant number of friends. In contrast,degrees in real social net-
works are well modeled by apower-law distribution, in which the proportion of the
population with f friends is approximately 1/ f γ , whereγ is a constant around 2.1
to 2.4 in real networks (see, e.g., [5,8,12,29,39]). In the routing context, a popular
person can present a significant advantage in finding a shorter path to the target.
A person with more friends has a higher probability of knowing someone who is
significantly closer to any target—in virtue of having drawnmore samples from the
friendship distribution—and thus a more popular person will likely be able to find a
shorter path to a given target.

Strategies that choose high-degree people in routing have been studied in a num-
ber of contexts, and, largely through simulation, these strategies have been shown to
perform reasonably well [1–3, 22, 46]. Of these, perhaps themost promising algo-
rithm for homophilous power-law networks is theexpected-value navigation (EVN)
algorithm of Şimşek and Jensen [46], which explicitly combines popularity and
proximity in choosing the next step in a chain. Under EVN, thecurrent nodeu
chooses as the next node in the path its neighborv whose probability of a direct link
to the target is maximized. The nodeu computes this probability using the knowl-
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edge ofv’s proximity to t as well asv’s outdegreeδv. (An underlying model like
the grid, for example, describes the probabilitypv that a particular one ofv’s friend-
ships will connectv to t; one can then compute the probability 1− (1− pv)

δv that
one of theδv friendships ofv will connectv to t. EVN chooses the friend maximiz-
ing this probability as the next step in the chain.) AlthoughŞimşek and Jensen give
empirical evidence for EVN’s success, no theoretical analysis has been performed.
Analyzing this algorithm—or other similar algorithms thatincorporate knowledge
of node degree in addition to target proximity—in a rigoroussetting is an impor-
tant and open problem. Although a precise rigorous account of EVN has not yet
been given, it is clear that EVN captures something crucial about real routing: the
optimal routing strategy is some combination of getting close to a target in terms
of similarity (the people who are more likely to know others most like the target)
and of getting to popular intermediate people who have a large social circle (the
people who are more likely to know many others in general). The interplay between
popularity and proximity—and incorporating richer notions of proximity into that
understanding—is a rich area for further research.

7 Discussion

It is clear that the wayfinding problem for real people in realsocial networks is
only approximated by the models of social networks and of social-network rout-
ing discussed in this chapter. In many ways, real wayfinding is easier than it is in
these models: we know which of our friends lived in Japan for ayear, or tend to
be politically conservative, or have a knack for knowing people in many walks of
life, and we also have some intuitive sense of how to weight these considerations
in navigating the network towards a particular target person. But real wayfinding
is harder for real people in many ways, too: for example, evenseemingly simple
geography-based routing is, at best, a challenge for the third of college-age Ameri-
cans who were unable to locate Louisiana on a map of the UnitedStates, even after
the extensive press coverage of Hurricane Katrina [43].

The models of similarity and network knowledge that we have considered here
are simplistic, and studying more realistic models—modelswith richer notions of
proximity, or models of the errors or inconsistencies in individuals’ mental maps of
these notions of proximity, for example—is very interesting. But there is, of course,
a danger of trying to model “too well”: the most useful modelsdo not reproduce all
of the fine-grained details of a real-world phenomenon, but rather shed light on that
phenomenon through some simple and plausible explanation of its origin.

With this perspective in mind, I will highlight just one question here: why and
how do social networks become navigable? A number of models of the evolution of
social networks through the “rewiring” of long-range friendships in a grid-like set-
ting have been defined and analyzed [10,11,44]; these authors have shown that nav-
igability emerges in the network when this rewiring is done appropriately. We have
seen here that rank-based friendship is another way to explain the navigability of so-
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cial networks, and we have seen that friendships in LiveJournal, viewed geograph-
ically, are well approximated by rank-based friendship. One piece is missing from
the rank-based explanation, though: why is it that rank-based friendship should hold
in a real social network, even approximately? Figure 3 showsthat geography plays a
remarkably large role in friendships even in LiveJournal’spurely virtual community;
friendship probability drops off smoothly and significantly as geographic proximity
decreases. Furthermore Figure 5 shows that rank-based friendship is a remarkably
accurate model of friendship in this network. But are there natural processes that can
account for this behavior? Why should geographic proximityin the flesh-and-blood
world resonate so much in the virtual world of LiveJournal? And why should this
particular rank-based pattern hold?

