Chapter 14: Formal Specification and Enactment

Service-Oriented Computing: Semantics, Processes, Agents
Munindar P. Singh and Michael N. Huhns, Wiley, 2005

Formal Specification and Enactment

Declarative representations based on logic

- Contrast with procedural flow specifications
 - Branch and join primitives
 - Central execution engine
- Capture the essence of what is required
 - Minimally constrain service enactment
 - Accommodate greater efficiencies
 - Facilitate better handling of exceptions and opportunities
 - Support naturally distributed enactment
Temporal Logic

Logic of time

- Based on *significant* events: relevant to interaction
 - Start: \(s \)
 - Commit: \(c \)
 - Abort: \(a \) or rather \(\overline{c} \)
- Declaratively specify *dependencies*, i.e., constraints
- Maximize flexibility: any events that satisfy the stated constraints
- Would support a high-level reasoner

Example Dependencies

- If \(T_1 \) starts then \(T_2 \) starts: \(\overline{s}_1 \lor s_2 \)
- If air ticket transaction starts then hotel booking transaction starts: \(\overline{s}_A \lor s_H \)
- If order (O) is canceled and payment (P) is made then refund (R) is initiated:
 \[c_O \lor \overline{s}_P \lor \overline{c}_P \lor s_R \]
- If refund is initiated then payment must *previously* have been made: \(\overline{s}_R \lor c_P \cdot s_R \)

Events are the atoms; \(\overline{e} \) is the complement of \(e \); and the dot operator \(\cdot \) indicates temporal order.
Specification Syntax

- The center dot (·) orders events
- Complementation means hard opposite: commit versus abort
 - Used in specifications
- Negation means soft opposite: commit versus not commit
 - *Not* used in specifications

\[\begin{align*}
L_1. & \quad I \rightarrow \text{dep} | \text{dep} \land I \quad \ll \text{interleaving} \\
L_2. & \quad \text{dep} \rightarrow \text{seq} | \text{seq} \lor \text{dep} \quad \ll \text{choice} \\
L_3. & \quad \text{seq} \rightarrow \text{bool} | \text{event} | \text{event} \cdot \text{event} \quad \ll \text{ordering} \\
L_4. & \quad \text{bool} \rightarrow 0 | \top
\end{align*} \]

Specification Semantics

Identify the desirable “runs” or computations

- Universe consists of *legal* runs:
 - Event instances and their complements are mutually exclusive
 - Event instances don’t repeat (transaction identifiers can ensure uniqueness)

\[\begin{align*}
M_1. & \quad \tau \models e \iff (\exists i : \tau_i = e) \\
M_2. & \quad \tau \models I_1 \lor I_2 \iff \tau \models I_1 \text{ or } \tau \models I_2 \\
M_3. & \quad \tau \models I_1 \land I_2 \iff \tau \models I_1 \text{ and } \tau \models I_2 \\
M_4. & \quad \tau \models I_1 \cdot I_2 \iff (\exists i : \tau_{[0,i]} \models I_1 \text{ and } \\
& \quad \tau_{[i+1,|\tau|]} \models I_2)
\end{align*} \]
Example Coordination Relationships

- $D_\prec = \overline{e} \lor \overline{f} \lor e \cdot f$
 - If both e and f occur, then e precedes f
 - If e and f occur on τ, neither \overline{e} nor \overline{f} can occur on τ. So τ must satisfy $e \cdot f$, which means that an initial part of τ satisfies e and the remainder satisfies f

- $(\overline{e} \lor f \lor g) \land (\overline{g} \lor e) \land (\overline{g} \lor \overline{f})$
 - If e happens and f does not, then and only then do g
 - Typical with data updates, where g restores consistency (potentially) violated by the success of e and the failure of f

Enactment

Control execution of tasks to meet satisfy specified dependencies

- * Allow, delay, deny, or trigger* events
 - Any realized run is in the denotation of each dependency

- System state = the runs allowed
 - Initially, given by the stated dependencies
 - Narrows down as events occur

- Key requirements
 - Maximal set of allowed runs (flexibility)
 - Compute symbolically and modularly
Residuation

E₁. \(0/e \doteqdot 0\)
E₂. \(\top/e \doteqdot \top\)
E₃. \((D \land F)/e \doteqdot (D/e \land F/e)\)
E₄. \((D \lor F)/e \doteqdot (D/e \lor F/e)\)
E₅. \(e/e \doteqdot \top\)
E₆. \(\bar{e}/e \doteqdot 0\)
E₇. \((e \cdot f)/e \doteqdot f\)
E₈. \((\bar{e} \cdot f)/e \doteqdot 0\)
E₉. \((d \cdot e)/e \doteqdot 0\)
E₁₀. \((d \cdot \bar{e})/e \doteqdot 0\)
E₁₁. \((d \cdot f)/e \doteqdot d \cdot f\)
E₁₂. \(d/e \doteqdot d\)

