Prescriptive versus Descriptive

Prescriptive (largely proscriptive): old-school grammar; mostly bogus

- Don't end a sentence with a preposition
- Don't split an infinitive: to boldly go
- Avoid the passive voice
- Don't use double negatives
- Double negatives in Polish (Bender, Sag, Wasow's example) Marysia niczego nie dala Jankowi Mary nothing not gave John Mary did not give John anything
- Descriptive: what people actually speak or write
 - Does anything go?

For your own professional writing, follow the prescriptions!

XKCD on Expletive Infixation

An illustration of descriptive grammar

Where would you place it? — ri — di — cu — lous — © Randall Munroe http://xkcd.com/1290/

Subtle Constraints in Descriptive Grammar

How do we explain these examples? (* indicates unacceptability)

- Bender, Sag, Wasow's examples
 - ► F— yourself!
 - ► Go f— yourself!
 - ► F— you!
 - *Go f— you!
- Wanna contraction (from Wikipedia)
 - Who does Vicky want to vote for? ⇒ Who does Vicky wanna vote for?
 - Who does Vicky want to win?
 - \Rightarrow *Who does Vicky wanna win
- Gonna contraction
 - I am gonna get lunch
 - *I am gonna New York
- Gonna and wanna function like AUX verbs

Competence versus Performance

Chomsky's distinction

Frederic Saussure

- Langue: collective knowledge of language
- Parole: what is observable
- Competence
 - Knowledge of language
 - What native speakers understand (abstract, ideal)
 - Standard of acceptability that is not prescriptive
 - Encoded in universal features or settings of universal parameters

Performance

- How the knowledge of language is used
- How native speakers behave (concrete, noisy)

Constituency Structure

Constituent: set of words behaving as a single unit

- Phrase
- Theoretically established as
 - Having contiguous words
 - Nonoverlapping unless one phrase is entirely within another
- Appear in similar syntactic contexts, e.g., before or after a verb or a noun
 - But generally not the individual words within the phrase
 - Coordination: "X and Y" indicates X and Y have the same type
- Movable as a unit, e.g., preposed or postposed
 - But generally not the individual words within the phrase

I can write a letter I can write a long letter *I can write a long A letter is what I can write A long letter is what I can write *A long is what I can write letter

Context-Free Grammar

In programming languages, we use parentheses

Give examples of surrogates for parentheses in English

Context-Free Grammar

Part of the Chomsky hierarchy

- Stronger than a regular grammar
- Previous works assumed a regular grammar for human language
- Recall the pumping lemma
- Weaker than a context sensitive grammar
- CFGs are needed to handle natural structure in human languages: think of matching parentheses
- Bender, Sag, Wasow's example:
 - That Sandy left bothered me
 - That that Sandy left bothered me bothered Kim
 - That that Sandy left bothered me bothered Kim bothered Bo
- A grammar describes (and generates) all and only the valid finite strings over a given alphabet
- For NL, the alphabet is words or tokens in a lexicon (Jurafsky seems to use "lexicon" oddly in this setting)

Munindar P. Singh (NCSU)

Formalizing a Context-Free Grammar

- Components of a grammar, $G = \langle N, \Sigma, R, S \rangle$
 - Σ, a finite alphabet or set of *terminal* symbols
 - ► *N*, a finite set of *nonterminal* symbols, $N \cap \Sigma = \emptyset$
 - $S \in N$, a *start* symbol (distinguished nonterminal)
 - R, a finite set of rules or productions of the form

 $A \longrightarrow \beta$

- $A \in N$ is a single nonterminal—hence, context free
- $eta \in (\Sigma \cup N)^*$ is a finite string of terminals and nonterminals
- Combine $A \longrightarrow \beta_i$ and $A \longrightarrow \beta_j$ into $A \longrightarrow \beta_i |\beta_j|$

Direct derivation, i.e., via a single application of a rule

- From $(\Sigma \cup N)^*$ to $(\Sigma \cup N)^*$
- $\delta_i \Rightarrow \delta_j$, meaning δ_i derives or yields δ_j
- Given $A \longrightarrow \beta$, we get $\alpha A \gamma \Rightarrow \alpha \beta \gamma$
- Derivation over zero or more rule applications
 - ▶ ⇒*: reflexive, transitive closure of ⇒
 - $\alpha_1 \Rightarrow^* \alpha_m$, through m-1 direct derivations
 - Each derivation represents one snippet of possibilities

Context-Free Language

• Language generated from grammar $G = \langle N, \Sigma, R, S \rangle$

$$\mathscr{L}_{\mathsf{G}} = \{w | w \in \Sigma^* ext{ and } S {\Rightarrow}^* w\}$$

