Resource Description Framework (RDF)

A basis for knowledge representation on the Web

- Simple language to capture assertions (as statements)
 - Captures elements of knowledge about a resource
 - Facilitates incremental acquisition of knowledge
 - Supports inferencing to extract and use knowledge
- Consolidates old KR ideas
 - Frames
 - Object-oriented modeling
- Applies URIs to
 - Clarify meanings
 - Handle vocabulary differences
 - Crucial for heterogeneity

Why RDF?

- Whereas XML and JSON
 - Produce a document tree
 - Don't identify the content represented by a document, i.e.,
 - Concepts the document is about
 - Relationships among the concepts
 - ▶ Enable multiple representations for the same content
- ▶ RDF expresses the content itself in a standard form

Resources and Literals

- RDF captures descriptions of resources
- ► A resource is an "addressable" object
 - Of which a description can be given
 - Identified via a URI
 - Worth talking about and possible to talk about
- ▶ A literal is something simpler
 - A value, e.g., string or integer
 - Cannot be given a description

Statements or Triples

- RDF is based on a simple grammar
 - ▶ An RDF document is simply a set of statements also known as triples
- Each statement consists of
 - Subject: a resource (starting point)
 - Object: a resource or a literal (ending point)
 - Predicate: a resource (connection)
- ▶ Comes with RDFS, a vocabulary to create vocabularies

Rendering RDF

- ▶ RDF is not about the surface syntax but about the underlying content
- Using the XML serialization of RDF
 - RDF is not tied to XML
 - Standard XML namespace syntax
 - Namespaces defined by the RDF standard
 - Typically abbreviated rdf and rdfs

Example of N-Triples Notation

The basic syntax: Subject-Predicate-Object

```
<http://www.wiley.com/SOC>
  <http://purl.org/dc/elements/1.1/title>
  "Service-Oriented Computing" .
<http://www.wiley.com/SOC>
  <http://purl.org/dc/elements/1.1/creator>
  "Munindar" .
<http://www.wiley.com/SOC>
  <http://purl.org/dc/elements/1.1/creator>
  "Michael" .
<http://www.wiley.com/SOC>
  <http://www.wiley.com/SOC>
  <http://www.wiley.com/SOC>
  <http://www.wiley.com/SOC>
  <http://purl.org/dc/elements/1.1/publisher>
  "Wiley" .
```

Example in XML

Using the Dublin Core vocabulary

```
<?xml version='1.0' encoding='UTF-8'?>
<rdf:RDF
   xmlns:rdf=" http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:dc=" http://purl.org/dc/elements/1.1/">
   <rdf:Description rdf:about=" http://www.wiley.com/SOC">
   <dc:title>Service-Oriented Computing</dc:title>
   <dc:creator>Munindar</dc:creator>
   <dc:creator>Michael</dc:creator>
   <dc:publisher>Wiley</dc:publisher>
   </rdf:Description>
</rdf:RDF>
```

- rdf:Description gathers statements about one subject
- Distinguish rdf:ID from rdf:about

Exercise

Reproduce previous example in JSON Linked Data syntax

Exercise

- Graphs represent binary relationships naturally
 - A verb plus two nouns (a transitive verb)
 - ► The vendor ships SKU-99
 - ► A verb plus two nouns (including an adjective on one of the nouns)
 - ▶ The big vendor ships the green product
- Express a three-party relationship
 - A verb plus two nouns plus an adverb
 - ► The vendor ships SKU-99 quickly
 - Hint: think of gerunds from natural language grammar
 - A verb plus three nouns (a ditransitive verb)
 - ▶ The vendor sells Alice SKU-99

Multiparty Relationships

- An edge has two terminals, so limited to binary relationships
- ► To represent a multiparty relationship, introduce a resource corresponding to the relationship itself
 - ► That's what a gerund does in NL
 - Analogous to an association entity
 - Include edges originating or targeting this resource

RDF Schema

In essence, an object-oriented type system built on top of RDF

- Defines rdfs:Class, rdfs:subClassOf, rdfs:Resource, rdfs:Literal, rdfs:Property, rdfs:subPropertyOf, rdfs:range, rdfs:domain, rdfs:label, rdfs:comment, rdfs:seeAlso
- Applications of RDF Schema
 - Defining custom vocabularies
 - Discussed in conjunction with OWL, which greatly enhances the above

RDF Schema versus XML Schema

Both help define custom vocabularies

- ▶ An XML Schema document gives us syntactic details
- ► An RDF Schema document gives us a way to capture part of the meaning through a standard vocabulary (rdfs)
- ► An OWL document (next topic) captures richer meaning

Collections

- Function as containers
 - ▶ rdf:Bag
 - rdf:Sequence
 - rdf:Alt (choice)
- Accompanied by properties to extract elements
 - Schematically represented as rdf:_1, rdf:_2, and so on
 - ▶ That is, the properties _1, _2, ... are defined in the rdf namespace
- Collections are applied within OWL
 - Not otherwise emphasized in this course

Reification Motivation

- Express a quotation
 - Alice says the vendor ships SKU-99
- ▶ Hint(?): In RDF, we can only talk about resources
 - ▶ And literals, but literals are where a graph ends (no out edges)

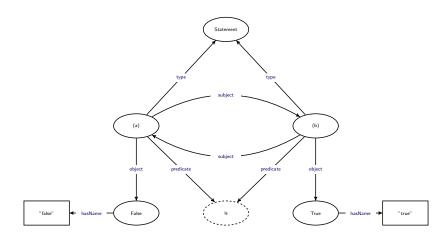
Reification of Statements

- ▶ Reify: to make referenceable, essential for quoting statements to
 - Agree or disagree with them
 - Assert modalities: possible, desirable, . . .
- ▶ Make a statement into a resource; then talk about it
 - rdf:Statement is a class
 - the given statement's rdf:type is rdf:Statement
 - rdf:Statement defines important properties: rdf:subject, rdf:object, and rdf:predicate

Reification Exercise

Produce a model using RDF and RDF Schema of the following assertions:

- ▶ (a) Statement (b) is false
- ▶ (b) Statement (a) is true


Express your solution as a graph with suitable annotations

- Notation
 - Resources: solid ellipses
 - ▶ Properties (hence, also resources): dashed ellipses
 - ► Literals: rectangles
- Definitions
 - ► Two resources named 「true and false
 - ► Property: 「is¬

Reification Exercise Solution

Problem-specific constructs: (a), (b), True, False, hasName is

Generic: everything else

RDF Summary

- RDF captures deeper structure than XML
 - ▶ RDF captures graphs in general
 - Meaning depends on the graph, not the document that represents a graph
- RDF is based on an simple linguistic representation: subject, predicate, object
 - But webified via URIs
- ▶ RDF comes prepackaged with RDF Schema
 - In essence, an object-oriented type system: a vocabulary to create new vocabularies, such as
 - Friend of a Friend (FOAF)
 - Dublin Core
 - Mozilla extensions
 - Provides a basis for OWL (next topic)