
5
Topics in Data Structures

Giuseppe F. Italiano
University Venezia,
“Ca’ Foscari” di Venezia

Rajeev Raman
King’s College, London

5.1 Introduction . 5-1
Set Union Data Structures • Persistent Data Structures •
Models of Computation

5.2 The Set Union Problem . 5-6
Amortized Time Complexity • Single-Operation Worst-Case
Time Complexity • Special Linear Cases

5.3 The Set Union Problem on Intervals. 5-10
Interval Union-Split-Find • Interval Union-Find • Interval
Split–Find

5.4 The Set Union Problem with Deunions 5-13
Algorithms for Set Union with Deunions • The Set Union
Problem with Unlimited Backtracking

5.5 Partial and Full Persistence . 5-15
Methods for Arbitrary Data Structures • Methods for Linked
Data Structures

5.6 Functional Data Structures . 5-21
Implementation of Catenable Lists in Functional Languages •
Purely Functional Catenable Lists • Other Data Structures

5.7 Research Issues and Summary . 5-24
5.8 Defining Terms . 5-24
Acknowledgments . 5-25
References . 5-25
Further Information . 5-29

5.1 Introduction

In this chapter, we describe advanced data structures and algorithmic techniques, mostly focusing our
attention to two important problems: set unionandpersistence. Wefirst describe set uniondata structures.
Their discovery required a new set of techniques and tools that have proved useful in other areas as well.
We survey algorithms and data structures for set union problems, and attempt to provide a unifying
theoretical framework for this growing body of algorithmic tools. Persistent data structures maintain
information about their past states and find uses in a diverse spectrum of applications. The body of
work relating to persistent data structures brings together quite a surprising cocktail of techniques, from
real-time computation to techniques from functional programming.

0-8493-2649-4/99/$0.00+$.50
c© 1999 by CRC Press LLC 5-1

5-2 CHAPTER 5. TOPICS IN DATA STRUCTURES

Set Union Data Structures

The set union problem consists of maintaining a collection of disjoint sets under an intermixed sequence
of the following two kinds of operations:

union(A,B): Combine the two sets A and B into a new set named A.

find(x): Return the name of the set containing element x.

The operations are presented on line, namely each operation must be processed before the next one is
known. Initially, the collection consists of n singleton sets {1}, {2}, . . . , {n}, and the name of set {i} is i,
1 ≤ i ≤ n. Figure 5.1 illustrates an example of set union operations.

FIGURE 5.1 Examples of set union operations. (a) The initial collection of disjoint sets. (b) The disjoint sets of (a)

after performing union(1, 3) and union(5, 2). (c) The disjoint sets of (b) after performing union(1, 7) followed by
union(4, 1). (d) The disjoint sets of (c) after performing union(4, 5).

The set union problemhas beenwidely studied, and finds application in a wide range of areas, including
Fortran compilers [10, 38], property grammars [78, 79], computational geometry [49, 67, 68], finite state
machines [4, 44], string algorithms [5, 48], logic programming and theorem proving [7, 8, 47, 95], and
several combinatorial problems such as finding minimum spanning trees [4, 53], solving dynamic edge-
and vertex-connectivity problems [98], computing least common ancestors in trees [3], solving off–line
minimumproblems [34, 45], findingdominators in graphs [83], and checkingflowgraph reducibility [82].
Several variants of set union have been introduced, in which the possibility of backtracking over the

sequences of unions was taken into account [9, 39, 59, 63, 97]. This was motivated by problems arising in
logic programming interpreter memory management [40, 60, 61, 96].

Persistent Data Structures

Data structures that one encounters in traditional algorithmic settings are ephemeral, i.e., if the data
structure is updated then the previous state of the data structure is lost. A persistent data structure, on the
other hand, preserves old versions of the data structure. Several kinds of persistence can be distinguished
based upon what kind of access is allowed to old versions of the data structure. Accesses to a data structure
can be of two kinds: updates, which change the information content of the data structure, and queries,
which do not. For the sake of ease of presentation, we will assume that queries do not even change the
internal representation of the data, i.e., read-only access to a data structure suffices to answer a query.
In the persistent setting we would like to maintain multiple versions of data structures. In addition

to the arguments taken by its ephemeral counterparts, a persistent query or update operation takes as

5.1. INTRODUCTION 5-3

an argument the version of the data structure to which the query or update refers. A persistent update
also returns a handle to the new version created by the update. We distinguish between three kinds of
persistence:

• A partially persistent data structure allows updates only to the latest version of the data struc-
ture. All versions of the data structure may be queried, however. Clearly, the versions of a
partially persistent data structure exhibit a linear ordering as shown in Fig. 5.2(a).

• A fully persistent data structure allows all existing versions of the data structure to be queried
or updated. However, an update may operate only on a single version at a time—for instance
combining two or more old versions of the data structure to form a new one is not allowed.
The versions of a fully persistent data structure form a tree, as shown in Fig. 5.2(b).

• A purely functional language is one that does not allow any destructive operation—one that
overwrites data—such as the assignment operation. Purely functional languages are side-
effect-free, i.e., invoking a function has no effect other than computing the value returned by
the function. In particular, an update operation to a data structure implemented in a purely
functional language returns a new data structure containing the updated values, while leaving
the original data structure unchanged. Data structures implemented in purely functional
languages are therefore persistent in the strongest possible sense, as they allow unrestricted
access for both reading and updating all versions of the data structure.
An example of a purely functional language is pure LISP [64]. Side-effect-free code can
also be written in functional languages such as ML [70], most existing variants of LISP (e.g.,
Common LISP [80]) or Haskell [46], by eschewing the destructive operations supported by
these languages.