One explanation for the important role of geography in LiveJournal is that a
significant number of LiveJournal friendships are online manifestations of exist-
ing physical-world friendships, which crucially rely on geographic proximity for
their formation. This “virtualization” is undoubtedly an important process by which
friendships appear in a virtual community like LiveJournal, and it certainly explains
some of geography’s key role. But accounting for the continued slow decay in link
probability as geographic separation increases from a few hundred kilometers to a
thousand kilometers, beyond the range of most spontaneous physical-world interac-
tions, seems to require some additional explanation. Here is one speculative possi-
bility: many interests held by LiveJournal users have natural “geographic centers”—
for example, the city where a professional sports team plays, or the town where a
band was formed, or the region where a particular cuisine is popular. Shared in-
terests form the basis for many friendships. The geographicfactor in LiveJournal
could perhaps be explained by showing that the “mass” ofu andv’s shared interests
(appropriately defined) decays smoothly as the geographic distance betweenu andv
increases. Recent work of Backstrom et al. [4] gives some very intriguing evidence
related to this idea. These authors have shown results on thegeographic distribution
of web users who issue various search queries. They characterize both the geo-
graphic “centers” of particular search queries and the “spread” of those queries, in
terms of how quickly searchers’ interest in that query dropsoff with the geographic
distance from the query’s center. Developing a comprehensive model of friendship
formation on the basis of this underlying geographic natureof interests is a very
interesting direction for future work.

To close, I will mention one interesting perspective on the question of an under-
lying mechanism by which rank-based friendship might arisein LiveJournal. This
perspective comes from two other studies of node linking behavior as a function of
node-to-node similarity, in two quite different contexts.Figure 6(b) shows the results
of the study by Adamic and Adar [1] of the linking probabilitybetween HP Labs
employees as a function of the distance between them in the corporate hierarchy.
Their measure of similarity is a variant of LCA, modified to allow the calculation
of distances to an internal node representing a manager in the corporate hierarchy.
LCA distance is in a sense implicitly a logarithmic measure:for example, in a uni-
formly distributed population in the hierarchy, the numberof people at distanced
grows exponentially withd. Thus this semilog plot of link probabilities is on the
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Fig. 6 Three plots of distance versus linking probability: (a) therole of geographic distance be-
tween LiveJournal users [32], a reproduction of Figure 3; (b) the role of corporate-hierarchy dis-
tance between HP Labs employees, from a study by Lada Adamic and Eytan Adar [1]; and (c) the
role of lexical distance between pages on the web, from a study by Filippo Menczer [37].
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same scale as the other log–log plots in Figure 6. Figure 6(c)shows the analogous
plot from a study by Filippo Menczer [37] on the linking behavior between pages on
the web. Here the similarity between two web pages is computed based on the lex-
ical distance of the pages’ content. Because the raw link probabilities are so small,
here the plot shows the probability that neighborhoods of two pages have nonempty
overlap, where a pagep’s neighborhood consists of the pagep itself, the pages to
which p has a hyperlink, and pages that have a hyperlink top.

Intriguingly, the LiveJournal linkage pattern, reproduced as Figure 6(a), and the
HP Labs plot in Figure 6(b) show approximately the same characteristic shape in
their logarithmic plots: a linear decay in link probabilityfor comparatively similar
people, leveling off to an approximately constant link probability for comparatively
distant pairs. Figure 6(c) shows the opposite pattern: the probability of connection
between two comparatively similar web pages is roughly constant, and then begins
to decay linearly (in the log–log plot) once the pages’ similarity drops beyond a
certain level. Figures 6(a) and 6(b) both plot link probability between people in a
social network against their (geographic or corporate) distance; Figure 6(c) plots
link probability for web pages. Understanding why linking patterns in social net-
works look different from the web—and, more generally, making sense of what
might be generating these distributions—remains a fascinating open question.
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scale-free random graph process.Random Structures and Algorithms, 18(3):279–290, May
2001.

9. Dorwin Cartwright and Alvin Zander.Group Dynamics: Research and Theory. Row, Peterson,
1953.

10. Augustin Chaintreau, Pierre Fraigniaud, and Emmanuelle Lebhar. Networks become navi-
gable as nodes move and forget. InProceedings of the 35th International Colloquium on
Automata, Languages and Programming (ICALP’08), pages 133–144, July 2008.

11. Aaron Clauset and Cristopher Moore. How do networks become navigable? Manuscript,
2003. Available ascond-mat/0309415.

12. Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. Manuscript, 2007. Available asarXiv:0706.1062.

13. Peter Sheridan Dodds, Roby Muhamad, and Duncan J. Watts.An experimental study of search
in global social networks.Science, 301:827–829, 8 August 2003.

14. Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar, and Nicolas Schabanel. Could any
graph be turned into a small world?Theoretical Computer Science, 355(1):96–103, 2006.

15. Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar, and Nicolas Schabanel. Towards
small world emergence. InProceedings of the 18th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA’06), pages 225–232, August 2006.

16. Pierre Fraigniaud. Greedy routing in tree-decomposed graphs. InProceedings of the 13th
Annual European Symposium on Algorithms (ESA’05), pages 791–802, October 2005.

