Problem	1	Total
Points:	40	40
Score:		

This homework assignment has 1 problems, for a total of 40 points.

- 1. This problem deals with rationality.
 - (a) (12 points) Of the following statements, identify all that are the expected functions of a market:
 - A. Potentially redistributes resources among buyers and sellers
 - B. To avoid confusion, ensures that a sell bid exists before taking any buy bids
 - C. To prevent unfairness, ensures that successive buy bids cannot go down (cannot reduce prices) and successive sell bids cannot go up (cannot increase prices)
 - D. Ensures that a deal takes place between some buyer and some seller
 - (b) (5 points) A discriminatory price auction
 - A. Is unconstitutional in most modern democracies
 - B. Avoids the impossibility result of Meyerson & Satterthwaite, which affects uniform price auctions
 - C. Is commonly used wherever people stand in line to buy tickets, because those who show up first get priority over those who show up later
 - D. Is based on the idea of setting the price differently for each allowed trade
 - (c) (8 points) Consider an auction scheme where a trade takes place between a seller and a buyer *only if* the given buyer bids strictly higher than what the given seller bids. Moreover, the price the buyer pays the seller equals the geometric mean of their respective bids. [The geometric mean of two positive real numbers x and y is $\sqrt{x \times y}$.] Of the following statements, identify all that are true.
 - A. This auction is budget balanced
 - B. This auction is incentive compatible for buyers
 - C. This auction is incentive compatible for sellers
 - D. Assuming that sellers and buyers bid according to their true valuations, this auction yields a Pareto optimal allocation of resources
 - (d) An auction house has received sealed bids in order A_0, A_1, \ldots, A_9 as shown below:

Amount	Sell Bids	Buy Bids
\$9		buy A_2 , A_8
\$8	sell A ₅	
\$7		
\$6	sell A ₇	buy A_6
\$5		buy A_9
\$4		
\$3	sell A_0, A_3	buy A_1 , A_4
\$2		
\$1		

- i. (5 points) The price computed under the M^{th} -price auction is
 - A. \$7
 - B. \$6
 - C. \$5.50
 - D. None: there is no deal
- ii. (5 points) The price computed under the dual-price auction is

(Write your name above)

- A. \$7
- B. \$6
- C. \$5.50
- D. None: there is no deal
- iii. (5 points) Under the dual-price auction,
 - A. A_0 , A_3 , A_7 sell to A_2 , A_6 , A_8
 - B. No one sells to A_8 , because its bid is the last of the eligible bids
 - C. A_0 , A_3 sell to A_2 , A_8
 - D. A_7 sells to A_6 , because their prices match and they are right in the middle