FIGURE 5.2 Structure of versions for (a) partial and (b) full persistence.

This section aims to cover a selection of the major results relating to the above forms of persistence.
The body of work contains both ad hoc techniques for creating persistent data structures for particular
problems, as well as general techniques to make ephemeral data structures persistent. Indeed, early work
on persistence [17, 20, 30] focused almost exclusively on the former. Sarnak [75] and Driscoll et al. [28]
were the first to offer very efficient general techniques for partial and full persistence. These and related
results will form the bulk of the material in this chapter dealing with partial and full persistence. However,
the prospect of obtaining still greater efficiency led to the further development of some ad hoc persistent

5-4 CHAPTER 5. TOPICS IN DATA STRUCTURES

data structures [25, 26, 41]. The results on functional data structureswill largely focus on implementations
of individual data structures.

There has also been some research into data structures that support backtrack or rollback operations,
whereby the data structure can be reset to some previous state. We do not cover these operations in this
section, but we note that fully persistent data structures support backtracking (although sometimes not
as efficiently as data structures designed especially for backtracking). Data structures with backtracking
for the union–find problem are covered in Section 5.4.

Persistent data structures have numerous applications, including text, program and file editing and
maintenance, computational geometry, tree pattern matching and inheritance in object-oriented pro-
gramming languages. One elegant application of partially persistent search trees to the classical geometric
problem of planar point location was given by Sarnak and Tarjan [76]. Suppose the Euclidean plane is
divided into polygons by a collection of n line segments that intersect only at their endpoints (see Fig. 5.3),
and we want to preprocess the collection of line segments so that, given a query point p, we can efficiently
determine the polygon to which p belongs. Sarnak and Tarjan achieve this by combining the well-known
plane sweep technique with a persistent data structure.

FIGURE 5.3 A planar subdivision.

Imagine moving an infinite vertical line (called the sweep line) from left to right across the plane,
beginning at the leftmost endpoint of any line segment. As the sweep line moves, we maintain the line
segments currently intersecting the sweep line in a balanced binary search tree, in order of their point
of intersection with the sweep line (i.e., of two line segments, the one that intersects the sweep line at a
higher location is considered smaller). Figure 5.4 shows the evolution of the search tree as the sweep line
continues its progress from left to right. Note that the plane is divided into vertical slabs, within which the
search tree does not change.

Given a query pointp, we first locate the slab in which the x-coordinate of p lies. If we could remember
what our search tree looked like while the sweep line was in this slab, we could query the search tree using
the y-coordinate of p to find the two segments immediately above and below p in this slab; these line
segments uniquely determine the polygon in which p lies. However, if we maintained the line segments
in a partially persistent search tree as the sweep line moves from left to right, all incarnations of the search
tree during this process are available for queries.

Sarnak and Tarjan show that it is possible to perform the preprocessing (which merely consists of
building up the persistent tree) inO(n log n) time. The data structure usesO(n) space and can be queried
inO(log n) time, giving a simple optimal solution to the planar point location problem.

5.1. INTRODUCTION 5-5

FIGURE 5.4 The evolution of the search tree during the plane sweep.

Models of Computation

Different models of computation have been developed for analyzing data structures. One model of
computation is the random access machine, whose memory consists of an unbounded sequence of
registers, each of which is capable of holding an integer. In this model, arithmetic operations are allowed
to compute the address of a memory register. Usually, it is assumed that the size of a register is bounded
byO(log n)1 bits, where n is the input problem size. Amore formal definition of random access machines
can be found in [4]. Another model of computation, known as the cell probe model of computation, was
introduced by Yao [99]. In the cell probe, the cost of a computation is measured by the total number of
memory accesses to a random access memory with �log n� bits cell size. All other computations are not
accounted for and are considered to be free. Note that the cell probemodel is more general than a random
access machine, and thus, is more suitable for proving lower bounds. A third model of computation is
the pointer machine [13, 54, 55, 77, 85]. Its storage consists of an unbounded collection of registers (or
records) connected by pointers. Each register can contain an arbitrary amount of additional information
but no arithmetic is allowed to compute the address of a register. The only possibility to access a register is
by following pointers. This is themain difference between random accessmachines and pointermachines.
Throughout this chapter, we use the terms random-access algorithms, cell-probe algorithms, and pointer-
based algorithms to refer to algorithms respectively for random access machines, the cell probe model, and
pointer machines.

Among pointer-based algorithms, two different classes were defined specifically for set union problems:
separable pointer algorithms [85] and nonseparable pointer algorithms [69].

Separable pointer algorithms runon apointermachine and satisfy the separability assumption as defined
in [85] (see below). A separable pointer algorithmmakes use of a linked data structure, namely a collection
of records and pointers that can be thought of as a directed graph: each record is represented by a node and
each pointer is represented by an edge in the graph. The algorithm solves the set union problem according
to the following rules [14, 85]:

(i) The operations must be performed on line, i.e., each operation must be executed before the
next one is known.

(ii) Each element of each set is a node of the data structure. There can be also additional (working)
nodes.

1Throughout this chapter all logarithms are assumed to be to the base 2, unless explicitly otherwise specified.

5-6 CHAPTER 5. TOPICS IN DATA STRUCTURES

(iii) (Separability). After each operation, the data structure can be partitioned into disjoint sub-
graphs such that each subgraph corresponds to exactly one current set. The name of the set
occurs in exactly one node in the subgraph. No edge leads from one subgraph to another.

(iv) To perform find(x), the algorithm obtains the node v corresponding to element x and follows
paths starting from v until it reaches the node which contains the name of the corresponding
set.

