
Näıve Bayes and Sentiment

Classification in NL
Text categorization

I Spam: yes/no

I Language: Polish/Czech/Slovak/Hungarian

I Authorship: Shakespeare/Marlowe

I Persuasive argument: yes/no

I Inference: entailed/contradictory/neither

I Sentiment: positive/neutral/negative

I Of word/sentence/paragraph/review/article/corpus
I Toward hotel/phone/restaurant
I With respect to (aspect) cleanliness/screen/service
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Näıve Bayes and Sentiment

Bayes Basics

I P(x ∧y) = P(x |y)P(y) = P(y |x)P(x)

I P(x |y) = P(y |x)P(x)
P(y)

I Given observation d and classes C

I We want ĉ = argmaxP(c |d), where c ∈ C (sometimes omitted)
I Estimate P(c |d) via

ĉ = argmax
c

P(d |c)P(c)

P(d)

I Get rid of normalization by P(d), fixed for all c
I ĉ = argmaxP(d |c)P(c) = Likelihood × Prior
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Näıve Bayes and Sentiment

Representing Documents
Sometimes not even a complete sentence

I Document d maps to (values for) features F = {f1 . . . fn}
I What features are apparent in a document?

I Words, punctuation, paragraph breaks
I Assume just the words

I How do the features in a document interact?

I Word order, negation, adjectives, . . .
I Bag of Words (BoW): assume the counts but nothing else

matters
I Includes bags of n-grams

I Remove stop words

I From a preset list
I The top K most frequent words with K = 10 or 100, for example
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Näıve Bayes and Sentiment

Näıve Bayes for Documents
Näıve: Words are conditionally independent of each other given the class

I P(f1 . . . fn|c) = P(f1|c) . . .P(fn|c)

I Set of classes C

I Set of features F

ˆcNB = argmax
c∈C

P(c) ∏
f ∈F

P(f |c)

I Feature: position in the document
I Feature value: word in that position

I Use in logspace to avoid arithmetic underflow and improve complexity
(addition instead of multiplication)

ˆcNB = argmax
c∈C

logP(c) ∑
i∈positions

logP(wi |c)

I Linear classifier: linear function of input features
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Näıve Bayes and Sentiment

Training
I V : vocabulary, i.e., set of words
I N: number of documents
I Nc : number of documents in class c

P̂(c) =
Nc

N

P̂(wi |c) =
count(wi ,c)

∑w∈V count(w ,c)

I Suppose for some wi

count(wi ,c)

∑w∈V count(w ,c)
= 0

I Then, our estimate P̂(wi |c) = 0
I Then, because of the ∏, the net probability is zero

I Smoothing to the rescue
I Laplace (add 1) remains common for text categorization
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Näıve Bayes and Sentiment

Variations for Sentiment

I Remove duplicates within each document before counting

I Generate fake negated tokens

I From negative word until next punctuation
I didn’t like this movie, but
⇒
didn’t NOT like NOT this NOT movie, but

I Use established sentiment lexicon

I Fixed positive and negative meanings (all else are neutral)
I Work well when there isn’t enough training data
I Ignore domain and context
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Näıve Bayes and Sentiment

Spam Detection

I Nontextual features

I Ratio of text to images
I HTML errors

I Suspicious phrases and tokens

I Millions of dollars
I Urgent
I !!!

I Email properties

I Subject line
I Existence of URLs
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Näıve Bayes and Sentiment

Language Identification

I Subword features

I Bigrams of letters

I Think about languages whose scripts are not letter based

I Think about connection with unknown words
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Näıve Bayes and Sentiment

Evaluation

I Ground truth also known as gold labels

I How obtained?

I People: in what setting? how reliable? how many people?
I Implicit versus explicit
I Some other process—as for word vectors (coming up)
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Näıve Bayes and Sentiment

Contingency Table and Metrics
Other metrics to come up later

Gold positive Gold negative

Classified positive True Positive False Positive

Classified negative False Negative True Negative

I (Top row) Precision = TP
TP+FP

I (Left column) Recall = TP
TP+FN

I (All) Accuracy = TP+TN
TP+FP+TN+FN

I F-measure,

F =
2×Precision×Recall

Precision + Recall
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Näıve Bayes and Sentiment

Macroaveraging and Microaveraging
Suited for multinomial classification, e.g., for three classes

I Microaveraging: dominated by most frequent class

I Imagine a single, 3×3 contingency table
I Each row gives the precision for its class
I Each column gives the recall for its class

I Macroaveraging: treats all classes equally

I Separate 2×2 true/false contingency table for each class
I Precision, recall as before
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Näıve Bayes and Sentiment

Test Sets and Cross-Validation
I Ideal

I Training set
I Devset or Development test set to tune parameters
I Test set (unseen until testing) to evaluate

I Training-dev-test split costs too much data
I Cross-validation: in each fold

I Split training data randomly, e.g., for 10-folds
I Use one part to train, e.g., 90%
I Remainder to test, e.g., 10%

I Pollutes our understanding since we see the data
I We may choose features that suit it well
I Overfitting
I Poor performance on real data

I Split off main test set and hold it aside
I Cross-validate within the training set
I Test on the test set to report results
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Näıve Bayes and Sentiment

Comparing Classifiers via the Bootstrap Test
Using accuracy as an example

I Methods being compared: A, B

I Test set x

I Performance gain of A over B δ (·)
I Draw bootstrap samples from the test set

I Surrogates for having real new data
I Draw b samples x∗(i), each of a fixed number n of instances
I The b samples can overlap
I Compute δ (x∗(i)), expected to be δ (x)

I Compute statistics on the b samples

I Percentile: count x∗(i) where δ (x∗(i)) > 2δ (x)

I Empirical bootstrap: from observations

I Parametric bootstrap: from some parametrized distribution
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