Department of Computer Science

Research Review

Rudra Dutta, CSC, NCSU April, 2014

Networking Frontiers

Ubiquity

- Mobility, Addressing, Binding
- Dependability, Confidentiality, Availability
- Cyber-physical computing, sensing/actuating

Software

- "Up the stack" phenomenon
- Down the stack, also virtualization
- And sideways policy, measurement, economics, analytics
- Democratization of networking functionality (chaotic?)

Architecture

- All of the above
- Design tweaks won't do it all
- Some work in above areas

Software Defined Networking

Embodiment of policy box

- Forwarding policy (routing), security policy, energy policy, economic policy, ...
- Realized in hardware or software
- Or platform running software "policy programs"

Controller Federation

- Different datapaths belong to different entities
 - Controlled by different controllers
- Flows route through multiple domains
 - Controllers must coordinate among themselves
 - Possibly exchange limited privileges on datapaths

Programming the Controller

- Controller application must be written in some language
 - northbound API of controller
- Not well standardized in OpenFlow
- OpenDaylight a proposal by an industry consortium
 - Multiple southbound API support
 - Standardized single northbound API

Network Virtualization (Many Faces of)

- No "added functionality", but "moving around"
 - Makes functionality available where it was not
 - An architectural distinction
- An attempt to define complex network functions as abstractions: NF → VNF
 - That can then be implemented to produce similar behavior on diverse platforms
 - Orchestrated without knowing underlying platform
 - Possibly as software, on VMs → NFaaS
- "Software Networking"?

SDN Lab

Experiment – Traffic Flow: Best-Effort Model

Network Management Evolution

- Networking management processes need study
 - Especially in light of the coming SDN revolutio
- Processes are human processes not crisp and clear
- Data-driven = human-centered, here
- Goal: use analytics to spot vulnerable process points, opportunities
 - Automation of SDN management
 - Vulnerability elimination

Who Built CentMesh?

- Built by NCSU student researchers
- Guided by NCSU faculty
- Funded by Army Research Office and NCSU
- Operationalized by Institute of Technology of Next Generation (ITng), NCSU

Impact of Power Control in Mesh

Geodiffuse Routing

- A form of limited flooding
- Nodes over an area form a diffuse path
- Ready to forward transmission if most direct path seems to have difficulties
- Can coordinate with heuristic mechanisms, and fine tune

NC STATE UNIVERS

Department of Computer Scient

Network Innovation through Choice

- Informed exercise of choice (backed by money) can reward providers with good performance
- Select for helpful providers, beneficial ecosystem

Architectural Need

- Informed exercise of choice (backed by money) can reward providers with good performance
- Select for helpful providers, beneficial ecosystem

ChoiceNet Entities / Interactions

- Consumer willing to exchange consideration for services deemed of value
 - User who exercises choice → "chuser"

- HW/SW infrastructure provider (path service)
- Marketplace provider
- Composition provider
- Verification provider

Entities and Interactions

 Informed exercise of choice (backed by money) can reward providers with good performance

Select for helpful providers, beneficial ecosys;

Glitches denote the losses and Freezes denote video playback freezes

Copyright Rudra Dutta, NCSU, Spring 2014

Basic Analysis Results

Provider	Mean Jitter %	Std. Dev. Jitter %	Max Jitter %
NSP1	44.6 %	32.8 %	25.3 %
NSP2	0.2 %	0.3 %	0.2 %
NSP3	55.2 %	66.9 %	74.5 %

Analysis for freeze 1 [t=6 and t=10]

	Mean %	Std dev %	Max J %
NSP1	96.7 %	93.8 %	94.7 %
NSP2	0.2 %	0.6 %	0.2 %
NSP3	3.1 %	5.6 %	5.1 %

Analysis for freeze 2 [t=8 and t=12]

	Mean %	Std dev %	Max J %
NSP1	98.5 %	97.2 %	97.2 %
NSP2	0.0 %	0.0 %	0.0 %
NSP3	1.5 %	2.8 %	2.8 %

Analysis for freeze 3 [t=17 and

t=21]	Mean %	Std dev %	Max J %
NSP1	27.7 %	42.2 %	50.2 %
NSP2	0.2 %	0.4 %	0.3 %
NSP3	72.1 %	57.4 %	49.5 %

Analysis for freeze 4 [t=24 and t=28]

	Mean %	Std dev %	Max J %
NSP1	14.0 %	13.8 %	13.6 %
NSP2	0.2 %	0.2 %	0.2 %
NSP3	85.8 %	86.0 %	86.2 %

Freeze 3 is at

Security in the Cloud – Cost Points

Industry Research Relationships

Challenges

- Industry needs applicable research partnerships
 - Good deal of specificity
 - Time and effort to acclimatize
- Faculty and students need to do research
 - Discovery of new knowledge, all that
 - Publish papers, pass PhD milestones three years or so

Opportunities

- Computing is roaming free in the world
- Real-world problems, like it or not
- New problems, like it or not
- Synergy