The above rules apply if we swap \(e\) and \(\bar{e}\)

Example of Residuation

\[D_\prec = \bar{e} \lor \overline{f} \lor e \cdot f\]

Figure 1: Scheduler states and transitions for \(D_\prec\)
Distributed Enactment

- Constrain autonomy based only on dependencies
 - Local decisions
- Place a *guard* on each event
 - When true, the event can safely happen
 - Modified as relevant events occur
 (messages arrive)
- Challenges
 - Representing them
 - Reasoning with them in a distributed manner

Guard Syntax

Enables stating whether an event can occur *now*

\[L_5. \quad T \rightarrow \text{conj} \mid \text{conj} \land T \]
\[L_6. \quad \text{conj} \rightarrow \text{disj} \mid \text{disj} \lor \text{conj} \]
\[L_7. \quad \text{disj} \rightarrow \text{bool} \mid \Box \text{seq} \mid \Diamond \text{seq} \mid \neg \text{event} \]

- Events are *stable* or durable
- \(\Box e \) means \(e \) has occurred
- \(\Diamond e \) means \(e \) has occurred or will occur eventually
- \(\neg e \) means \(e \) has *not yet* occurred
Guard Semantics

- Universe consists of maximal runs (either an event or its complement occurs)

\[M_5. \ u \models_k E \text{ iff } u \models_{0,k} E \]
\[M_6. \ u \models_{i,k} f \text{ iff } (\exists j : i \leq j \leq k \text{ and } u_j = f) \]
\[M_7. \ u \models_{i,k} E \lor F \text{ iff } u \models_{i,k} E \text{ or } u \models_{i,k} F \]
\[M_8. \ u \models_{i,k} E \land F \text{ iff } u \models_{i,k} E \text{ and } u \models_{i,k} F \]
\[M_9. \ u \models_{i,k} E \cdot F \text{ iff } (\exists j : i \leq j \leq k \text{ and } u \models_{i,j} E \text{ and } u \models_{j+1,k} F) \]
\[M_{10}. \ u \models_{i,k} \top \]
\[M_{11}. \ u \models_{i,k} \neg E \text{ iff } u \not\models_{i,k} E \]
\[M_{12}. \ u \models_{i,k} \Box E \text{ iff } (\forall j : k \leq j \Rightarrow u \models_{i,j} E) \]
\[M_{13}. \ u \models_{i,k} \Diamond E \text{ iff } (\exists j : k \leq j \text{ and } u \models_{i,j} E) \]

Guards for \(D_< = \bar{e} \lor \bar{f} \lor e \cdot f \)

\[G_b(D_<, e) = (\neg f \land \neg \bar{f} \land \Diamond (\bar{f} \lor f)) \lor (\Box \bar{f} \land \top) = \]
\[(\neg f \land \neg \bar{f}) \lor \Box \bar{f} = \neg f \lor \Box \bar{f} = \neg f \]

\[G_b(D_<, \bar{e}) = \top \]

\[G_b(D_<, \bar{f}) = \top \]

\[G_b(D_<, f) = (\neg e \land \neg \bar{e} \land \Diamond \bar{e}) \lor \Box e \lor \Box \bar{e} \equiv \Diamond \bar{e} \lor \Box e \]
Scheduling with Guards: Example

- If e is attempted first
 - $G(e) = \top$: e executes and notifies
 - Notification $\Box e$ changes
 $G(f) = \Diamond \lnot e \lor \Box e = \top$, enabling f

- If f is attempted first
 - $G(f) = (\Diamond \lnot e \lor \Box e) \neq \top$, so it waits
 - Notification of $\Box \lnot e$ or $\Box e$ changes $G(f)$ to \top, thus enabling f
 - $G(e) = \top$ and $G(f) = \top$, so they can happen any time

Motivations for Formalization

- Proving correctness when
 - Guards are created by compiling the dependencies
 - Guards are preprocessed
 - Events are executed and guards updated

- Justifying improvements in efficiency
 - Simplifying guards prior to execution
 - Updating guards incrementally
 - Skipping some steps
Formalization Sketch: 1