(v) During any operation the algorithm may insert or delete any number of edges. The only
restriction is that rule (iii) must hold after each operation.

The class of nonseparable pointer algorithms [69] does not require the separability assumption. The only
requirement is that the number of edges leaving eachnodemust be boundedby some constant c > 0. More
formally, rule (iii) above is replaced by the following rule, while the other four rules are left unchanged:

(iii) There exists a constant c > 0 such that there are at most c edges leaving a node.

As we will see later on, often separable and nonseparable pointer-based algorithms admit quite different
upper and lower bounds for the same problems.

5.2 The Set Union Problem

As defined in the previous section, the set union problem consists of performing a sequence of union and
find operations, starting from a collection of n singleton sets {1}, {2}, . . . , {n}. The initial name of set {i} is
i. As there are atmost n items to be united, the number of unions in any sequence of operations is bounded
above by (n − 1). There are two invariants which hold at any time for the set union problem: first, the
sets are always disjoint and define a partition of {1, 2, . . . , n}; second, the name of each set corresponds
to one of the items contained in the set itself. Both invariants are trivial consequences of the definition of
union and find operations.
A different version of this problem considers the following operation in place of unions:

unite(A,B): Combine the two sets A and B into a new set, whose name is either A or B.

The only difference between union and unite is that unite allows the name of the new set to be arbitrarily
chosen (e.g., at run time by the algorithm). This is not a significant restriction in many applications,
where one is mostly concerned with testing whether two elements belong to the same set, no matter what
the name of the set can be. However, some extensions of the set union problem have quite different time
bounds depending on whether unions or unites are considered. In the following, we will deal with unions
unless explicitly specified otherwise.

Amortized Time Complexity

In this section we describe algorithms for the set union problem [84, 89] giving the optimal amortized
time complexity per operation. We only mention here that the amortized time is the running time per
operation averaged over a worst-case sequence of operations, and refer the interested reader to [88] for a
more detailed definition of amortized complexity. For the sake of completeness, we first survey some of
the basic algorithms that have been proposed in the literature [4, 31, 38]. These are: the quick-find, the
weighted quick-find, the quick-union, and the weighted quick-union algorithms. The quick-find algorithm
performs find operations quickly, while the quick-union algorithm performs union operations quickly.
Their weighted counterparts speed these computations up by introducing some weighting rules during
union operations.
Most of these algorithms represent sets as rooted trees, following a technique introduced first by Galler

and Fischer [38]. There is a tree for each disjoint set, and nodes of a tree correspond to elements of the

5.2. THE SET UNION PROBLEM 5-7

corresponding set. The name of the set is stored in the tree root. Each tree node has a pointer to its parent:
in the following, we refer to p(x) as the parent of node x.
The quick-find algorithm can be described as follows. Each set is represented by a tree of height 1.

Elements of the set are the leaves of the tree. The root of the tree is a special node which contains the name
of the set. Initially, singleton set {i}, 1 ≤ i ≤ n, is represented by a tree of height 1 composed of one leaf
and one root. To perform a union(A,B), all the leaves of the tree corresponding to B are made children
of the root of the tree corresponding to A. The old root of B is deleted. This maintains the invariant
that each tree is of height 1 and can be performed inO(|B|) time, where |B| denotes the total number of
elements in set B. Since a set can have as many as O(n) elements, this gives an O(n) time complexity in
the worst case for each union. To perform a find(x), return the name stored in the parent of x. Since all
trees are maintained of height 1, the parent of x is a tree root. Consequently a find requiresO(1) time.
A more efficient variant attributed to McIlroy and Morris (see [4]) and known as weighted quick-find

uses the freedom implicit in each union operation according to the following weighting rule.

Union by size: Make the children of the root of the smaller tree point to the root of the larger,
arbitrarily breaking a tie. This requires that the size of each tree is maintained throughout any
sequence of operations.

Although this rule does not improve the worst-case time complexity of each operation, it improves to
O(log n) the amortized bound of a union (see, e.g., [4]).
The quick-union algorithm [38] can be described as follows. Again, each set is represented by a tree.

However, there are two main differences with the data structure used by the quick-find algorithm. The
first is that now the height of a tree can be greater than 1. The second is that each node of each tree
corresponds to an element of a set and therefore there is no need for special nodes. Once again, the root
of each tree contains the name of the corresponding set. A union(A,B) is performed by making the tree
root of set B child of the tree root of set A. A find(x) is performed by starting from the node x and by
following the pointer to the parent until the tree root is reached. The name of the set stored in the tree
root is then returned. As a result, the quick-union algorithm is able to support each union in O(1) time
and each find inO(n) time.
This time bound can be improved by using the freedom implicit in each union operation, according to

one of the following two union rules. This gives rise to two weighted quick-union algorithms.

Union by size: Make the root of the smaller tree point to the root of the larger, arbitrarily
breaking a tie. This requires maintaining the number of descendants for each node, in the
following referred to as the size of a node, throughout all the sequence of operations.

Union by rank: [89]Make the root of the shallower tree point to the root of the other, arbitrarily
breaking a tie. This requires maintaining the height of the subtree rooted at each node, in the
following referred to as the rank of a node, throughout all the sequences of operations.

After a union(A,B), the name of the new tree root is set toA. It can be easily proved (see, e.g., [89]) that
the height of the trees achieved with either the “union by size” or the “union by rank” rule is never more
than log n. Thus, with either rule each union can be performed in O(1) time and each find in O(log n)
time.
A better amortized bound can be obtained if one of the following compaction rules is applied to the path

examined during a find operation (see Fig. 5.5).

