Forward Inference in a Feedforward Neural Language Model

Figure 7.13. Shows a context of three preceding tokens

Munindar P. Singh (NCSU)

Learning Embeddings

Figure 7.18. Learn embeddings based on loss with respect to actual word

Forward Inference: Sliding Window Figure 9.1

Recurrent Neural Network (RNN)

Figure 9.3. The hidden state is incrementally built up

RNN Unrolled Over Time

Figure 9.5. Notice the long chain

Training an RNN as a Language Model

Figure 9.6. Trains iteratively; uses correct token for subsequent steps

POS Tagging via an RNN

Figure 9.7. Example of sequence labeling

Sequence Classification

Figure 9.8. Uses the last hidden state to classify

Autoregressive Generation with an RNN Language Model Figure 9.9

Stacked RNNs

Figure 9.10. Each layer captures a distinct level of abstraction

Bidirectional RNN

Figure 9.11. Each output is a concatenation of the forward and backward outputs

Bidirectional RNN for Sequence Classification

Figure 9.12. Uses the last hidden states of forward and backward components

Long Short-Term Memory (LSTM) Unit, Computationally

Figure 9.13.

Inputs: current token, previous hidden, previous context

Outputs: new hidden, new context

Comparing Neural Units

Figure 9.14. Feedforward neuron; RNN unit; LSTM unit

Self-Attention: Information Flow

Figure 9.15. Each unit attends to all previous tokens Unlike in RNNs, there is no flow between the units

Query-Key-Value Paradigm for Self-Attention Figure 9.16

Munindar P. Singh (NCSU)

Natural Language Processing

Transformer Block

Figure 9.18. Residual connections are ways to bypass complex layers that improve learning

Multihead Self-Attention: Capturing Distinct Concerns

Figure 9.19. Separate heads (separate query-key-value matrices) for syntax, semantics, discourse, \ldots

Positional Embeddings to Model Word Order

Figure 9.20. Learn embeddings for each position similarly to token embeddings add position embeddings to embeddings of the respective tokens

Training a Transformer as a Language Model Figure 9.21

Concepts of Deep Learning for NL

Autoregressive Text Completion with Transformers Figure 9.22

Summarization with Transformers

Figure 9.24. Train with actual story-summary pairs

Causal, Backward Looking Transformer Figure 11.1 (= 9.15). Causal because it doesn't look at "future" tokens

Bidirectional Self-Attention Model

Figure 11.2. Looks at future (subsequent) tokens

Masked Language Model Training

Figure 11.5. In BERT, 15% tokens are sample, of which 80% become [MASK], 10% become another random toke, 10% remain unchanged

Next Sentence Prediction Figure 11.7

