
BSPL, the Blindingly Simple Protocol Language

Interactions and Protocols
Distributed systems of autonomous, heterogeneous agents

I Enable interoperation

I Maintain independence from internal reasoning (policies)

I Support composition of distributed systems

Consider protocols as constructed over messages

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 210

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

Traditional Specifications: Procedural
Low-level, over-specified protocols, easily wrong

A B C

m1

m2

Precedes

A B

m1

m2

XOR

I Traditional approaches
I Emphasize arbitrary ordering and occurrence constraints
I Then work hard to deal with those constraints

I Our philosophy: The Zen of Distributed Computing
I Necessary ordering constraints fall out from causality
I Necessary occurrence constraints fall out from integrity
I Unnecessary constraints: simply ignore such

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 211

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

Properties of Participants

I Autonomy
I Myopia

I All choices must be local
I Correctness must not rely on future interactions

I Heterogeneity: local 6= internal
I Local state (projection of global state, which is stored nowhere)

I Public or observable
I Typically, must be revealed for correctness

I Internal state
I Private
I Must never be revealed: to avoid false coupling

I Shared nothing representation of local state
I Enact via messaging

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 212

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

BSPL, the Blindingly Simple Protocol Language
Main ideas

I Only two syntactic notions
I Declare a message schema: as an atomic protocol
I Declare a composite protocol: as a bag of references to protocols

I Parameters are central
I Provide a basis for expressing meaning in terms of bindings in protocol

instances
I Yield unambiguous specification of compositions through public

parameters
I Capture progression of a role’s knowledge
I Capture the completeness of a protocol enactment
I Capture uniqueness of enactments through keys

I Separate structure (parameters) from meaning (bindings)
I Capture many important constraints purely structurally

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 213

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

Key Parameters in BSPL
Marked as pkeyq

I All the key parameters together form the key

I Each protocol must define at least one key parameter

I Each message or protocol reference must have at least one key
parameter in common with the protocol in whose declaration it occurs

I The key of a protocol provides a basis for the uniqueness of its
enactments

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 214

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

Parameter Adornments in BSPL
Capture the essential causal structure of a protocol (for simplicity, assume all parameters
are string valued)

I pinq: Information that must be provided to instantiate a protocol
I Bindings must exist locally in order to proceed
I Bindings must be produced through some other protocol

I poutq: Information that is generated by the protocol instances
I Bindings can be fed into other protocols through their pinq parameters,

thereby accomplishing composition
I A standalone protocol must adorn all its public parameters poutq

I pnilq: Information that is absent from the protocol instance
I Bindings must not exist

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 215

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

The Hello Protocol

He l l o {
role S e l f , Other
parameter out g r e e t i n g key

S e l f 7→ Other : h i [out g r e e t i n g key]
}

I At most one instance of Hello for each greeting

I At most one hi message for each greeting

I Enactable standalone: no parameter is pinq

I The key of hi is explicit; often left implicit on messages

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 216

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

The Pay Protocol

Pay {
role Payer , Payee
parameter in ID key , in amount

Payer 7→ Payee : payM [in ID , in amount]
}

I At most one payM for each ID

I Not enactable standalone: why?

I The key of payM is implicit (for brevity)

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 217

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

The Offer Protocol

Of f e r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e

Buyer 7→ S e l l e r : r f q [in ID , out i tem]
S e l l e r 7→ Buyer : quote [in ID , in item , out p r i c e]
}

I The key ID uniquifies instances of Initiate Offer, rfq, and quote

I Not enactable standalone: at least one parameter is pinq

I An instance of rfq must precede any instance of quote with the same
ID: why?

I No message need occur: why?

I quote must occur for Offer to complete: why?

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 218

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

The Initiate Order Protocol

I n i t i a t e −Order {
role B, S
parameter out ID key , out item , out p r i c e , out r ID

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

B 7→ S : accep t [in ID , in item , in p r i c e , out r ID]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out r ID]
}

I The key ID uniquifies instances of Order and each of its messages

I Enactable standalone

I An rfq must precede a quote with the same ID

I A quote must precede an accept with the same ID

I A quote must precede a reject with the same ID

I An accept and a reject with the same ID cannot both occur: why?

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 219

https://go.ncsu.edu/service-oriented

BSPL, the Blindingly Simple Protocol Language

The Purchase Protocol

Purchase {
role B, S , Sh i ppe r
parameter out ID key , out item , out p r i c e , out outcome
private addre s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]
B 7→ S : accep t [in ID , in item , in p r i c e , out add re s s , out r e s p]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome , out r e s p]

S 7→ Sh ippe r : s h i p [in ID , in item , in add r e s s]
Sh i ppe r 7→ B: d e l i v e r [in ID , in item , in addre s s , out outcome]
}

I At most one item, price, and outcome binding per ID

I Enactable standalone

I reject conflicts with accept on response (a private parameter)

I reject or deliver must occur for completion (to bind outcome)

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 220

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Possible Enactments as Sets of Local Histories
Each participant’s local history: sequence of messages sent and received

Buyer Seller Shipper

rfq

quote

accept

ship

deliver

Buyer Seller Shipper

rfq

quote

reject

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 221

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Knowledge and Viability
When is a message viable? What effect does it have on a role’s local knowledge?