17. Pierre Fraigniaud. Small worlds as navigable augmentednetworks: Model, analysis, and val-
idation. InProceedings of the 15th Annual European Symposium on Algorithms (ESA’07),
pages 2–11, October 2007.

18. Pierre Fraigniaud, Cyril Gavoille, and Christophe Paul. Eclecticism shrinks even small worlds.
In Proceedings of the 23rd Symposium on Principles of Distributed Computing (PODC’04),
pages 169–178, July 2004.

19. Pierre Fraigniaud, Emmanuelle Lebhar, and Zvi Lotker. Adoubling dimension threshold
θ(log logn) for augmented graph navigability. InProceedings of the 14th Annual European
Symposium on Algorithms (ESA’06), pages 376–386, September 2006.

20. Frank Harary and Robert Z. Norman.Graph Theory as a Mathematical Model in Social
Science. University of Michigan, 1953.

21. P. Killworth and H. Bernard. Reverse small world experiment. Social Networks, 1:159–192,
1978.

22. B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong. Path finding strategies in scale-free networks.
Physical Review E, 65(027103), 2002.

23. Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. InProceedings of
the 32nd Annual Symposium on the Theory of Computation (STOC’00), pages 163–170, May
2000.

24. Jon Kleinberg. Small-world phenomena and the dynamics of information. In Advances in
Neural Information Processing Systems (NIPS’01), pages 431–438, December 2001.

25. Jon Kleinberg. Complex networks and decentralized search algorithms. InInternational
Congress of Mathematicians (ICM’06), August 2006.

26. Jon M. Kleinberg. Navigation in a small world.Nature, 406:845, 24 August 2000.
27. Judith Kleinfeld. Could it be a big world after all? The “six degrees of separation” myth.

Society, 39(61), April 2002.
28. Ravi Kumar, David Liben-Nowell, and Andrew Tomkins. Navigating low-dimensional and

hierarchical population networks. InProceedings of the 14th Annual European Symposium on
Algorithms (ESA’06), pages 480–491, September 2006.

29. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins, and
Eli Upfal. Stochastic models for the web graph. InProceedings of the 41st IEEE Symposium
on Foundations of Computer Science (FOCS’00), pages 57–65, November 2000.

30. Emmanuelle Lebhar and Nicolas Schabanel. Close to optimal decentralized routing in long-
range contact networks. InProceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP’04), pages 894–905, July 2004.



22 David Liben-Nowell

31. Kurt Lewin.Principles of Topological Psychology. McGraw Hill, 1936.
32. David Liben-Nowell, Jasmine Novak, Ravi Kumar, Prabhakar Raghavan, and Andrew

Tomkins. Geographic routing in social networks.Proceedings of the National Academy of
Sciences, 102(33):11623–11628, August 2005.

33. Kevin Lynch.The Image of the City. MIT Press, 1960.
34. Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy neighbor’s neighbor: the power

of lookahead in randomized P2P networks. InProceedings of the 36th ACM Symposium on
Theory of Computing (STOC’04), pages 54–63, June 2004.

35. Chip Martel and Van Nguyen. Analyzing Kleinberg’s (and other) small-world models. InPro-
ceedings of the 23rd Symposium on Principles of DistributedComputing (PODC’04), pages
179–188, July 2004.

36. Miller McPherson, Lynn Smith-Lovin, and James M. Cook. Birds of a feather: Homophily in
social networks.Annual Review of Sociology, 27:415–444, August 2001.

37. Filippo Menczer. Growing and navigating the small worldweb by local content.Proceedings
of the National Academy of Sciences, 99(22):14014–14019, October 2002.

38. Stanley Milgram. The small world problem.Psychology Today, 1:61–67, May 1967.
39. Michael Mitzenmacher. A brief history of lognormal and power law distributions.Internet

Mathematics, 1(2):226–251, 2004.
40. Jacob L. Moreno.Who Shall Survive? Foundations of Sociometry, Group Psychotherapy and

Sociodrama. Nervous and Mental Disesase Publishing Company, 1934.
41. Van Nguyen and Chip Martel. Analyzing and characterizing small-world graphs. InProceed-

ings of the 16th ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pages 311–320,
January 2005.

42. Van Nguyen and Chip Martel. Augmented graph models for small-world analysis with geo-
graphical factors. InProceedings of the 4th Workshop on Analytic Algorithms and Combina-
torics (ANALCO’08), January 2008.

43. Roper Public Affairs and National Geographic Society. 2006 geographic literacy study, May
2006.http://www.nationalgeographic.com/roper2006.

44. Oskar Sandberg and Ian Clarke. The evolution of navigable small-world networks.
Manuscript, 2006. Available ascs/0607025.

45. Georg Simmel.Conflict And The Web Of Group Affiliations. Free Press, 1908. Translated by
Kurt H. Wolff and Reinhard Bendix (1955).
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