- Evaluation strategy: a function that captures
 - Evolution of guards
 - Execution of events
- An evaluation strategy generates a run u if
 - For each event e that occurs on u,
 - u satisfies e’s current guard due to the strategy
 - At the index preceding e’s occurrence
- Generation is more abstract than execution:
 - A true guard may involve \lozenge expressions

Formalization Sketch: 2

- Begin with trivial strategy
 - Easily correct, but useless
- Replace with better strategies
 - Symbolically calculate guards from dependencies
 - Safely discard certain terms
 - Process messages symbolically
Symbolically Calculating Guards

- $G(0, e) \triangleq 0$
- $G(\top, e) \triangleq \top$
- $G(D \lor F, e) \triangleq G(D, e) \lor G(F, e)$
- $G(D \land F, e) \triangleq G(D, e) \land G(F, e)$
- $G(e, e) \triangleq \top$
- $G(\overline{e}, e) \triangleq 0$
- $G(d \cdot e, e) \triangleq \Box d$
- $G(d \cdot \overline{e}, e) \triangleq 0$
- $G(e \cdot f, e) \triangleq \neg f \land \diamond f$
- $G(\overline{e} \cdot f, e) \triangleq 0$
- $G(d, e) \triangleq \Diamond d$
- $G(d \cdot f, e) \triangleq \Diamond (d \cdot f)$

The above rules apply if we swap e and \overline{e}

Calculating Guards: Example

For $D_\prec = \overline{e} \lor \overline{f} \lor e \cdot f$:

- $G(D_\prec, e) = (\Diamond \overline{f} \lor (\neg f \land \Diamond f)) \cong \neg f$
- $G(D_\prec, \overline{e}) = \top$
- $G(D_\prec, f) = \Diamond \overline{e} \lor \Box e$
- $G(D_\prec, f) = \top$
Assimilating Messages

<table>
<thead>
<tr>
<th>Old: G</th>
<th>Message: M</th>
<th>New: $G \div M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_1 \lor G_2$</td>
<td>M</td>
<td>$G_1 \div M \lor G_2 \div M$</td>
</tr>
<tr>
<td>$G_1 \land G_2$</td>
<td>M</td>
<td>$G_1 \div M \land G_2 \div M$</td>
</tr>
<tr>
<td>$\Box e$</td>
<td>$\Box e$</td>
<td>\top</td>
</tr>
<tr>
<td>$\Diamond e$</td>
<td>$\Box e$ or $\Diamond e$</td>
<td>\top</td>
</tr>
<tr>
<td>$\Box \overline{e}$ or $\Diamond \overline{e}$</td>
<td>$\Box e$ or $\Diamond e$</td>
<td>0</td>
</tr>
<tr>
<td>$\Diamond (e \cdot f)$</td>
<td>$\Box e$</td>
<td>$\Diamond f$</td>
</tr>
<tr>
<td>$\Diamond (e \cdot f)$</td>
<td>$\Diamond (e \cdot f)$</td>
<td>\top</td>
</tr>
<tr>
<td>$\Diamond (e \cdot f)$</td>
<td>$\Box (f \cdot e)$ or $\Diamond (f \cdot e)$ or $\Box \overline{c}$ or $\Diamond \overline{c}$</td>
<td>0</td>
</tr>
<tr>
<td>$\neg e$</td>
<td>$\Box e$</td>
<td>0</td>
</tr>
<tr>
<td>$\neg \overline{e}$</td>
<td>$\Box e$ or $\Diamond e$</td>
<td>\top</td>
</tr>
<tr>
<td>G</td>
<td>M</td>
<td>G, otherwise</td>
</tr>
</tbody>
</table>

Event Classes

- **Flexible**, agent can delay or omit
- **Inevitable**, agent can delay but not omit
- **Immediate**, agent will neither delay nor omit

D

$$D' = \overline{e} \lor \overline{f} \lor e \cdot f$$

e is inevitable

$$D'_< = \overline{e} \cdot f \lor \overline{f} \lor e \cdot f$$

D'

$$D' = \Box e \lor \overline{f} \lor e$$

e is immediate

$$D'_\top = e \cdot f$$

D

$$D = \overline{e} \lor \overline{f} \lor e \cdot f$$

e is inevitable

$$D'_\top = \overline{e} \lor \overline{f} \lor e \cdot f$$

D'

$$D' = \Box e \lor \overline{f} \lor e$$

e is immediate

$$D'_\top = e \cdot f$$
Summary

- Generic approach to describe processes and extended transactions
 - Hides low-level details
 - Combines declarative specifications and operational decision procedures
- Directions
 - Refining methodologies, based on assessment of scenarios
 - Accommodating richer heuristics for distributed evaluations