1. (20 points) Identify all of the following statements that are true about transactions and processes of various kinds

 A. Two-phase commit is biased in favor of the \textit{No} decision: even if one party out of one hundred says no, the decision is necessarily a \textit{No}

 B. In practical settings, we can ensure compositional serializability across independent services (such as for making bookings on an airline and a hotel) by employing approaches such as tickets

 C. Serial schedules yield poor performance but otherwise provide an excellent basis for correctness of executions of services in open environments

 D. If a transaction T_1 occurs entirely before a transaction T_2 in some schedule, then it is still possible that in an equivalent serial schedule T_2 precedes T_1

 E. Using binary mode locks, we can realize any schedule, serializable or otherwise

 F. Two-phase locking over binary mode locks avoids deadlocks

 G. If transaction T_1 writes item x but doesn’t occur entirely before a transaction T_2 that reads x, then T_2 may still read x from T_1

 H. A compensating transaction seeks to semantically undo the effect of a transaction that has committed but which under the circumstances we would prefer hadn’t committed

 I. An orchestration views a process in a naturally distributed manner

 J. ebXML involves ways for business partners to specify their collaboration profiles and ways for a business to select partners based on such specifications

2. (10 points) Identify true statements from among the following about events, computations, and guards

 A. We require that any significant event or its complement event must occur on any possible enactment

 B. Residuation is an operation that takes a dependency and an event and outputs a dependency

 C. Given that event e is immediate, let us map some arbitrary dependency D to dependency Z; then either $Z \equiv 0$ or $Z/e = \top$

 D. Given that event e is immediate, we map dependency D to dependency F where $F \neq 0$; then $G(D, e)$ must differ from $G(F, e)$

 E. “Neither e nor π may occur whether or not f does” may be expressed as f