Path compression [45]: Make every encountered node point to the tree root.

Path splitting [93, 94]: Make every encountered node (except the last and the next to last)
point to its grandparent.

Path halving [93, 94]: Make every other encountered node (except the last and the next to last)
point to its grandparent.

5-8 CHAPTER 5. TOPICS IN DATA STRUCTURES

FIGURE 5.5 Illustrating path compaction techniques: (a) the tree before performing a find(x) operation; (b) path

compression; (c) path splitting; (d) path halving.

Combining the two choices of a union rule and the three choices of a compaction rule, six possible
algorithms are obtained. As shown in [89] they all have an O(α(m + n, n)) amortized time complexity,
where α is a very slowly growing function, a functional inverse of Ackermann’s function [1].

THEOREM 5.1 [89] The algorithms with either linking by size or linking by rank and either compression,
splitting or halving run inO(n+mα(m+ n, n)) time on a sequence of at most (n− 1) unions andm finds.

No better amortized bound is possible for separable and nonseparable pointer algorithms or in the cell
probe model of computation [32, 56, 89].

THEOREM 5.2 [32, 56, 89] Any pointer-based or cell-probe algorithm requires �(n + mα(m + n, n))
worst-case time for processing a sequence of (n− 1) unions andm finds.

Single-Operation Worst-Case Time Complexity

The algorithms that use any union and any compaction rule have still single-operation worst-case time
complexity O(log n) [89], since the trees created by any of the union rules can have height as large as
O(log n). Blum [14] proposed a data structure for the set union problem that supports each union and
find in O(log n/ log log n) time in the worst case, and showed that this is the actual lower bound for
separable pointer-based algorithms.

The data structure used to establish the upper bound is called k–UF tree. For any k ≥ 2, a k–UF tree is
a rooted tree such that: (i) the root has at least two children; (ii) each internal node has at least k children;
and (iii) all the leaves are at the same level. As a consequence of this definition, the height of a k–UF tree

5.2. THE SET UNION PROBLEM 5-9

with n leaves is at most �logk n�. We refer to the root of a k–UF tree as fat if it has more than k children,
and as slim otherwise. A k–UF tree is said to be fat if its root is fat, otherwise it is referred to as slim.
Disjoint sets can be represented by k–UF trees as follows. The elements of the set are stored in the leaves

and the name of the set is stored in the root. Furthermore, the root also contains the height of the tree and
a bit specifying whether it is fat or slim. A find(x) is performed as described in the previous section by
starting from the leaf containing x and returning the name stored in the root. This can be accomplished
in O(logk n) worst-case time. A union(A,B) is performed by first accessing the roots rA and rB of the
corresponding k–UF trees TA and TB . Blum assumed that his algorithm obtained in constant time rA
and rB before performing a union(A,B). If this is not the case, rA and rB can be obtained by means
of two finds (i.e., find(A) and find(B)), due to the property that the name of each set corresponds to
one of the items contained in the set itself. We now show how to unite the two k–UF trees TA and TB .
Assume without loss of generality that height (TB) ≤ height (TA). Let v be the node on the path from
the leftmost leaf of TA to rA with the same height as TB . Clearly, v can be located by following the leftmost
path starting from the root rA for exactly height (TA) − height (TB) steps. When merging TA and TB ,
only three cases are possible, which give rise to three different types of unions.

Type 1: Root rB is fat (i.e., has more than k children) and v is not the root of TA. Then rB is
made a sibling of v.

Type 2: Root rB is fat and v is fat and equal to rA (the root of TA). A new (slim) root r is
created and both rA and rB are made children of r .

Type 3: This deals with the remaining cases, i.e., either root rB is slim or v = rA is slim. If
root rB is slim, then all the children of rB are made the rightmost children of v, and rB is
deleted. Otherwise, all the children of the slim node v = rA are made the rightmost children
of rB , and rA is deleted.

THEOREM 5.3 [14] k–UF trees can support each union and find inO(log n/ log log n) time in the worst
case. Their space complexity isO(n).

PROOF Eachfindcanbeperformed inO(logk n) time. Eachunion(A,B) canrequire atmostO(logk n)
time to locate the nodes rA, rB and v as defined above. Both type 1 and type 2 unions can be performed
in constant time, while type 3 unions require at most O(k) time, due to the definition of a slim root.
Choosing k = �log n/ log log n� yields the claimed time bound. The space complexity derives from the
fact that a k–UF tree with � leaves has at most (2� − 1) nodes. Thus, the forest of k–UF trees requires at
most a total ofO(n) space to store all the disjoint sets.

Blum showed also that this bound is tight for the class of separable pointer algorithms, while Fredman
and Saks [32] showed that the same lower bound holds in the cell probe model of computation.

THEOREM 5.4 [14, 32] Every separable pointer or cell-probe algorithm for the disjoint set union problem
has single-operation worst-case time complexity at least�(log n/ log log n).

Special Linear Cases

The six algorithms using either union rule and either compaction rule as described in “Amortized Time
Complexity” run inO(n+mα(m, n)) time on a sequence of at most (n−1) union andm find operations.
As stated in Theorem 5.2, no better amortized bound is possible for either pointer-based algorithms or
in the cell probe model of computation. This does not exclude, however, that a better bound is possible
for a special case of set union. Gabow and Tarjan [34] indeed proposed a random-access algorithm that

5-10 CHAPTER 5. TOPICS IN DATA STRUCTURES

runs in linear time in the special case where the structure of the union operations is known in advance.
Interestingly, Tarjan’s lower bound for separable pointer algorithms applies also to this special case, and
thus, the power of a randomaccessmachine seems necessary to achieve a linear-time algorithm. This result
is of theoretical interest as well as being significant in many applications, such as scheduling problems,
the off-line minimum problem, finding maximum matching on graphs, VLSI channel routing, finding
nearest common ancestors in trees, and flow graph reducibility [34].
The problem can be formalized as follows. We are given a tree T containing n nodes which correspond

to the initial n singleton sets. Denoting by p(v) the parent of the node v in T , we have to perform a
sequence of union and find operations such that each union can be only of the form union(p(v), v). For
such a reason, T is called the static union tree and the problem will be referred to as the static tree set union.
Also the case in which the union tree can dynamically grow by means of new node insertions (referred to
as incremental tree set union) can be solved in linear time.

