1. (6 points) Of the following statements, identify all that hold about names, identifiers, and namespaces.
 A. The main prerequisite for a unique identifier scheme is the existence of an agreement in the community whose members would use that identifier scheme
 B. Internet domains (such as ncsu.edu) are not valid identifiers because an architecture exists to resolve them
 C. We can use URIs to identify namespaces, which themselves consist of identifiers

2. (22 points) Of the following statements, identify all that hold about metadata, XML, and XML Schema.
 A. XML InfoSet specifies that there is exactly one document root in an XML document
 B. A well-formed XML document can be a valid (executable) XQuery query
 C. The output produced by an XQuery query must be a well-formed XML document
 D. Metadata is useful because it enables data to be exchanged without prior agreement about the specific data being exchanged
 E. XML is useful because it removes the need for metadata
 F. XML supports data sharing “across time,” meaning that XML documents that are read a long time after they are prepared are easier to comprehend than documents stored in proprietary formats
 G. XML is well-suited for representing purchase orders, but not for representing product descriptions and catalogs
 H. A major limitation of XML that it structures documents as trees and thus fails to represent graphs in general
 I. In XML, <foo/> is an example of a nil element
 J. In XML, whitespace characters are not included in a text node
 K. In any XML document that is valid with respect to an XML Schema, we cannot have an element occurring as a subelement of another copy of the same element; that is, <foo><foo/> is not valid for any schema

3. (16 points) Of the following statements, identify all that hold about XPath. (Below, E is an arbitrary XPath expression; i and j are positive integers.)
 A. The notation // abbreviates /descendant-or-self::node()/
 B. For an arbitrary XPath expression E, E[-1] is empty
 C. There are no variables in XPath expressions
 D. The XPath construct for accessing a parent is worthless since to get to a specific node, you would have to pass its parent anyway
 E. Not every node has a child
 F. Every node has a parent
 G. If Node A is among the preceding-siblings of Node B, then B is among the following-siblings of Node A
H. XPath constructs for navigating documents include symbolic links analogous to those in leading file systems.

4. (24 points) Of the following statements, identify all that hold about XQuery. (Below, Set and Pred are functions and x and v are variables.)

A. The snippet let $x := x$ is invalid because it uses x to define itself

B. If some x in Set(v) satisfies Pred(x, v) then every x in Set(v) satisfies Pred(x, v)

C. If some x in Set(v) satisfies Pred(x, v) returns nothing then every x in Set(v) satisfies Pred(x, v) may still return something

D. In any XQuery query, there must be at least one return clause

E. In any XQuery query, there must be at most one return clause

F. The main reason to use let is that it is more efficient than for, which iterates over each element of the given set

G. Recursion is natural in XQuery queries because XML documents often exhibit a (fairly) regular structure

H. An XQuery query can read in at most one XML file (it does so using the doc construct)

I. It is possible to write nontrivial XQuery queries (such as to reverse a list) without using the return construct

J. In for x in Sequence . . ., the expression Sequence may not refer to x

K. It is not possible to write nonterminating queries (i.e., those with infinite loops) in XQuery

L. In for x in Sequence . . ., the expression Sequence is not recalculated for each iteration