
Agents

What is an Agent?
Wide range of behavior and functionality in computing

I Active computational entity
I With a persistent identity
I Able to carry out a long-lived conversation

I Perceives, reasons about, and initiates activities in its environment
I Deals with services

I Communicates (with other agents)
I Loosely coupled

I Adaptive

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 127

https://go.ncsu.edu/service-oriented

Agents

Agents and Multiagent Systems for Services
Business partners are supported by agents

I Unlike objects, agents
I Are proactive and autonomous—can say No!
I Support loose coupling

I In addition, agents may
I Cooperate or compete
I Model users, themselves, and others
I Dynamically use and reconcile ontologies

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 128

https://go.ncsu.edu/service-oriented

Agents

Modeling Agents: Artificial Intelligence
Emphasize mental (folk psychology) concepts to achieve simplicity of description

I Beliefs: agent’s representation of the world

I Knowledge: (usually) true beliefs

I Desires: preferred states of the world

I Goals: consistent desires
I Intentions: goals adopted for action

I Resources allocated
I Sometimes incorporate persistence

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 129

https://go.ncsu.edu/service-oriented

Agents

Modeling Agents: Multiagent Systems
Emphasize interaction and autonomy and, hence, communication)

I Social: about collections of agents

I Organizational: about teams and groups

I Legal: about contracts and compliance

I Ethical: about right and wrong actions

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 130

https://go.ncsu.edu/service-oriented

Agents

Mapping Service-Oriented Computing to Agents
Agents capture the constraints of an open system

I Autonomy ⇒ ability to enter into and enact contracts
I Counterbalanced by establishing compliance
I How can we check or enforce compliance?

I Heterogeneity ⇒ ontologies

I Loose coupling ⇒ communication

I Trustworthiness ⇒ contracts, ethics, learning, incentives

I Dynamism ⇒ break and form relationships via combinations of the
above

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 131

https://go.ncsu.edu/service-oriented

Agents

Two Main Ways to Apply Agents
Agent-Oriented Software Engineering (AOSE)

I As modeling constructs
I Standing in for stakeholders
I To help in capturing their requirements as goals

I As runtime constructs, each
I Representing a stakeholder
I Acting on its behalf, reflecting its autonomous decision making to

others

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 132

https://go.ncsu.edu/service-oriented

Agents

Economic Rationality
Applies to business services

I Three elements: an agent’s
I Performance measure (for itself), e.g., expected utility
I Prior knowledge and current (ongoing) perceptions
I Available actions

I Ideally, for each possible percept sequence, a rational agent
I Acts to maximize its expected utility
I On the basis of its knowledge and evidence from the percept sequence

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 133

https://go.ncsu.edu/service-oriented

Agents

Logic-Based Agents
Logical reasoning being a form of rationality

I An agent is a knowledge-based system
I Represents a symbolic (as opposed to neural) model of the world
I Declarative, hence, inspectable
I Reasons symbolically via logical deduction

I Challenges:
I Representing information symbolically

I Easier in information environments than in general

I Maintaining an adequate model of the world

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 134

https://go.ncsu.edu/service-oriented

Agents

Cognitive Architecture for an Agent

I Sensors and effectors map to services
Communication infrastructure is messaging middleware

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 135

https://go.ncsu.edu/service-oriented

Agents

Exercise

Create an instance of the preceding diagram where the two agents are
Amazon and a manufacturer

I When is it beneficial to employ agents in this setting?

I What is an illustration of loose coupling in this setting?