THEOREM 5.5 [34] If the knowledge about the union tree is available in advance, each union and find
operation can be supported inO(1) amortized time. The total space required isO(n).

The same algorithm given for the static tree set union can be extended to the incremental tree set union
problem. For this problem, the union tree is not known in advance but is allowed to grow only one node
at the time during the sequence of union and find operations. This has application in several algorithms
for finding maximum matching in general graphs.

THEOREM 5.6 [34] The algorithm for incremental tree set union runs in a total of O(m + n) time and
requiresO(n) preprocessing time and space.

Loebl and Nešetřil [58] presented a linear-time algorithm for another special case of the set union
problem. They considered sequences of unions and finds with a constraint on the subsequence of finds.
Namely, the finds are listed in a postorder fashion, where a postorder is a linear ordering of the leaves
induced by a drawing of the tree in the plane. In this framework, they proved that such sequences of union
and find operations can be performed in linear time, thus, gettingO(1) amortized time per operation. A
preliminary version of these results was reported in [58].

5.3 The Set Union Problem on Intervals

In this section, we describe efficient solutions to the set union problem on intervals, which can be defined
as follows. Informally, we would like to maintain a partition of a list {1, 2, . . . , n} in adjacent intervals. A
union operation joins two adjacent intervals, a find returns the name of the interval containing x and a
split divides the interval containing x (at x itself). More formally, at any time we maintain a collection of
disjoint sets Ai with the following properties. The Ai ’s, 1 ≤ i ≤ k, are disjoint sets whose members are
ordered by the relation ≤, and such that ∪ki=1Ai = {1, 2, . . . , n}. Furthermore, every item in Ai is less
than or equal to all the items in Ai+1, for i = 1, 2, . . . , n− 1. In other words, the intervals Ai partition
the interval [1, n]. SetAi is said to be adjacent to setsAi−1 andAi+1. The set union problem on intervals
consists of performing a sequence of the following three operations:

union(S1, S2, S): Given the adjacent sets S1 and S2, combine them into a new set S = S1∪S2;
find(x): Given the item x, return the name of the set containing x;

split(S, S1, S2, x): Partition S into two sets S1 = {a ∈ S|a < x} and S2 = {a ∈ S|a ≥ x}.
Adopting the same terminology used in [69], we will refer to the set union problem on intervals

as the interval union-split-find problem. After discussing this problem, we consider two special cases:

5.3. THE SET UNION PROBLEM ON INTERVALS 5-11

the interval union-find problem and the interval split-find problem, where only union-find and split-find
operations are allowed, respectively. The interval union-split-find problem and its subproblems have
applications in a wide range of areas, including problems in computational geometry such as dynamic
segment intersection [49, 67, 68], shortest paths problems [6, 66], and the longest common subsequence
problem [5, 48].

Interval Union-Split-Find

In this section we will describe optimal separable and nonseparable pointer algorithms for the interval
union-split-find problem. The best separable algorithm for this problem runs inO(log n)worst-case time
for each operation, while nonseparable pointer algorithms require only O(log log n) worst-case time for
each operation. In both cases, no better bound is possible.
The upper bound for separable pointer algorithms can be easily obtained bymeans of balanced trees [4,

21], while the lower bound was proved by Mehlhorn et al. [69].

THEOREM 5.7 [69] For any separable pointer algorithm, both the worst-case per operation time complexity
of the interval split-find problem and the amortized time complexity of the interval union-split-find problem
are�(log n).

Turning to nonseparable pointer algorithms, the upper bound can be found in [52, 68, 91, 92]. In
particular, van Emde Boas et al. [92] introduced a priority queue which supports among other operations
insert, delete, and successor on a set with elements belonging to a fixed universe S = {1, 2, . . . , n}. The time
required by each of those operation is O(log log n). Originally, the space was O(n log log n) but later it
was improved toO(n). It is easy to show (see also [69]) that the above operations correspond respectively
to union, split, and find, and therefore the following theorem holds.

THEOREM 5.8 [91] Each union, find and split can be supported in O(log log n) worst-case time. The
space required isO(n).

We observe that the algorithm based on van Emde Boas’ priority queue is inherently nonseparable.
Mehlhornetal. [69]proved that this is indeed thebestpossibleboundthat canbeachievedbyanonseparable
pointer algorithm:

THEOREM 5.9 [69] For any nonseparable pointer algorithm, both the worst-case per operation time com-
plexity of the interval split-find problem and the amortized time complexity of the interval union-split-find
problem are�(log log n).

Notice that Theorems 5.7 and 5.8 imply that for the interval union-split-find problem the separability
assumption causes an exponential loss of efficiency.