Knows Does not know

Knows Does not know

Sender’s View

in out nil

Knows Does not know

Knows Does not know

Receiver’s View

in
out
nil

in
out

nil

I Knowledge increases monotonically at each role

I An poutq parameter creates and transmits knowledge

I An pinq parameter transmits knowledge

I Repetitions through multiple paths are harmless and superfluous

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 222

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Realizing BSPL via LoST (Local State Transfer)
Does not assume FIFO or reliable messaging

Internal
Reasoning

Internal
Reasoning

Business
Meaning

Business
Meaning

Local
State

Local
State

Messages Messages

Application-specific

LoST

Communication

I Unique messages

I Integrity checks on incoming messages

I Consistency of local choices on outgoing messages

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 223

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Implementing LoST
Think of the message logs you want

I For each role
I For each message that it sends or receives

I Maintain a local relation of the same schema as the message

I Receive and store any message provided
I It is not a duplicate
I Its integrity checks with respect to parameter bindings
I Garbage collect expired sessions: requires additional annotations

I Send any unique message provided
I Parameter bindings agree with previous bindings for the same keys for

pinq parameters
I No bindings for poutq and pnilq parameters exist

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 224

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Benefits

I Technical
I Statelessness
I Consistency
I Atomicity
I Natural composition

I Conceptual
I Make protocol designer responsible for specifying causality
I Avoid contortions of traditional approaches when causality is unclear

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 225

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Remark on Control versus Information Flow

I Control flow
I Natural within a single computational thread
I Exemplified by conditional branching
I Presumes master-slave relationship across threads
I Impossible between mutually autonomous parties because neither

controls the other
I May sound appropriate, but only because of long habit

I Information flow
I Natural across computational threads
I Explicitly tied to causality

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 226

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Send-Receive and Send-Send Constraints on a Role
Considering two or more schemas with the same parameter

Sends in Sends out Sends nil

Sends in Unconstrained Send out first Send nil first
Sends out Send at most

one
Send nil first

Sends nil Unconstrained
Receives in Receive at least

one instance be-
fore send

Receive may oc-
cur after send

Send before re-
ceive

Receives out Receive at least
one instance be-
fore send

Impossible Send before re-
ceive

Receives nil Unconstrained Unconstrained Unconstrained

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 227

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Summarizing Approaches for Interaction

Declarative (Explicit) Procedural (Implicit)

Meaning Commitments and
other norms

Hard coded within internal
reasoning heuristics

Operation Temporal logic
BSPL

State machines; Petri nets;
process algebras

I Declarative approaches for meaning
I Improve flexibility
I Under-specify enactment: potential of interoperability failures

I Procedural or declarative approaches for operations
I Operationally clear, but

I Tend to emphasize control flow
I Tend to over-specify operational constraints
I Yield nontrivial interoperability and endpoint projections

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 228

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Well-Formedness Conditions

I A parameter that is adorned pinq in a declaration must be pinq
throughout its body

I A parameter that is adorned poutq in a declaration must be poutq in
at least one reference
I When adorned poutq in zero references, not enactable
I When adorned poutq in exactly one reference, consistency is guaranteed
I When adorned poutq in two or more references, no more than one can

execute

I A private parameter must be poutq in at least one reference and pinq
in at least one reference

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 229

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Summary: Main Ideas
Taking a declarative, information-centric view of interaction to the limit

I Specification
I A message is an atomic protocol
I A composite protocol is a set of references to protocols
I Each protocol is given by a name and a set of parameters (including

keys)
I Each protocol has inputs and outputs

I Representation
I A protocol corresponds to a relation (table)
I Integrity constraints apply on the relations

I Enactment via LoST: Local State Transfer
I Information represented: local 6= internal
I Purely decentralized at each role
I Materialize the relations only for messages

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 230

https://go.ncsu.edu/service-oriented

LoST: Local State Transfer

Information Centrism
Characterize each interaction purely in terms of information

I Explicit causality
I Flow of information coincides with flow of causality
I No hidden control flows
I No backchannel for coordination

I Keys
I Uniqueness
I Basis for completion

I Integrity
I Must have bindings for some parameters
I Analogous to not null constraints

I Immutability
I Durability
I Robustness: insensitivity to

I Reordering by infrastructure
I Retransmission: one delivery is all it needs

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 231

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Safety: Purchase Unsafe
Remove conflict between accept and reject

