CSC 432: Database Management Final 100 points

25 November 1996, 10:15-11:05 AM
June 20, 2000

Instructions

If you finish early, please try to remain seated or move out discreetly so as not to disturb others.

This quiz is closed-book. However, a one-page crib sheet (in addition to your previous crib-sheets) may be used. Crib sheets may not be shared. Collusion or cheating of any form is forbidden. You can be asked to explain your solutions verbally.

There are no trick questions in this quiz. If you think there is some ambiguity, state additional assumptions, but be prepared to justify the need for them. If you are unable to produce a formal answer, give an English description for partial credit.

1 Transactions

Consider the following schedule involving transactions T_{1}, T_{2}, and T_{3}, which access data items x and y. Here $r_{i}(x)$ means T_{i} reads item x and $w_{i}(x)$ means T_{i} writes item x.

T_{1}	T_{2}	T_{3}	\mathbf{x}	\mathbf{y}
Initially			5	6
		$r_{3}(x)$	-	-
	$r_{2}(x)$		-	-
	$w_{2}(x)$			
	$r_{2}(y)$		-	-
	$w_{2}(y)$		-	
$r_{1}(y)$			-	-
$w_{1}(y)$			-	
		$r_{3}(y)$	-	-
		$w_{3}(x)$		-
		$w_{3}(y)$	-	

1. (5 points) Let $x=5$ and $y=6$ initially. T_{1} adds 10 to x and $y ; T_{2}$ adds 20 to x and y; and T_{3} adds 30 to x and y. Fill in the blanks (with values of x and y after each w operation).
2. (10 points) What problem, if any, is apparent from the values in part ???
3. (25 points) Is the above schedule serializable? If so, show an equivalent serial schedule; if not, prove show not. Use the definition of serializability. Do not argue based on the values you obtained in part ??.

2 Calculus to SQL

Consider the following tuple relational calculus expression on the Dream Home database.
$\left\{p \cdot p n o \mid \operatorname{Property}(p) \wedge\left(\forall v_{1}, v_{2}:\left(\operatorname{Viewing}\left(v_{1}\right) \wedge \operatorname{Viewing}\left(v_{2}\right) \wedge v_{1} \cdot p n o=\right.\right.\right.$ p.pno $\left.\left.\left.\wedge v_{2} . p n o=p . p n o\right) \rightarrow v_{1} . r n o=v_{2} . r n o\right)\right\}$

1. (20 points) Give an English translation of the above expression, e.g., "Find ..."
2. (20 points) Give an SQL query equivalent to the above expression-follow the formula, not the English translation.
(15 points for correctness; 5 points for elegance.)

3 Conceptual to Logical Model

Following the Dream Home database, consider the entities: Staff, Owner, and Renter related through a single relationship, Rents. In relationship Rents, the cardinality of Staff, Owner, and Renter is Many, Many, and 1, respectively. (Picture on the board.)

- (20 points) Assuming that each property is owned by a single owner, convert the above conceptual model to a logical model. (Draw an ER diagram of the logical model with the cardinalities shown.)

