This homework assignment has 5 problems, for a total of 90 points.

1. (4 points) Of the following statements, identify all that hold about architecture.
 A. DoDAF specifies a number of views to capture different aspects of a system being modeled
 B. We can abstract out the interactions and policy points from DoDAF operational views

2. (32 points) Of the following statements, identify all that hold about metadata and XML.
 A. Electronic documents were exchanged by businesses long before XML and even before the Internet came into being
 B. A major benefit of metadata is to facilitate the exchange of data over time
 C. A major disadvantage of Comma Separated Values with respect to XML is that XML better enables us to express nested structure
 D. Sometimes people can create different URIs for the same XML namespace and as a result what they think are different namespaces are treated by the XML processor as the same namespace
 E. Using a URI that includes the domain name of another company is not only bad form, it is risky because the other company could change the resource pointed to by that URI; for this reason, a URI such as http://www.ncsu.edu/fb77 is unsuitable as an identifier for a namespace for anyone not affiliated with NCSU
 F. Using a URI such as http://localhost/fb77 that includes a relative address is risky because it means different things on different computers
 G. Whereas in most beginner tutorials an XML document has a single root, in real-life settings a complex XML document may have two or more roots, e.g., one for comments and one for the main body
 H. A limitation of XML is that although it expresses trees it cannot express complex data structures such as undirected, weighted graphs
 I. The snippet

      ```
      <!−− <anElement /> −−>
      ```

 means that a node for element anElement is placed as a child of the given comment node
 J. An element node can enclose attribute nodes as well as comment nodes, but an attribute node cannot enclose a comment node
 K. To represent information about a directed graph, it is best to specify an element for each vertex \(V \) that takes an attribute for \(V \)’s identifier and another attribute containing a string of the identifiers of the target vertices of the edges that emanate from \(V \)
 L. Using XML syntax for the XSLT language was an excellent design decision because it improved readability of XSLT stylesheets
 M. XML InfoSet specifies that comments may occur within attributes though most processors don’t implement this feature
 N. By using a standard metadata language, programmers can avoid having to agree ahead of time on the specifics of the metadata they assign to the documents they exchange
 O. An element \(X \) may enclose two or more text nodes as long as any two consecutive text nodes are separated by other nodes, such as the subelements of \(X \)
3. (22 points) Of the following statements, identify all that hold about XPath.

A. The XPath expression \texttt{child::Song[@language]} finds the attribute nodes named \texttt{language} that are children of the \texttt{Song} children of the context node.

B. Because the axis \texttt{descendant} is of principal type \texttt{element}, the XPath expression \texttt{descendant::node()} yields exactly the same nodes that \texttt{descendant::element()} yields.

C. Languages that are based on XPath derive part of their power from the ability to write loops in XPath using the \texttt{*} construct.

D. For a context node that has one or more preceding siblings, the expression \texttt{preceding::node()[1]} finds the immediately preceding sibling.

E. The XPath \texttt{descendant} and \texttt{ancestor} axes are inverses of each other: each node is a descendant of each of its ancestors.

F. In XPath, the \texttt{descendant} axis is the transitive closure of the \texttt{child} axis.

G. If an XPath expression \(E \) yields a node sequence consisting of exactly one element, then \(E[-1] = E[\text{last()}] \).

H. For any XPath expression \(E \), we have \(E[-1 \lor -1] = E[\text{true()}] \).

I. For any XPath expression \(E \), we have \(E[-1 + -1] = E[-1 * -1] \).

J. For no XPath expression \(E \), do we have \(E[-1 \lor -1] = E[-1] \).

K. The \texttt{self} axis is defined for every element regardless of how deep it occurs in a tree.

4. (16 points) Of the following statements, identify all that hold about XQuery. (Below, \texttt{Set} and \texttt{Pred} are functions and \texttt{x} and \texttt{v} are variables.)

A. In XQuery, an easy way to increment a variable \texttt{x} is to write \texttt{let $x := $x + 1}.

B. Because XQuery does not allow side effects on variables, we are sometimes forced to create solutions of exponential complexity for problems that would otherwise take solutions of polynomial complexity. An example is the problem of calculating the first \(n \) Fibonacci numbers. Fortunately, those problems are not real business problems.

C. Any XQuery query that produces a result must include exactly one return.

D. In XQuery, the collector variable paradigm works for a function that is recursive but not for two functions that are mutually recursive.

E. Given for \texttt{x} in Sequence . . ., where \texttt{Sequence} is some expression whose evaluation terminates, if the body of the for terminates for each possible binding of \texttt{x}, the entire for expression must terminate.

F. In XQuery, we can compute all the axes of XPath using no axes other than parent and child.

G. In for \texttt{x} in Sequence . . ., the expression \texttt{Sequence} may seem to use \texttt{x} but may not refer to the same \texttt{x} that is declared in the current for construct.

H. In for \texttt{x} in Sequence return Result, the expression \texttt{Result} may seem to use \texttt{x} but may not refer to the same \texttt{x} that is declared in the current for construct.

5. (16 points) Of the following statements, identify all that hold about XSLT.

A. XSLT places many important expressions inside strings as values of attributes.

B. In XSLT as studied in this course, XPath expressions occur only in three places: as values for the attributes match, test, and select.

C. Any XSLT stylesheet that does not explicitly use apply-templates is guaranteed to terminate.
D. Any XSLT stylesheet that explicitly uses apply-templates on the context node’s parent is guaranteed to terminate.

E. It is possible to define an XSLT template that (i.e., the same template) handles both recursion going down the document tree and up the document tree.

F. In XSLT, we can generate element nodes whose names are not fixed a priori, but rather are determined programmatically at run time.

G. In XSLT, it is possible to have templates that match on the XPath expression / even though that expression corresponds to the unique root node that does not even occur within the main part of an XML document.

H. Any legal XPath expression, X, that evaluates to an element or set of elements may be used as a match pattern for an XSLT template.