Interval Union-Find

The interval union-find problem can be seen from two different perspectives: indeed it is a special case of
theunion-split-findproblem,whenno split operations are performed, and it is a restrictionof the set union
problem described in Section 5.2, where only adjacent intervals are allowed to be joined. Consequently,
theO(α(m+ n, n)) amortized bound given in Theorem 5.1 and theO(log n/ log log n) single-operation
worst-case bound given in Theorem 5.3 trivially extend to interval union–find. Tarjan’s proof of the
�(α(m+n, n)) amortized lower bound for separable pointer algorithms also holds for the interval union–

5-12 CHAPTER 5. TOPICS IN DATA STRUCTURES

find problem, while Blum and Rochow [15] have adapted Blum’s original lower bound proof for separable
pointer algorithms to interval union–find. Thus, the best bounds for separable pointer algorithms are
achieved by employing the more general set union algorithms. On the other side, the interval union–find
problem can be solved in O(log log n) time per operation with the nonseparable algorithm of van Emde
Boas [91], while Gabow and Tarjan used the data structure described in “Special Linear Cases” to obtain
anO(1) amortized time for interval union–find on a random access machine.

Interval Split–Find

According toTheorems5.7, 5.8, and5.9, the two algorithms given for themore general interval union-split-
findproblem, are still optimal for the single-operationworst-case time complexity of the interval split–find
problem. As a result, each split and find operation can be supported in (log n) and in (log log n) time,
respectively, in the separable and nonseparable pointer machine model.

As shown by Hopcroft and Ullman [45], the amortized complexity of this problem can be reduced
to O(log∗ n), where log∗ n is the iterated logarithm function.2 Their algorithm works as follows. The
basic data structure is a tree, for which each node at level i, i ≥ 1, has at most 2f (i−1) children, where
f (i) = f (i − 1)2f (i−1), for i ≥ 1, and f (0) = 1. A node is said to be complete either if it is at level 0
or if it is at level i ≥ 1 and has 2f (i−1) children, all of which are complete. A node that is not complete
is called incomplete. The invariant maintained for the data structure is that no node has more than two
incomplete children. Moreover, the incomplete children (if any) will be leftmost and rightmost. As in the
usual tree data structures for set union, the name of a set is stored in the tree root.

Initially, such a tree with n leaves is created. Its height isO(log∗ n) and therefore a find(x) will require
O(log∗ n) time to return the name of the set. To perform a split(x), we start at the leaf corresponding to
x and traverse the path to the root to partition the tree into two trees. It is possible to show that using
this data structure, the amortized cost of a split is O(log∗ n) [45]. This bound can be further improved
to O(α(m, n)) as shown by Gabow [33]. The algorithm used to establish this upper bound relies on a
sophisticated partition of the items contained in each set.

THEOREM 5.10 [33] There exists a data structure supporting a sequence ofm find and split operations in
O(mα(m, n)) worst-case time. The space required isO(n).

La Poutré [56] proved that this bound is tight for (both separable and nonseparable) pointer-based
algorithms.

THEOREM 5.11 [56] Any pointer-based algorithm requires �(n + mα(m, n)) time to perform (n − 1)
split andm find operations.

Using the power of a random access machine, Gabow and Tarjan were able to achieve (1) amortized
time for the interval split–find problem [34]. This bound is obtained by employing a slight variant of the
data structure sketched in “Special Linear Cases.”

2log∗ n = min{i | log[i] n ≤ 1}, where log[i] n = log log[i−1] n for i > 0 and log[0] n = n.

5.4. THE SET UNION PROBLEMWITH DEUNIONS 5-13

5.4 The Set Union Problem with Deunions

Mannila and Ukkonen [59] defined a generalization of the set union problem, which they called set union
with deunions. In addition to union and find, the following operation is allowed.

deunion: Undo the most recently performed union operation not yet undone.

Motivations for studying this problem arise in logic programming, and more precisely in memory
management of interpreters without function symbols [40, 60, 61, 96]. In Prolog, for example, variables
of clauses correspond to the elements of the sets, unifications correspond to unions and backtracking
corresponds to deunions [60].

Algorithms for Set Union with Deunions

The set union problem with deunions can be solved by a modification of Blum’s data structure described
in “Single-Operation Worst-Case Time Complexity.” To facilitate deunions, we maintain a union stack
that stores some bookkeeping information related to unions. Finds are performed as in “Single-Operation
Worst-CaseTimeComplexity.” Unions require some additionalwork tomaintain the union stack. Wenow
sketch which information is stored in the union stack. For sake of simplicity we do not take into account
names of the sets (namely, we show how to handle unite rather than union operations): names can be
easily maintained in some extra information stored in the union stack. Initially, the union stack is empty.
When a type 1 union is performed, we proceed as in “Single-Operation Worst-Case Time Complexity”
and then push onto the union stack a record containing a pointer to the old root rB . Similarly, when a
type 2 union is performed, we push onto the union stack a record containing a pointer to rA and a pointer
to rB . Finally, when a type 3 union is performed, we push onto the union stack a pointer to the leftmost
child of either rB or rA, depending on the two cases.
Deunions basically use the top stack record to invalidate the last union performed. Indeed, we pop the

top record from the union stack, and check whether the union to be undone is of type 1, 2, or 3. For type
1 unions, we follow the pointer to rB and delete the edge leaving this node, thus, restoring it as a root.
For type 2 unions, we follow the pointers to rA and rB and delete the edges leaving these nodes and their
parent. For type 3 unions, we follow the pointer to the node, and move it together with all its right sibling
as a child of a new root.
It can be easily showed that this augmented version of Blum’s data structure supports each union, find,

and deunion inO(log n/ log log n) time in the worst case, with anO(n) space usage. This was proved to
be a lower bound for separable pointer algorithms by Westbrook and Tarjan [97]:

THEOREM 5.12 [97] Every separable pointer algorithm for the set union problem with deunions requires
at least�(log n/ log log n) amortized time per operation.

