
Concepts of Deep Learning for NL

Forward Inference in a Feedforward Neural Language Model
Figure 7.13. Shows a context of three preceding tokens
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Concepts of Deep Learning for NL

Learning Embeddings
Figure 7.18. Learn embeddings based on loss with respect to actual word
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Concepts of Deep Learning for NL

Forward Inference: Sliding Window
Figure 9.1
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Concepts of Deep Learning for NL

Recurrent Neural Network (RNN)
Figure 9.3. The hidden state is incrementally built up
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Concepts of Deep Learning for NL

RNN Unrolled Over Time
Figure 9.5. Notice the long chain
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Concepts of Deep Learning for NL

Training an RNN as a Language Model
Figure 9.6. Trains iteratively; uses correct token for subsequent steps
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Concepts of Deep Learning for NL

POS Tagging via an RNN
Figure 9.7. Example of sequence labeling
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Concepts of Deep Learning for NL

Sequence Classification
Figure 9.8. Uses the last hidden state to classify
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Concepts of Deep Learning for NL

Autoregressive Generation with an RNN Language Model
Figure 9.9
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Concepts of Deep Learning for NL

Stacked RNNs
Figure 9.10. Each layer captures a distinct level of abstraction
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Concepts of Deep Learning for NL

Bidirectional RNN
Figure 9.11. Each output is a concatenation of the forward and backward outputs
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Concepts of Deep Learning for NL

Bidirectional RNN for Sequence Classification
Figure 9.12. Uses the last hidden states of forward and backward components
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Concepts of Deep Learning for NL

Long Short-Term Memory (LSTM) Unit, Computationally
Figure 9.13.
Inputs: current token, previous hidden, previous context
Outputs: new hidden, new context
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Concepts of Deep Learning for NL

Comparing Neural Units
Figure 9.14. Feedforward neuron; RNN unit; LSTM unit
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Concepts of Deep Learning for NL

Self-Attention: Information Flow
Figure 9.15. Each unit attends to all previous tokens
Unlike in RNNs, there is no flow between the units
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Concepts of Deep Learning for NL

Query-Key-Value Paradigm for Self-Attention
Figure 9.16
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Concepts of Deep Learning for NL

Transformer Block
Figure 9.18. Residual connections are ways to bypass complex layers that improve learning
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Concepts of Deep Learning for NL

Multihead Self-Attention: Capturing Distinct Concerns
Figure 9.19. Separate heads (separate query-key-value matrices) for syntax, semantics,
discourse, . . .
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Concepts of Deep Learning for NL

Positional Embeddings to Model Word Order
Figure 9.20. Learn embeddings for each position similarly to token embeddings
add position embeddings to embeddings of the respective tokens
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Concepts of Deep Learning for NL

Training a Transformer as a Language Model
Figure 9.21
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Concepts of Deep Learning for NL

Autoregressive Text Completion with Transformers
Figure 9.22
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Concepts of Deep Learning for NL

Summarization with Transformers
Figure 9.24. Train with actual story-summary pairs
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Concepts of Deep Learning for NL

Causal, Backward Looking Transformer
Figure 11.1 (= 9.15). Causal because it doesn’t look at “future” tokens
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Concepts of Deep Learning for NL

Bidirectional Self-Attention Model
Figure 11.2. Looks at future (subsequent) tokens

Munindar P. Singh (NCSU) Natural Language Processing Fall 2022 164

https://go.ncsu.edu/nlp


Concepts of Deep Learning for NL

Masked Language Model Training
Figure 11.5. In BERT, 15% tokens are sample, of which 80% become [MASK], 10%
become another random toke, 10% remain unchanged
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Concepts of Deep Learning for NL

Next Sentence Prediction
Figure 11.7
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