- Whatever can be derived from the start symbol
- That ends up getting rid of all nonterminals
- Any such generated string of terminals, w above, is grammatical and is in the language
- Every other string of terminals is not grammatical and is not in the language
- A finite, ideally small, grammar should generate a large language
 - Capture the legitimate variations of use
 - Exclude the illegitimate variations
- Focuses on strings that are output
 - Doesn't reflect phrase structure in what is generated
 - Meaning is based on the invisible structure

CFG Example Sentence: I prefer a morning flight

▶ Initial grammar and lexicon to derive the above sentence

 $\begin{array}{c} \mathsf{S} \longrightarrow \mathsf{NP} \; \mathsf{VP} \\ \mathsf{NP} \longrightarrow \mathsf{Pronoun} \mid \mathsf{Determiner} \; \mathsf{Nominal} \\ \mathsf{VP} \longrightarrow \mathsf{Verb} \; \mathsf{NP} \\ \hline \mathsf{Nominal} \longrightarrow \mathsf{Nominal} \; \mathsf{Noun} \mid \mathsf{Noun} \\ \hline \mathsf{Pronoun} \longrightarrow \mathsf{I} \\ \mathsf{Verb} \longrightarrow \mathsf{prefer} \\ \hline \mathsf{Determiner} \longrightarrow \mathsf{a} \\ \hline \mathsf{Noun} \longrightarrow \mathsf{morning} \mid \mathsf{flight} \\ \end{array}$

- Why not have $S \longrightarrow N VP$ or $S \longrightarrow Pronoun VP$?
- Need recursion, which the Nominal production gives us
- For additional sentences, we could insert

 $VP \longrightarrow VP NP PP$ (leaving Boston in the morning)

 $VP \longrightarrow VP PP$ (leaving in the morning)

 $PP \longrightarrow Preposition NP$ (from Boston)

Formal Grammars

Draw a Parse Tree

I prefer leaving Boston in the morning

Sentences in English

- Declarative ~ default form
 - Subject NP ("I")
- Imperative, $S \longrightarrow VP$
 - Usually, lack a subject "Go there"
 - But not always "You go there"
 - Subject deletion under a view that there is a subject
- Yes-no question, S \longrightarrow Aux NP VP
 - Begin with auxiliary verb
 - Retain a main verb
- Wh-structures
 - In modern English, who, whose, when, where, what, which, how, why
 - Contain a wh-phrase

Wh Structures

- - What airlines fly from Burbank to Denver?
 - The wh-phrase yields the subject
 - Wh-NP \longrightarrow Wh-Pronoun (who, whom, whose, which)
 - ▶ Wh-NP → Wh-Determiner NP (what, which)
- ▶ Wh-non-subject question, S \longrightarrow Wh-NP Aux NP VP
 - What flights do you have from Burbank to Denver?
 - The wh-phrase is not the subject of the sentence, which is something else
 - Long-distance dependencies

Long-Distance Dependencies

- Consider the relationship indicated in our example and a possible (stylized) answer
 - What flights do you have from Burbank to Denver?
 - ► I have AA 999 from Burbank to Denver
 - There is an apparent discontinuity
- Semantic approach: Detect the relationship during interpretation

Long-Distance Dependencies

Syntactic approach: Understand the construction as phrase movement

- A trace or empty category is left behind (t below)
- Now a simple rule "want to \Rightarrow wanna" explains our earlier examples
 - Who does Vicky want to vote for ₶?
 (Contraction applies)
 - (Contraction applies)
 - \Rightarrow Who does Vicky wanna vote for?
 - Who does Vicky want to win? (Contraction doesn't apply: "want to" doesn't match "want to")
 - \Rightarrow *Who does Vicky wanna win

Evaluate a Grammar

Example sentence: I prefer a morning flight

 $S \longrightarrow X Y$

 $\mathsf{X} \longrightarrow \mathsf{Pronoun} \; \mathsf{Verb} \; \mathsf{Determiner}$

 $\mathsf{Y} \longrightarrow \mathsf{NP} \mid \mathsf{NP} \; \mathsf{NP}$

 $\mathsf{NP} \longrightarrow \mathsf{Pronoun} \mid \mathsf{Nominal}$

Nominal \longrightarrow . . .

- Assume the above grammar gives us the same coverage in terms of acceptable sentences and avoids all unacceptable sentences
- Is the grammar satisfactory? If so, how? If not, why not?

