
Vector Semantics

Distributional Hypothesis

I Zellig Harris: words that occur in the same contexts tend to have
similar meanings

I Firth: a word is known (characterized) by the company it keeps

I Basis for lexical semantics

I How can we learn representations of words

I Representational learning: unsupervised
I Contrast with feature engineering
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Vector Semantics

Lemmas and Senses

I Lemma or citation form: general form of a word (e.g., mouse)

I May have multiple senses
I May come in multiple parts of speech
I May cover variants (word forms) such as for plurals, gender, . . .

I Homonymous lemmas

I With multiple senses
I Challenges in word sense disambiguation

I Principle of contrast: difference in form indicates difference in
meaning
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Vector Semantics

Synonyms and Antonyms

I Synonyms: Words with identical meanings

I Interchangeable without affecting propositional meaning
I Are there any true synonyms?

I Antonyms: Words with opposite meanings

I Opposite ends of a scale
I Antonyms would be more similar than different

I Reversives: subclass of antonyms

I Movement in opposite directions, e.g., rise versus fall
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Vector Semantics

Word Similarity
Crucial for solving many important NL tasks

I Similarity: Ask people

I Relatedness ≈ association in psychology, e.g., coffee and cup

I Semantic field: domain, e.g., surgery
I Indicates relatedness, e.g., surgeon and scalpel
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Vector Semantics

Vector Space Model
Foundation of information retrieval since early 1960s

I Term-document matrix

I A row for each word (term)
I A column for each document
I Each cell being the number of occurrences
I Dimensions

I Number of possible words in the corpus, e.g., ≈ [104,105]
I Size of corpus, i.e., number of documents: highly variable

(small, if you talk only of Shakespeare; medium, if New York
Times; large, if Wikipedia or Yelp reviews)

I The vectors (distributions of words) provide some insight into the
content even though they lose word order and grammatical structure
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Vector Semantics

Document Vectors and Word Vectors

I Document vector: each column vector represents a document

I The document vectors are sparse
I Each vector is a point in the 105 dimensional space

I Word vector: each row vector represents a word

I Better extracted from another matrix
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Vector Semantics

Word-Word Matrix

I |V |× |V | matrix

I Each row and column: a word
I Each cell: number of times the row word appears in the context

of the column word
I The context could be

I Entire document ⇒ co-occurrence in a document
I Sliding window (e.g., ±4 words) ⇒ co-occurrence in the

window
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Vector Semantics

Measuring Similarity
I Inner product ≡ dot product: Addition of element-wise products

~v ·~w = ∑
i

viwi

I Highest for similar vectors
I Zero for orthogonal (dissimilar) vectors

I Inner product is biased by vector length

|~v |=
√

∑
i

v2i

I Cosine of the vectors: Inner product divided by length of each

cos(~v ,~w) =
~v ·~w
|~v ||~w |

I Normalize to unit length vectors if length doesn’t matter
I Cosine = inner product (when normalized for length)
I Not suitable for applications based on clustering, for example
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Vector Semantics

TF-IDF: Term Frequency–Inverse Document Frequency
Basis of relevance; used in information retrieval

I TF: higher frequency indicates higher relevance

tft,d =

{
1 + log10 count(t,d) if count(t, d) is positive

0 otherwise

I IDF: terms that occur selectively are more valuable when they do
occur

idft = log10
N

dft

I N is the total number of documents in the corpus
I dft is the number of occurrences in which t occurs

I TF-IDF weight
wt,d = tft,d × idft

I These weights become the vector elements
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Vector Semantics

Applying TF-IDF Vectors

I Word similarity as cosine of their vectors

I Define a document vector as the mean (centroid)

dD =
∑t∈D ~wt

|D|

I D: document
I wt : TF-IDF vector for term t
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Vector Semantics

Pointwise Mutual Information (PMI)
How often two words co-occur relative to if they were independent

I For a target word w and a context word c

PMI(w ,c) = lg
P(w ,c)

P(w)P(c)

I Negative: less often than näıvely expected by chance
I Zero: exactly as näıvely expected by chance
I Positive: more often than näıvely expected by chance

I Not feasible to estimate for low values

I If P(w) = P(c) = 10−6, is P(w ,c)≥ 10−12?

I PPMI: Positive PMI

PPMI(wi ,cj) = max(lg
P(w ,c)

P(w)P(c)
,0)
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Vector Semantics

Estimating PPMI: Positive Pointwise Mutual Information
I Given co-occurrence matrix F = W ×C , estimate cells

pij =
fij

∑
W
i ∑

C
j fij

I Sum across columns to get a word’s frequency

pi∗ =
C

∑
j

pij

I Sum across rows to get a context’s frequency

p∗j =
W

∑
i

pij

I Plug in these estimates into the PPMI definition

PPMI(w ,c) = max(lg
pij

pi∗×p∗j
,0)
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Vector Semantics

Correcting PPMI’s Bias

I PPMI is biased: gives high values to rare words

I Replace P(c) by Pα (c)

Pα (c) =
count(c)α

∑d count(d)α

I Improved definition for PPMI

PPMI(w ,c) = max(lg
P(w ,c)

P(w)Pα (c)
,0)
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Vector Semantics

Word2Vec

I TF-IDF vectors are long and sparse

I How can we achieve short and dense vectors?