Purchase Unsafe {
role B, S , Sh i ppe r
parameter out ID key , out item , out p r i c e , out outcome
private addre s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]
B 7→ S : accep t [in ID , in item , in p r i c e , out add r e s s]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome]

S 7→ Sh ippe r : s h i p [in ID , in item , in add r e s s]
Sh i ppe r 7→ B: d e l i v e r [in ID , in item , in addre s s , out outcome]
}

I b can send both accept and reject

I Thus outcome can be bound twice in the same enactment

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 232

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Liveness: Purchase No Ship
Omit ship

Purchase Minus Sh ip {
role B, S , Sh i ppe r
parameter out ID key , out item , out p r i c e , out outcome
private addre s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]
B 7→ S : accep t [in ID , in item , in p r i c e , out add re s s , out r e s p]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome , out r e s p]

Sh i ppe r 7→ B: d e l i v e r [in ID , in item , in addre s s , out outcome]
}

I If b sends reject, the enactment completes

I If b sends accept, the enactment deadlocks

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 233

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Encode Causal Structure as Temporal Constraints

I Reception. If a message is received, it was previously sent.
I Information transmission (sender’s view)

I Any pinq parameter occurs prior to the message
I Any poutq parameter occurs simultaneously with the message

I Information reception (receiver’s view)
I Any poutq or pinq parameter occurs before or simultaneously with the

message

I Information minimality. If a role observes a parameter, it must be
simultaneously with some message sent or received

I Ordering. If a role sends any two messages, it observes them in some
order

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 234

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Verifying Safety

I Competing messages: those that have the same parameter as out

I Conflict. At least two competing messages occur

I Safety iff the causal structure ∧ conflict is unsatisfiable

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 235

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Verifying Liveness

I Maximality. If a role is enabled to send a message, it sends at least
one such message

I Reliability. Any message that is sent is received

I Incompleteness. Some public parameter fails to be bound

I Live iff the causal structure ∧ the occurrence is unsatisfiable

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 236

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Safety and Liveness Violations
Encode a protocol’s causal structure in temporal logic and evaluate properties

Buyer Seller Shipper

Purchase Unsafe

Safety Violation

rfq

quote

accept

ship

reject

deliver

R C S

Purchase Minus Ship

Liveness Violation

request

accept

deliver

Cannot occur

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 237

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

in-out Polymorphism
price could be pinq or poutq

F l e x i b l e −Of f e r {
role B, S
parameter in ID key , out item , p r i c e , out qID

B 7→ S : r f q [ID , out item , nil p r i c e]
B 7→ S : r f q [ID , out item , in p r i c e]

S 7→ B: quote [ID , in item , out p r i c e , out qID]
S 7→ B: quote [ID , in item , in p r i c e , out qID]
}

I The price can be adorned pinq or poutq in a reference to this protocol

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 238

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Comparing LoST and ReST

ReST LoST

Modality Two-party; client-
server; synchronous

Multiparty interactions; peer-to-
peer; asynchronous

Computation Server computes
definitive resource
state

Each party computes its defini-
tive local state and the parties
collaboratively and (potentially
implicitly) compute the definitive
interaction state

State Server maintains no
client state

Each party maintains its local
state and, implicitly, the rele-
vant components of the states of
other parties from which there is
a chain of messages to this party

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 239

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Comparing LoST and ReST

ReST LoST

Transfer State of a resource,
suitably represented

Local state of an interaction
via parameter bindings, suit-
ably represented

Idempotent For some verbs, es-
pecially get

Always; repetitions are guar-
anteed harmless

Caching Programmer can
specify if cacheable

Always cacheable

Uniform interface get, post, . . . pinq, poutq, pnilq
Naming Of resources via

URIs
Of interactions via (compos-
ite) keys, whose bindings
could be URIs

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 240

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL

Comparing LoST and WS-CDL

I Similarity: both emphasize interaction

I Differences: WS-CDL is
I Procedural

I Explicit constructs for ordering
I Sequential message ordering by default

I Agent-oriented
I Includes agents’ internal reasoning within choreography (specify what

service an agent executes upon receiving a message)
I Relies on agents’ internal decision-making to achieve composition (take

a value from Chor A and send it in Chor B)

I No semantic notion of completeness

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 241

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

Composing Protocols
Without imposing private constraints on a party playing a role

T M

Bilateral
Foreign Exchange

request

response

T X M

Trilateral
Foreign Exchange

request

request

response

response

I Is Trilateral = Bilateral ⊗ Bilateral?

