Maximum Entropy

Basics
Random variable x ranges over possible events, including assigned classes
» Probability distribution p tells us the class of a specific data
point—e.g., P(document;) = positive sentiment
» Evidence is encoded as k features
» Assume binary features for simplicity, i.e., fj(x) € {0,1}
> Expected value of feature f;, where j € [1...k] (p is actual)

Zp x)fi(x)
» Expected value based on the evidence (training sample), p

Epfy = X P(x)fi(x)

» Qur learned probability distribution, p, must respect the evidence
(training sample), p
Epfy = Epf;
» Many possible solutions for p (actual) given p (evidence)
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Principle of Maximum Entropy

Discussion follows Ratnaparkhi
Choose the hypothesis that has the maximum entropy because it makes the least

unjustified assumptions
» Entropy (Shannon, inventor of information theory)

H(p) = Zp ) log p(x

» Indicates lack of knowledge or “disorder”
P The greater the entropy of a distribution the more information

you need to describe it
> P ={plv): E,f = Epf)}
» P is the set of distributions that match the evidence
» MaxEnt: Given evidence, p, choose p* where

p* = argmax H(p)
peP
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Relative entropy: Kullback-Leibler Divergence

» Interpret g as an approximation to a true distribution p

v

Then, D(p,q) is the information to be added to g to make it equal p

Zp(x Iog Zp x)log p(x) ZP(X log g(x)

> Use Olog0=0

> D(p,q) >0

» D(p,q)=0ifand only if p=gq
» Sometimes written D(p || q)

> Not a distance since it is not symmetric

v

Symmetric variants, e.g., Jensen-Shannon Divergence, whose positive
square root is the Jensen-Shannon Distance
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Example of Kullback-Leibler Divergence

Not symmetric

Consider distributions over three colors: red, green, blue
Let p=1[3,3,0]

Let g~ 3.1}

D(p.q) =?

D(q.p) =?

vVvyyvyyvVvyy
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Definitions

» The a; are parameters

> @ is the set of distributions of the form of the product of positive
constants exponentiated by feature functions (7 to normalize)

Q = {plp(x —nH(x’ )} where a; € (0,)
> Lette @

log t(x) =logm+)_ fi(x)log
J
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Distributions in P are Interchangeable Relative to Q

Recall P are evidence-matching and Q are feature-based distributions

> letr,seP,te@

Zr Ylogt(x) =) r(x [Iogﬂ+Zf x)log o]: expansion
x j

zlogn'[Zr ]+Z|og0@2r x)]: grouping

Iogrc[Z x)]+ZIogaJZs(x x)]: r,ssumtol; r,seP

= Zs )log t(x): reverse of above step
> Used ¥ . r(x)=1=Y,5s(x) above
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Pythagorean Property

» Let p € P (evidence matching), g € Q (features as exponentials), and

p* € PN Q (both)—omitting (x) for brevity

D(p,q) = D(p,p*)+ D(p*,q)
» Begin from right-hand side

D(p,p*)+D(p",q)

= Zplogp—ZpIogp* —i—Zp* log p* — Zp* log g: definition
X X X

X
= Zplogp— Zplogp* —i—Zplogp* —Zplogq: previous page
X X X X
=Y plogp—Y plogg: middle two terms cancel out
X X

= D(p,q)
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Maximum Entropy Solution: Existence

If p* € PNQ, then p* = argmaxH(p)
peP

> let pe P, p* € PNQ, ue Q, where u is the uniform distribution
» uc @ because we can set each a; =1
» For X possibilities, u(x) = ﬁ

D(p,u) =) p(x)logp(x) =) p X)log|x| —H(P)—%ZP(X)

X

» By Pythagorean Property, D(p,u) = D(p,p*)+ D(p*,u)
> KL divergence is nonnegative: D(r,s) >0
» Therefore, D(p,u) > D(p*,u)

—H(p)— Iog|j<|

1

—H(p*) —log ~~ X|

H(p) < H(p")
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Maximum Entropy Solution: Uniqueness

Suppose some t has the same (maximum) entropy as p*

D(t,u) = D(p*,u)
D(t,p*) = 0: from Pythagorean Property
t = p*: Definition of KL

Thus p* is unique
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Maximum Likelihood

P Likelihood given the data

L(q) =) B(x)logq(x)

X

» Follow much the same argument as above to show that p* has the
maximum L(p*) and is unique

If p* € PN Q, then p* = argmaxL(q)
qeQ

» That is, the same p* achieves both maximum likelihood (fits data
well) and maximum entropy (makes least assumptions)

Munindar P. Singh (NCSU) Natural Language Processing Fall 2020

53


https://go.ncsu.edu/nlp

Maximum Entropy

Generalized lterative Scaling: 1
Darroch and Ratcliffe 1972

» Requires that the features are nonnegative and sum to a constant, C
C= m)?xz fi(x)
J
» Add a (k+1)st correction feature, fi+1 € [0, C], such that

Vx: fyp1 = C—Zﬁ(x)
Jj

» Requires that each event have at least one active feature

Vx:dj: =1
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Generalized lterative Scaling: 2

Iteration counts as superscripts in parentheses

The following iterative procedure converges to p* € PN Q
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Computing the Iteration

» Ejf; is based on the training data (normalized counts of f; when f; is
binary valued)

> E(”)G is intractable if we consider all possible combinations of the
features

» Instead, sum over the “contexts” present in the training sample

> When the classifier seeks to learn the probability of obtaining
acAgiven be B

E(”f;zz Zp (albi)fi(a, bi)
i=1 acA
» Complexity per iteration: O(NPA), based largely on estimating E(”)ﬂ-

> N: Number of training samples

» P: Number of predictions

> A: Average number of features that are active
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