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 136

https://go.ncsu.edu/service-oriented

Agents

A Reactive Agent
The Sense-Decide-Act Loop

Envi ronment e ;
Ru l eSe t r ; // Could be the r e c e i v e method o f an a c t o r
wh i l e (t r u e) {

s t a t e = senseEnv i ronment (e) ;
a = chooseAc t i on (s t a t e , r) ;
e . a pp l yAc t i on (a) ;

}

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 137

https://go.ncsu.edu/service-oriented

Agents

Generic BDI (Belief-Desire-Intention) Architecture
Addresses how beliefs, desires and intentions are represented, updated, acted upon
Variant with just beliefs and goals is also prominent

Agent : : run () {
Pe r c ep t i o n p ;
p . run () ; // s t a r t p e r c e p t i o n i n own th r ead

wh i l e (t r u e) {
i n t e n t i o n = ge tBes tP l an () ;
i f (i n t e n t i o n . e x e cu t e ()) // i f a ch i e v ed

d e s i r e s . remove (i n t e n t i o n) ;
}

Pe r c ep t i o n : : run () {
wh i l e (t r u e) {

a . b e l i e f s . i n co r po r a t eNewObse r v a t i on s (g e t I n pu t (w)) ;
i f (! a . c u r r e n t P l a n I s A p p l i c a b l e ())

a . s t opCu r r en tP l an () ;
s l e e p (someShortTime) ;

}

I Richer than sense-decide-act: decisions directly affect future decisions

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 138

https://go.ncsu.edu/service-oriented

Agents

Representing Services for Planning
IOPE (sometimes IOPR), goes beyond typical input-output signature

I Inputs: information the service requires

I Outputs: information the service produces

I Preconditions: constraints on the input

I Effects: effects on the environment

I Results (variant of effects): properties of the output

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 139

https://go.ncsu.edu/service-oriented

Agents

Composition as Planning

I Represent initial and goal states
I Represent each service as an action

I Based on its IOPE specification

I A composed service: a plan that invokes constituent services
I Inputs: outputs of previous services
I Preconditions: true in initial state or made true by effects (results) of

previous services
I Effects not undone by subsequent services yield the goal state

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 140

https://go.ncsu.edu/service-oriented

Agents

Rules: Logical Representations
Marry declarative representation with computing

I Modular: easy to read and maintain

I Inspectable (by fact of being declarative): easy to understand

I Executable: no further translation needed
I Expressive: (commonly) Turing complete

I Capture knowledge that would otherwise not be captured declaratively
I Compare with relational calculus (classical SQL) or description logics

(OWL)

I Declarative, although imperfectly so
I Conflict handling is nontrivial and often ad hoc

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 141

https://go.ncsu.edu/service-oriented

Agents

Kinds of Rules

I ECA (Event-Condition-Action) or Reaction
on even t
i f c o n d i t i o n
then per fo rm a c t i o n

I Derivation rules: special case of above, e.g., integrity constraints:
d e r i v e f a l s e
i f e r r o r

I Inference rules
i f an t e c eden t
then consequent

I Support multiple computational strategies
I Forward chaining; backward chaining

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 142

https://go.ncsu.edu/service-oriented

Agents

Architecture of an ECA-Based Agent

Rules

Working
Memory

Reasoner Communication

Event Model Effectors

Sensors

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 143

https://go.ncsu.edu/service-oriented

Agents

Applying ECA Rules

I Capture protocols, enterprise policies, and heuristics as ECA rules
I Examples?

I Combine with inference rules (to check if a condition holds)
I Modeling challenge

I What is an event?
I How to capture composite events by pushing event detection to lower

layers

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 144

https://go.ncsu.edu/service-oriented

Agents

Example: ECA Rule
Identify predicates, variables, the do command, connectives

IF r e q u e s t (? x ?y ? z) // even t
AND l i k e (? x ?y) // c o n d i t i o n

THEN do (f u l f i l l (? x ? z)) // a c t i o n

I Watch out for relevant events

I If one occurs, check condition

I If condition holds, perform action

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 145

https://go.ncsu.edu/service-oriented

Agents

Example: Inference Rule

I Typical syntax indicating forward chaining
IF pa r en t (? x ?y)

AND pa r en t (? y ? z) // Antecedent
THEN grandpa r en t (? x ? z) // Consequent