I 50–500 dimensions
I Dimensions of 100 and 300 are common

I Easier to learn on: fewer parameters

I Superior generalization and avoidance of overfitting

I Better for synonymy since the words aren’t themselves the
dimensions
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Vector Semantics

Skip Gram with Negative Sampling
Representation learning

I Instead of counting co-occurrence

I Train a classifier on a binary task: whether a word w will co-occur
with another word v (≈ context)

I Implicit supervision—gold standard for free!

I If we observe that v and w co-occur, then that’s a positive label
for the above classifier

I A target word and a context word are positive examples
I Other words, which don’t occur in the target’s context, are

negative examples

I With a context window of ±2 (c1:4), consider this snippet
. . . lemon, a tablespoon of apricot jam, a pinch of . . .

c1 c2 t c3 c4
I Estimate probability P(yes|t,c)

Munindar P. Singh (NCSU) Natural Language Processing Fall 2020 71

https://go.ncsu.edu/nlp


Vector Semantics

Skip Gram Probability Estimation
I Intuition: P(yes|t,c) ∝ similarity(t,c)

I That is, the embeddings of co-occurring words are similar vectors

I Similarity is given by inner product, which is not a probability
distribution

I Transform via sigmoid

P(yes|t,c) =
1

1 + e−t·c

P(no|t,c) =
e−t·c

1 + e−t·c

I Näıve (but effective) assumption that context words are mutually
independent

P(yes|t,c1:k) =
k

∏
i=1

1

1 + e−t·ci
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Vector Semantics

Learning Skip Gram Embeddings

I Positive examples from the window

I Negative examples couple the target word with a random word (6=
target)

I Number of negative samples controlled by a parameter

I Probability of selecting a random word from the lexicon

I Uniform
I Proportional to frequency: won’t hit rarer words a lot
I Discounted as in the PPMI calculations, with α = 0.75

Pα (w) =
count(w)α

∑v count(v)α

I Maximize similarity with positive examples

I Minimize similarity with negative examples

I Maximize and minimize inner products, respectively
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Vector Semantics

Learning Skip Gram Embeddings by Gradient Descent

I Two concurrent representations for each word

I As target
I As context

I Randomly initialize W (each column is a target) and C (each row is a
context) matrices

I Iteratively, update W and C to increase similarity for target-context
pairs and reduce similarity for target-noise pairs

I At the end, do any of these

I Discard C
I Sum or average W T and C
I Concatenate vectors for each word from W and C

I Complexity increases with size of context and number of noise words
considered
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Vector Semantics

CBOW: Continuous Bag of Words
Alternative formulation and architecture to skip gram

I Skip gram: maximize classification of words given nearby words

I Predict the context

I CBOW

I Classify the middle word given the context

I CBOW versus skip gram

I CBOW is faster to train
I CBOW is better on frequent words
I CBOW requires more data
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Vector Semantics

Semantic Properties of Embeddings
Semantics ≈ meaning

I Context window size

I Shorter: immediate context ⇒ more syntactic

I ±2 Hogwarts → Sunnydale (school in a fantasy series)

I Longer: richer context ⇒ more semantic

I Topically related even if not similar
I ±5 Hogwarts → Dumbledore, half-blood

I Syntagmatic association: first-order co-occurrence

I When two words often occur near each other
I Wrote vis à vis book, poem

I Paradigmatic association: second-order co-occurrence

I When two words often occur near the same other words
I Wrote vis à vis said, remarked
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Vector Semantics

Analogy
A remarkable illustration of the magic of word embeddings

I Common to visualize embeddings by reducing the dimensions to two

I t-SNE (T-distributed Stochastic Neighbor Embedding), which
produces a small dimension representation that respects
similarity (Euclidean distance) between vectors

I Offsets (differences) between vectors reflect analogical relations

I
−−→
king−−−→man +−−−−→woman≈−−−→queen

I
−−→
Paris−

−−−−→
France +

−−→
Italy≈

−−−→
Rome

I Similar ones for

I Brother:Sister::Nephew:Niece
I Brother:Sister::Uncle:Aunt
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Vector Semantics

Language Evolution

I Changes in meanings over time

I Consider corpora divided over time (decades)

I
I

I Framing changes, e.g., in news media

I Obesity: lack of self-discipline in individuals ⇒ poor choices of
ingredients by the food industry

I Likewise, changing biases with respect to ethnic names or female
names
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Vector Semantics

Bias

I Word embeddings discover biases in language and highlight them

I (From news text) −−→man−−−−−−−−−→programmer +−−−−→woman≈
−−−−−−−→
homemaker

I
−−−−→
doctor−

−−−→
father +

−−−−→
mother≈−−−→nurse

I GloVE (an embedding approach) discovers implicit association biases

I Against African Americans
I Against old people

I Sometimes these biases would be hidden and simply misdirect the
applications of embeddings, e.g., as features for machine learning

I These biases could also be read explicitly as “justification” by a
computer of someone’s bias
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Vector Semantics

Evaluation

I Use manually labeled data, e.g., on conceptual similarity or analogies

I Use existing language tests, e.g., TOEFL (Test of English as a
Foreign Language)
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Vector Semantics

FasText

I Deals with unknown words

I Uses character-level, i.e., subword, n-grams

I 〈 word start
I 〉 word end
I Where ⇒ where, 〈wh, whe, her, ere, re〉 (original plus five

trigrams)

I Learn the skipgram embedding for each n-gram

I Obtain word embedding as sum of the embeddings of its n-grams

Munindar P. Singh (NCSU) Natural Language Processing Fall 2020 81

https://go.ncsu.edu/nlp

	Vector Semantics