Clause: (Quasi) Sentence Expressing a Complete Thought

A node S in the parse tree that dominates all of the *arguments* of its main verb

- Alice believes that I prefer a morning flight
- Joe suggested that I prefer a morning flight

Finite and Nonfinite clauses

- Finite clauses have a verb that is tensed
 - Indicate a definite time when the event specified by the verb occurs
 - Indicate an instance of the event
- Nonfinite clauses may carry tense but not in the same way
 - Indicate a general occurrence of the specified event, not that it occurred specifically
 - Enable making generic *habitual* statements: Alice recommends stirring while you reheat the syrup
 - Gerunds, as in *-ing* verbs: stirring the pot
 - Infinitives, as in to X: to leave the lid off
 - Past participle, as in -ed verbs: to have preheated the oven Bob avoids to have begun before noon

Noun Phrases: Determiners and Predeterminers

Determiners: not applied on mass nouns

- Articles: A, an, the
- Demonstratives: This, those, ...
- Genitives: Det \rightarrow NP 's (notice recursion with NP)
 - Denver's mayor's mother's canceled flight
- Predeterminers: precede a determiner
 - All: All the king's men
 - A few of: A few of the king's men

Noun Phrases—Nominals: 1

- Head noun: The main component of an NP
- Before the head noun
 - Cardinals: Three friends; three and a half pounds; 3.14159 radians
 - Ordinals: The first one; the other flight
 - Quantifiers: Many students; some confused users
 - Adjective phrases (APs)
 - Quantifiers: Some confused users
 - With adverbs: The least expensive fare

Noun Phrases—Nominals: 2

After the head noun: postmodifiers

- Prepositional phrases: (all flights) from Cleveland
- Nonfinite postmodifier clauses
 - Gerundive postmodifiers: Two flights arriving on Thursday
 - Infinitival postmodifiers: The last flight to arrive
 - Past participle postmodifiers: The aircraft used for this flight
- (Restrictive) relative postmodifier clauses: A flight that serves breakfast
 - Relative pronouns (that, who): A flight that leaves on Sunday

Verb Phrases

A verb plus

- Nothing (intransitive verb): sleep
- NP: (prefer) a morning flight
- NP PP: (leave) Boston in the morning
- PP PP: (go) from Boston to Miami
- ▶ PP PP PP: (go) from Boston to Miami on a bus
- ▶ PP: (leaving) on Thursday
- Nonfinite VP: (want) to fly to San Francisco
- S (Sentential complement): (believes) AA 99 leaves from Boston

Major Verb Categories

Each verb can fit in only some of the VPs introduced above

- Traditionally
 - Intransitive
 - Transitive
 - Ditransitive
- The above don't tackle the subtle variations in language
- Subcategorizing for what kind of complement
- Yields a subcategorization frame or set of acceptable complements for each verb, e.g.,
 - NP
 - NP or nonfinite VP
 - Sentential complement
- Complement: phrase (word, clause) needed to complete an expression
 - Map to arguments in the obvious logical form understood from a phrase

Challenge in CFGs

- We can get hundreds (just for verbs) of lexical categories reflected as nonterminals with associated rules
 - $\blacktriangleright \text{ VP} \longrightarrow \text{Verb-with-NP-comp NP}$
 - $\blacktriangleright VP \longrightarrow Verb\text{-with-S-comp S}$
 - ▶ Verb-with-NP-comp NP \longrightarrow find | leave | repeat | . . .
 - ▶ Verb-with-S-comp S → think | believe | say |
- Enormous knowledge engineering (including maintenance) task
- Risks loss of generality
- Motivation for alternative representations to CFGs
 - Feature grammars: data driven by specifying lexical entries modularly

Coordination or Conjunction

And, or, but, ...

- Coordinate: composite phrase of two phrases separated by a conjunction
 - Also list enumerations
 - The conjoined phrases are of the same category
 - Evidence for the existence of a constituent structure
- NP and NP
 - the flights and the costs
- Nominal and Nominal
 - the flights and costs
- VP and VP
 - Departing Boston and arriving in Miami
- S and S
 - I like coffee and I like icecream
- AP and AP
 - Big and red

Treebanks

Especially, Penn Treebank

Corpus of sentences

- Parsed into trees
- Represented in a standardized representation based on nested brackets or parentheses
- Includes traces (shown as -NONE- with a numeric identifier)
- A treebank is an implicit grammar
 - Each upper node expands into its children
- Penn Treebank demonstrates a flat structure
 - ▶ Long rules, e.g., VP \longrightarrow VBP PP PP PP PP PP ADVP PP
 - Many rules: 4,500 for VP and 17,500 in all for the Wall Street Journal corpus (~ 1M sentences)
 - May not be great for generalization

Heads

The grammatically central lexical part of a syntactic constituent

- Whatever predicate we have applies to the head
 - Olive oil is a kind of oil
 - A tall tree is a tree
 - To quickly swim is to swim
- Potentially augment a CFG
 - Identify headword for each production
 - Nontrivial and controversial, e.g., whether
 - ► To swim ⇒ swim
 - To swim \Rightarrow to
- Identify heads heuristically by first parsing and them walking a parse tree
 - The POS of the last word if it matches
 - Search for specific nodes right to left or left to right

