1. This problem deals with rationality.
 (a) (12 points) Of the following statements, identify all that are the expected functions of a market:
 A. Potentially redistributes resources among buyers and sellers
 B. To avoid confusion, ensures that a sell bid exists before taking any buy bids
 C. To prevent unfairness, ensures that successive buy bids cannot go down (cannot reduce prices) and
 successive sell bids cannot go up (cannot increase prices)
 D. Ensures that a deal takes place between some buyer and some seller
 (b) (5 points) A discriminatory price auction
 A. Is unconstitutional in most modern democracies
 B. Avoids the impossibility result of Meyerson & Satterthwaite, which affects uniform price auctions
 C. Is commonly used wherever people stand in line to buy tickets, because those who show up first
 get priority over those who show up later
 D. Is based on the idea of setting the price differently for each allowed trade
 (c) (8 points) Consider an auction scheme where a trade takes place between a seller and a buyer only if the
 given buyer bids strictly higher than what the given seller bids. Moreover, the price the buyer pays the seller
 equals the geometric mean of their respective bids. [The geometric mean of two positive real numbers x and
 y is \(\sqrt{xy} \).] Of the following statements, identify all that are true.
 A. This auction is budget balanced
 B. This auction is incentive compatible for buyers
 C. This auction is incentive compatible for sellers
 D. Assuming that sellers and buyers bid according to their true valuations, this auction yields a Pareto
 optimal allocation of resources
 (d) An auction house has received sealed bids in order \(A_0, A_1, \ldots, A_9 \) as shown below:

<table>
<thead>
<tr>
<th>Amount</th>
<th>Sell Bids</th>
<th>Buy Bids</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9</td>
<td></td>
<td>buy (A_2, A_8)</td>
</tr>
<tr>
<td>$8</td>
<td>sell (A_5)</td>
<td></td>
</tr>
<tr>
<td>$7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$6</td>
<td>sell (A_7)</td>
<td>buy (A_6)</td>
</tr>
<tr>
<td>$5</td>
<td></td>
<td>buy (A_9)</td>
</tr>
<tr>
<td>$4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3</td>
<td>sell (A_0, A_3)</td>
<td>buy (A_1, A_4)</td>
</tr>
<tr>
<td>$2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 i. (5 points) The price computed under the M\(\theta \)-price auction is
 A. $7
 B. $6
 C. $5.50
 D. None: there is no deal
 ii. (5 points) The price computed under the dual-price auction is
A. $7
B. $6
C. $5.50
D. None: there is no deal

iii. (5 points) Under the dual-price auction,
A. A_0, A_3, A_7 sell to A_2, A_6, A_8
B. No one sells to A_8, because its bid is the last of the eligible bids
C. A_0, A_3 sell to A_2, A_8
D. A_7 sells to A_6, because their prices match and they are right in the middle