
Maximum Entropy

Basics
Random variable x ranges over possible events, including assigned classes

I Probability distribution p tells us the class of a specific data
point—e.g., P(document1) = positive sentiment

I Evidence is encoded as k features
I Assume binary features for simplicity, i.e., fj(x) ∈ {0,1}
I Expected value of feature fj , where j ∈ [1 . . .k] (p is actual)

Epfj = ∑
x

p(x)fj(x)

I Expected value based on the evidence (training sample), p̄

Ep̄fj = ∑
x

p̄(x)fj(x)

I Our learned probability distribution, p, must respect the evidence
(training sample), p̄

Epfj = Ep̄fj

I Many possible solutions for p (actual) given p̄ (evidence)
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Maximum Entropy

Principle of Maximum Entropy
Discussion follows Ratnaparkhi
Choose the hypothesis that has the maximum entropy because it makes the least
unjustified assumptions

I Entropy (Shannon, inventor of information theory)

H(p) =−∑
x

p(x) logp(x)

I Indicates lack of knowledge or “disorder”
I The greater the entropy of a distribution the more information

you need to describe it

I P = {p|∀j : Epfj = Ep̄fj}
I P is the set of distributions that match the evidence

I MaxEnt: Given evidence, p̄, choose p∗ where

p∗ = argmax
p∈P

H(p)
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Maximum Entropy

Relative entropy: Kullback-Leibler Divergence

I Interpret q as an approximation to a true distribution p

I Then, D(p,q) is the information to be added to q to make it equal p

D(p,q) = ∑
x

p(x) log
p(x)

q(x)
= ∑

x

p(x) logp(x)−∑
x

p(x) logq(x)

I Use 0 log 0 = 0
I D(p,q)≥ 0
I D(p,q) = 0 if and only if p = q

I Sometimes written D(p ‖ q)

I Not a distance since it is not symmetric

I Symmetric variants, e.g., Jensen-Shannon Divergence, whose positive
square root is the Jensen-Shannon Distance
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Maximum Entropy

Example of Kullback-Leibler Divergence
Not symmetric

I Consider distributions over three colors: red, green, blue

I Let p = [ 1
2 ,

1
2 ,0]

I Let q = [ 1
3 ,

1
3 ,

1
3 ]

I D(p,q) =?

I D(q,p) =?
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Maximum Entropy

Definitions

I The αj are parameters

I Q is the set of distributions of the form of the product of positive
constants exponentiated by feature functions (π to normalize)

Q = {p|p(x) = π ∏
j

α
fj (x)
j }, where αj ∈ (0,∞)

I Let t ∈ Q
log t(x) = log π +∑

j

fj(x) log αj
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Maximum Entropy

Distributions in P are Interchangeable Relative to Q
Recall P are evidence-matching and Q are feature-based distributions

I Let r ,s ∈ P, t ∈ Q

∑
x

r(x) log t(x) = ∑
x

r(x)[log π +∑
j

fj(x) log αj ]: expansion

= log π[∑
x

r(x)] +∑
j

log αj ∑
x

r(x)fj(x)]: grouping

= log π[∑
x

s(x)] +∑
j

log αj ∑
x

s(x)fj(x)]: r , s sum to 1; r ,s ∈ P

= ∑
x

s(x) log t(x): reverse of above step

I Used ∑x r(x) = 1 = ∑x s(x) above
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Maximum Entropy

Pythagorean Property
I Let p ∈ P (evidence matching), q ∈ Q (features as exponentials), and

p∗ ∈ P ∩Q (both)—omitting (x) for brevity

D(p,q) = D(p,p∗) +D(p∗,q)

I Begin from right-hand side

D(p,p∗) +D(p∗,q)

= ∑
x

p logp−∑
x

p logp∗+∑
x

p∗ logp∗−∑
x

p∗ logq: definition

= ∑
x

p logp−∑
x

p logp∗+∑
x

p logp∗−∑
x

p logq: previous page

= ∑
x

p logp−∑
x

p logq: middle two terms cancel out

= D(p,q)
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Maximum Entropy

Maximum Entropy Solution: Existence

If p∗ ∈ P ∩Q, then p∗ = argmax
p∈P

H(p)

I Let p ∈ P, p∗ ∈ P ∩Q, u ∈ Q, where u is the uniform distribution
I u ∈ Q because we can set each αj = 1
I For X possibilities, u(x) = 1

|X |

D(p,u) = ∑
x

p(x) logp(x)−∑
x

p(x) log
1

|X |
=−H(p)− 1

|X |∑x
p(x)

I By Pythagorean Property, D(p,u) = D(p,p∗) +D(p∗,u)
I KL divergence is nonnegative: D(r ,s)≥ 0
I Therefore, D(p,u)≥ D(p∗,u)

−H(p)− log
1

|X |
≥ −H(p∗)− log

1

|X |

H(p)≤ H(p∗)
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Maximum Entropy

Maximum Entropy Solution: Uniqueness

Suppose some t has the same (maximum) entropy as p∗

H(t) = H(p∗)

D(t,u) = D(p∗,u)

D(t,p∗) = 0: from Pythagorean Property

t = p∗: Definition of KL

Thus p∗ is unique
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Maximum Entropy

Maximum Likelihood

I Likelihood given the data

L(q) = ∑
x

p̄(x) logq(x)

I Follow much the same argument as above to show that p∗ has the
maximum L(p∗) and is unique

If p∗ ∈ P ∩Q, then p∗ = argmax
q∈Q

L(q)

I That is, the same p∗ achieves both maximum likelihood (fits data
well) and maximum entropy (makes least assumptions)
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Maximum Entropy

Generalized Iterative Scaling: 1
Darroch and Ratcliffe 1972

I Requires that the features are nonnegative and sum to a constant, C

C = max
x

∑
j

fj(x)

I Add a (k+1)st correction feature, fk+1 ∈ [0,C ], such that

∀x : fk+1 = C −∑
j

fj(x)

I Requires that each event have at least one active feature

∀x : ∃j : fj = 1
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Maximum Entropy

Generalized Iterative Scaling: 2
Iteration counts as superscripts in parentheses

The following iterative procedure converges to p∗ ∈ P ∩Q

α
(0)
j = 1

α
(n+1)
j = α

(n)
j

(
Ep̄fj
E (n)fj

) 1
C

E (n)fj = ∑x p
(n)(x)fj(x)

p(n)(x) = π ∏
k+1
j=1

(
α(n)

)fj (x)
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Maximum Entropy

Computing the Iteration

I Ep̄fj is based on the training data (normalized counts of fj when fj is
binary valued)

I E (n)fj is intractable if we consider all possible combinations of the
features

I Instead, sum over the “contexts” present in the training sample

I When the classifier seeks to learn the probability of obtaining
a ∈ A given b ∈ B

E (n)fj ≈
N

∑
i=1

p̄(bi ) ∑
a∈A

p(n)(a|bi )fj(a,bi )

I Complexity per iteration: O(NPA), based largely on estimating E (n)fj
I N: Number of training samples
I P: Number of predictions
I A: Average number of features that are active
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