All of the union rules and path compaction techniques described in “Amortized Time Complexity”
can be extended in order to deal with deunions using the same bookkeeping method (i.e., the union
stack) described above. However, path compression with any one of the union rules leads to anO(log n)
amortized algorithm, as it can be seen by first performing (n− 1) unions which build a binomial tree (as
defined, for instance, in [89]) of depthO(log n) and then by repeatedly carrying out a find on the deepest
leaf, a deunion, and a redo of that union. Westbrook and Tarjan [97] showed that using either one of the
union rules combined with path splitting or path halving yield O(log n/ log log n) amortized algorithms
for the set union problem with deunions. We now describe their algorithms.
In the following, a union operation not yet undone will be referred to as live, and as dead otherwise.

To handle deunions, again a union stack is maintained, which contains the roots made nonroots by live
unions. Additionally, we maintain for each node x a node stack P(x), which contains the pointers leaving

5-14 CHAPTER 5. TOPICS IN DATA STRUCTURES

x created either by unions or by finds. During a path compaction caused by a find, the old pointer leaving
x is left in P(x) and each newly created pointer (x, y) is pushed onto P(x). The bottommost pointer on
these stacks is created by a union and will be referred to as a union pointer. The other pointers are created
by the path compaction performed during the find operations and are called find pointers. Each of these
pointers is associated with a unique union operation, the one whose undoing would invalidate the pointer.
The pointer is said to be live if the associated union operation is live, and it is said to be dead otherwise.
Unions are performed as in the set union problem, except that for each union a new item is pushed

onto the union stack, containing the tree root made nonroot and some bookkeeping information about
the set name and either size or rank. To perform a deunion, the top element is popped from the union
stack and the pointer leaving that node is deleted. The extra information stored in the union stack is used
to maintain set names and either sizes or ranks.
There are actually two versions of these algorithms, depending on when dead pointers are removed

from the data structure. Eager algorithms pop pointers from the node stacks as soon as they become
dead (i.e., after a deunion operation). On the other hand, lazy algorithms remove dead pointers in a lazy
fashion while performing subsequent union and find operations. Combined with the allowed union and
compaction rules, this gives a total of eight algorithms. They all have the same time and space complexity,
as the following theorem shows.

THEOREM 5.13 [97]Either union by size or union by rank in combinationwith either path splitting or path
halving gives both eager and lazy algorithms which run inO(log n/ log log n) amortized time for operation.
The space required by all these algorithms isO(n).

The Set Union Problem with Unlimited Backtracking

Other variants of the set union problem with deunions have been considered such as set union with
arbitrary deunions [36, 63], set union with dynamic weighted backtracking [39], and set union with
unlimited backtracking [9]. In this chapter, we will discuss only set union with unlimited backtracking
and refer the interested readers to the references for the other problems.
As before, we denote a union not yet undone by live, and by dead otherwise. In the set union problem

with unlimited backtracking, deunions are replaced by the following more general operation:

backtrack(i): Undo the last i live unions performed. i is assumed to be an integer, i ≥ 0.

The name of this problem derives from the fact that the limitation that at most one union could be
undone per operation is removed.
Note that this problem is more general than the set union problem with deunions, since a deunion can

be simply implemented as backtrack(1). Furthermore, a backtrack(i) can be implemented by performing
exactly i deunions. Hence, a sequence of m1 unions, m2 finds, and m3 backtracks can be carried out by
simply performing atmostm1 deunions instead of the backtracks. Applying eitherWestbrook andTarjan’s
algorithms or Blum’s modified algorithm to the sequence of union, find, and deunion operations, a total
of O((m1 + m2) log n/ log log n) worst-case running time will result. As a consequence, the set union
problem with unlimited backtracking can be solved inO(log n/ log log n) amortized time per operation.
Since deunions are a special case of backtracks, this bound is tight for the class of separable pointer
algorithms because of Theorem 5.12.
However, using either Westbrook and Tarjan’s algorithms or Blum’s augmented data structure, each

backtrack(i) can require �(i log n/ log log n) in the worst case. Indeed, the worst-case time complexity
of backtrack(i) is at least �(i) as long as one insists on deleting pointers as soon as they are invalidated
by backtracking (as in the eager methods described in “Algorithms for Set Union with Deunions,” since
in this case at least one pointer must be removed for each erased union. This is clearly undesirable, since
i can be as large as (n− 1).

5.5. PARTIAL AND FULL PERSISTENCE 5-15

The following theorem holds for the set union with unlimited backtracking, when union operations
are taken into account.

THEOREM 5.14 [37] It is possible to perform each union, find and backtrack(i) in O(log n) time in the
worst case. This bound is tight for nonseparable pointer algorithms.

Apostolico et al. [9] showed that, when unites instead of unions are performed (i.e., when the name of
the new set can be arbitrarily chosen by the algorithm), a better bound for separable pointer algorithms
can be achieved:

THEOREM 5.15 [9] There exists a data structure which supports each unite and find operation in
O(log n/ log log n) time, each backtrack inO(1) time, and requiresO(n) space.

No better bound is possible for any separable pointer algorithm or in the cell probe model of compu-
tation, as it can be shown by a trivial extension of Theorem 5.4.

5.5 Partial and Full Persistence

In this section we cover general techniques for partial and full persistence. The time complexities of these
techniques will generally be expressed in terms of slowdowns with respect to the ephemeral query and
update operations. The slowdowns will usually be functions of m, the number of versions. A slowdown
of Tq(m) for queries means, for example, that a persistent query to a version which is a data structure of
size n is accomplished in time O(Tq(m) ·Q(n)) time, where Q(n) is the running time of an ephemeral
query operation on a data structure of size n.