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 242

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

The Bilateral Price Discovery protocol

B i l a t e r a l {
role Taker , Maker
parameter out req ID key , out query , out r e s u l t

Taker 7→ Maker : p r i c eR equ e s t [out reqID , out query]
Maker 7→ Taker : p r i c eRe spon s e [in reqID , in query , out r e s u l t]
}

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 243

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

The General Bilateral Price Discovery protocol

G e n e r a l B i l a t e r a l {
role T, M
parameter req ID key , query , r e s

T 7→ M: p r i c eRequ e s t [out reqID , out query]
T 7→ M: p r i c eRequ e s t [in reqID , in query]

M 7→ T: p r i c eRe spon s e [in reqID , in query , out r e s]
M 7→ T: p r i c eRe spon s e [in reqID , in query , in r e s]
}

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 244

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

The Trilateral Protocol
Also called price discovery
T r i l a t e r a l {
role Taker , Exchange , Maker
parameter out ID key , out query , out r e s

G e n e r a l B i l a t e r a l (Taker , Exchange , out ID , out query , in r e s)
G e n e r a l B i l a t e r a l (Exchange , Maker , in ID , in query , out r e s)
}

T X M

request[out ID, out query]

request[in ID, in query]

response[in ID, out res]

response[in ID, in res]

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 245

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

Standing Order
As in insurance claims processing

I n su r ance−Cla ims {
role Vendor , S u b s c r i b e r
parameter out pol icyNO key , out r eqForC la im key , out c l a imResponse

Vendor 7→ Sub s c r i b e r : c r e a t e P o l i c y [out pol icyNO]
Su b s c r i b e r 7→ Vendor : s e r v i c eR eq [in pol icyNO , out reqForC la im]
Vendor 7→ Sub s c r i b e r : c l a imS e r v i c e [in pol icyNO , in reqForCla im , out

c l a imResponse]
}

I Each claim corresponds to a unique policy and has a unique response

I One policy may have multiple claims

I Could make {policyNO, reqForClaim} both key

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 246

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

Flexible Sourcing of out Parameters
Buyer or Seller Offer

Buyer−or−S e l l e r −Of f e r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e , out con f i rmed

Buyer 7→ S e l l e r : r f q [in ID , out item , nil p r i c e]
Buyer 7→ S e l l e r : r f q [in ID , out item , out p r i c e]

S e l l e r 7→ Buyer : quote [in ID , in item , out p r i c e , out con f i rmed]
S e l l e r 7→ Buyer : quote [in ID , in item , in p r i c e , out con f i rmed]
}

I The buyer or the seller may determine the binding

I The buyer has first dibs in this example

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 247

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

Shopping Cart

Shopping Cart {
role B, S
parameter out ID key , out l i n e I D key , out item , out qty , out p r i c e , out

f i n a l i z e

B 7→ S : c r e a t e [out ID]
S 7→ B: quote [in ID , out l i n e ID , in item , out p r i c e]
B 7→ S : add [in ID , in l i n e ID , in item , out qty , in p r i c e]
B 7→ S : remove [in ID , in l i n e I D]

S 7→ B: t o t a l [in ID , out sum]
B 7→ S : s e t t l e [in ID , in sum , out f i n a l i z e]
B 7→ S : d i s c a r d [in ID , out f i n a l i z e]
}

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 248

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

Exercise 1: Abruptly Cancel
Solution added

Abrup t l y Cance l {
role B, S
parameter out ID key , out item , out outcome

B 7→ S : o r d e r [out ID , out i tem]
B 7→ S : c a n c e l [in ID , in item , out outcome]
S 7→ B: goods [in ID , in item , out outcome]
}

I Is this protocol safe? No

I Is this protocol live? Yes

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 249

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

Exercise 2: Abruptly Cancel Modified (with pnilq)
Solution added

Abrup t l y Cance l {
role B, S
parameter out ID key , out item , out outcome

B 7→ S : o r d e r [out ID , out i tem]
B 7→ S : c a n c e l [in ID , in item , nil outcome]
S 7→ B: goods [in ID , in item , out outcome]
}

I Is this protocol safe? Yes
I Is this protocol live? Yes

I But it lacks business realism because the seller may send goods even
after receiving cancel

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 250

https://go.ncsu.edu/service-oriented

Advanced Topics in BSPL Composition

The Bid Offer protocol

Bid O f f e r {
role Coo rd i n a t o r uni , B idde r w Winner uni
parameter out ID key , out r eque s t , out r e sponse , out d e c i s i o n

Coo rd i n a t o r 7→ Bidde r : CfB [out ID , out r e q u e s t]

B idde r 7→ Coo rd i n a t o r : b i d [in ID , in r eque s t , out r e s pon s e]

Coo rd i n a t o r 7→ Winner : o f f e r [in ID , in r eque s t , in r e sponse , out
d e c i s i o n]

}

Munindar P. Singh (NCSU) Service-Oriented Computing Fall 2019 251

https://go.ncsu.edu/service-oriented

	BSPL, the Blindingly Simple Protocol Language
	LoST: Local State Transfer
	Advanced Topics in BSPL
	Composition