Formal Grammars

Example Lexicalized (Head-Augmented) Tree

Collins' heuristic approach

Grammar Equivalence and Normal Form

- Weak equivalence: generate the same strings
- Strong equivalence
 - Weak plus assign the same phrase structure (up to renaming of nonterminals)
- Chomsky Normal Form, in which productions are of these forms:
 - $\blacktriangleright \text{ Two at a time: } A \longrightarrow B C$
 - Single terminal: $A \longrightarrow a$
 - Not generating the empty string: Exclude A $\longrightarrow \varepsilon$
- Can convert from arbitrary CF grammar to Chomsky Normal Form that is weakly equivalent
 - Step used in the parsing algorithm

Converting to Chomsky Normal Form

Conversion can increase or decrease the grammar size (number of productions)

$VP \longrightarrow$	VP PP
$VP \longrightarrow$	VBD NP PP
is equivalent to	
$VP \longrightarrow$	VBD X
$VP \longrightarrow$	VP PP
$X \longrightarrow$	NP PP
is more general than	
$VP \longrightarrow$	VBD NP PP
$VP \longrightarrow$	VBD NP PP PP
$VP \longrightarrow$	VBD NP PP PP PP
$VP \longrightarrow$	VBD NP PP PP PP PP

Jurafsky claims equivalence but the smaller grammar is strictly more general because it finitely expresses unbounded repetitions of PP

Munindar P. Singh (NCSU)

. . .

Examples of Chomsky Normal Form

State a grammar and an equivalent CNF grammar that is strictly smaller (has fewer productions)

Lexicalized Grammars

Categorial grammar being one such

- Address the redundancy and brittleness of CFGs
- Greater emphasis on lexical knowledge
- Data driven in having smaller grammars that go over more extensive lexicons
- Improve modularity
- Can handle changing word usage and new words

Categorial Grammar

Motivated by composition in the spirit of the lambda calculus Components: categories, lexicon, combination rules

- Set of categories
 - Atomic categories: noun, sentence, ...
 - ► X/Y: function from category Y (on the right) to category X
 - \blacktriangleright X\Y: function from category Y (on the left) to category X

Lexicon that associates words with categories, atomic or functional

- John: NNP (singular proper noun)
- Water: NN (singular or mass noun)
- Drinks, as a transitive verb: (S\NNP)/NN
- Set of rules governing how categories combine (in context)
 - Forward function application: $X/Y Y \Rightarrow X$
 - ▶ backward function application: $X \setminus Y \Rightarrow X$
 - $\blacktriangleright X \text{ conj } X \Rightarrow X : Y X \backslash Y \Rightarrow X$

Example Derivation Tree

- Shown top to bottom
- Line demarcates scope of the category listed below it
- ▶ > and < indicate which is the function and which is the argument

Example Derivation Tree with Conjunction

CCG: Combinatory Categorial Grammar

Using the same lexical entries to produce new combinations

- ► Forward composition (signified by >**B**): X/Y Y/Z \Rightarrow X/Z
- ▶ Backward composition (signified by $\langle \mathbf{B} \rangle$: Y\Z X\Y \Rightarrow X\Z
 - "Cancel" out the middle Y in both forward and backward composition
- ▶ Type raising (arguments to the right, signified by >**T**): X \Rightarrow T/(T\X)
- Type raising (arguments to the left, signified by <T): X ⇒ T\(T/X)
 Example: NP ⇒ S/(S\NP)

Benefits of CCG

- Supports incremental interpretation (left to right in English), which may have some psychological realism
- Supports coordinating (conjoining) phrases that aren't obvious constituents

Billy eats icecream for dinner and salad for dessert

- For brevity, write VP for S\NP
- Type of "eats": (VP/PP)/NP
- ▶ Raise type of "icecream" (~ Y\Z): NP \Rightarrow (VP/PP)\((VP/PP)/NP)
- ▶ Raise type of "for dinner" (~ X\Y): $PP \Rightarrow VP \setminus (VP/PP)$
- ► Backward compose the raised types $(Y \setminus Z \times Y \Rightarrow X \setminus Z)$ Y binds to (VP/PP) and is discarded, yielding $VP \setminus ((VP/PP)/NP)$
- ▶ Likewise, "salad for dessert" yields VP\((VP/PP)/NP)
- Conjoin these to obtain VP\((VP/PP)/NP)
- Apply on "eats" to obtain VP (\equiv S\NP)
- Apply on "Billy" (NP) to obtain S

Munindar P. Singh (NCSU)

Long-Distance Dependencies in CCG

- A transitive verb ("ate") expects
 - Subject NP ("Billy") to its left
 - Object NP ("the salad") to its right
- Here, the object NP is moved to the front
- Notice that "Billy ate" is of type S/NP
- The main work is done by "that" by mapping
 - S/NP (needs an NP to its right) to
 - NP\NP (takes an NP to its left and yields an NP)