I Typical syntax indicating backward chaining
INFER grandpa r en t (? x ? z) // Consequent
FROM par en t (? x ?y) // Antecedent
AND pa r en t (? y ? z)

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 146

https://go.ncsu.edu/service-oriented

Agents

Example: Communication
Combining backward chaining and ECA

IF incoming−message (? x ?y ? z)
AND po l i c yA (? x ?y ?w)
AND po l i c yB (? x ? z ?v)

THEN send message (? x ?v ?w)
AND a s s e r t i n t e r n a l −f a c t (? x ?v ?w)

I The policy stands for any internal decision making, usually defined as
INFER po l i c yA (? x ?y ?w)
FROM . . .

INFER po l i c yB (? x ? z ?v)
FROM . . .

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 147

https://go.ncsu.edu/service-oriented

Agents

Exercise: Communication

State the customer’s rules to capture how it might interact with a
merchant in a purchase protocol

I RFQ: request for quotes

I (Price) quote

I Accept or Reject

I Goods

I Payment

I Receipt

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 148

https://go.ncsu.edu/service-oriented

Agents

Typical Rule Syntax Limitations

I Antecedent may have conjunction or disjunction

I Antecedent may have generally not have negation (nontrivial)

I Consequent may have conjunction but not disjunction or
negation—to avoid ambiguity of what to do

I Rules are not nested

I Generally no else clause

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 149

https://go.ncsu.edu/service-oriented

Agents

Applying Inference Rules

I Capture requirements naturally
I Elaboration tolerance requires defeasibility

I Conclusions are not firm in the face of new information
I Formulate general rules
I Override rules to specialize them as needed

I Leads to logical nonmonotonicity
I Easy enough operationally but difficult to characterize mathematically
I Details get into logic programming with negation

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 150

https://go.ncsu.edu/service-oriented

Agents

Negation and Nonmonotonicity

I Strong negation, indicating falsity (i.e., nontruth)
I Traditional, two-valued logic
I Law of the excluded middle

I Weak negation, indicating absence of knowledge or absence of proof
(depending upon the setting)
I Goes beyond traditional, two-valued logic
I A proposition and its strong negation may both be unknown

I Nonmonotonicity
I Conclusions are retracted in light of additional information
I Common in real-life reasoning
I Not supported by traditional logic
I Weak negation is an early approach to achieve nonmonotonicity

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 151

https://go.ncsu.edu/service-oriented

Agents

Conflicts and Priorities
I Rules can, and frequently do, conflict

I An outcome of modular knowledge acquisition
I Inadvertently enable two rules with contradictory conclusions

I Solution: expand rules to contain all applicable exception conditions
I Unwieldy rules
I Must redo each time new rules are stated
I Can be impossible for users to understand ⇒ a major motivation for

rules in the first place
I Solution: assert which rule overrides another rule

I Specificity based on predicates used: only generic basis for prioritizing
one rule over another

I Doesn’t always apply
I Rely on order in the rules program

I Such an order may not exist
I Nontrivial to maintain

I Assert numeric (or categorical) weights on rules
I Nontrivial to maintain

I Assert rankings between rules
I Nontrivial to maintain

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 152

https://go.ncsu.edu/service-oriented

Agents

Variables in Rules
For safety, do not introduce variables in action or consequent

I ECA rules introduce variables in event and condition
I Free variable in action indicates perform action for each binding

I Inference rules introduce variables in antecedent
I Free variable in consequent means assert it for each binding

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 153

https://go.ncsu.edu/service-oriented

Agents

Agents Summary

I Agents match requirements of open environments

I Agents go beyond objects and procedural programming

I Agent abstractions help express requirements in a natural manner

I Cognitive constructs for agents can be powerful

I Rules provide a simple means to construct information agents

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 154

https://go.ncsu.edu/service-oriented

	Agents