Methods for Arbitrary Data Structures

The Fat Node Method

A very simple idea for making any data structure partially persistent is the fat nodemethod, which
works as follows. The m versions are numbered by integers from 1 (the first) to m (the last). We will
take the convention that if a persistent query specifies version t , for some 1 ≤ t ≤ m, then the query is
answered according to the state of the data structure as it was after version t was created but before (if
ever) version t + 1 was begun.
Each memory location µ in the ephemeral data structure can be associated with a set C(µ) containing

pairs of the form 〈t, v〉, where v is a value and t is a version number, sometimes referred to as the time
stamp of v. A pair 〈t, v〉 is present in C(µ) if and only if (a) memory location µ was modified while
creating version t and (b) at the completion of version t , the location µ contained the value v. For every
memory location µ in the ephemeral data structure, we associate an auxiliary data structureA(µ), which
stores C(µ) ordered by time stamp.
In order to perform a persistent query in version t we simulate the operation of the ephemeral query

algorithm. Whenever the ephemeral query algorithm attempts to read a memory location µ, we query
A(µ) to determine the value ofµ in version t . Let t∗ be the largest time stamp inC(µ)which is less than or
equal to t . Clearly, the required value is v∗ where 〈t∗, v∗〉 ∈ C(µ). Creating versionm+ 1 by modifying
version m is also easy: if memory locations µ1, µ2, . . . were modified while creating version m + 1, and
the values of these locations in version m + 1 were v1, v2, . . ., we simply insert the pair 〈m + 1, vi〉 to
A(µi) for i = 1, 2,
If we implement the auxiliary data structures as red-black trees [21] then it is possible to query A(µ)

in O(log |C(µ)|) = O(logm) time and also to add a new pair to A(µ) in O(1) amortized time (this is

5-16 CHAPTER 5. TOPICS IN DATA STRUCTURES

possible because the new pair will always have a time stamp greater than or equal to any time stamp in
C(µ)). In fact, we can even obtainO(1) worst-case slowdown for updates by using a data structure given
in [57]. Note that each ephemeral memorymodification performed during a persistent update also incurs
a space cost ofO(1) (in general this is unavoidable). We thus obtain the following theorem.

THEOREM 5.16 [28] Any data structure can be made partially persistent with slowdown O(logm) for
queries andO(1) for updates. The space cost isO(1) for each ephemeral memory modification.

The fat node method can be extended to full persistence with a little work. Again, we will take the
convention that a persistent query on version t is answered according to the state of the data structure as it
was after version t was created but before (if ever) it was modified to create any descendant version. Again,
each memory location µ in the ephemeral data structure will be associated with a set C(µ) containing
pairs of the form 〈t, v〉, where v is a value and t is a version (the timestamp). The rules specifying what
pairs are stored in C(µ) are somewhat more complicated. The main difficulty is that the versions in full
persistence are only partially ordered. In order to find out the value of a memory location µ in version t ,
we need to find the deepest ancestor of t in the version tree where µ was modified (this problem is similar
to the inheritance problem for object-oriented languages).
One solution is to impose a total order on the versions by converting the version tree into a version list,

which is simply a pre-order listing of the version tree. Whenever a new version is created, it is added to the
version list immediately after its parent, thus inductively maintaining the pre-ordering of the list. We now
compare any two versions as follows: the one which is further to the left in the version list is considered
smaller.
For example, a version list corresponding to the tree in Fig. 5.6 is [a, b, c, f, g, h, i, j, l, m, n, o, k, d, e],

and by the linearization, version f is considered to be less than version m, and version j is considered to
be less than version l.

FIGURE 5.6 Navigating in full persistence: an example version tree.

Now consider a particular memory location π which was modified in versions b, h, and i of the data
structure, with values B, H , and I being written to it in these versions. The following table shows the
value of π in each version in the list (a⊥means that no value has yet been written to π and hence its value
may be undefined):

Version a b c f g h i j l m n o k d e

Value ⊥ B B B ⊥ H I H H H H H H ⊥ ⊥
As can be seen in the above example, if π is modified in versions b, h and i, the version list is divided into

5.5. PARTIAL AND FULL PERSISTENCE 5-17

intervals containing respectively the sets {a}, {b, c, f }, {g}, {h}, {i}, {j, l, m, n, o, k}, {d, e}, such that for
all versions in that interval, the value of π is the same. In general, the intervals of the version list for which
the answer is the same will be different for different memory locations.
Hence, for each memory location µ, we define C(µ) to contains pairs of the form 〈t, v〉, where t is the

leftmost version in its interval, and v is the value of µ in version t . Again, C(µ) is stored in an auxiliary
data structure A(µ) ordered by time-stamp (the ordering among versions is as specified by the version
list). In the example above, C(π) would contain the following pairs:

〈a,⊥〉, 〈b, B〉, 〈g,⊥〉, 〈h,H 〉, 〈i, I 〉, 〈j,H 〉, 〈d,⊥〉 .

In order to determine the value of somememory locationµ in version t , we simply search among the pairs
stored in A(µ), comparing versions, until we find the left endpoint of the interval to which t belongs; the
associated value is the required answer.
How about updates? Let µ be any memory location, and firstly notice that if a new version is created in

which µ is not modified, the value of µ in this new version will be the same as the value of µ in its parent,
and the new version will be added to the version list right after its parent. This will simply enlarge the
interval to which its parent belongs, and will also not change the left endpoint of the interval. Hence, if µ
is not modified in some version, no change need be made to A(µ). On the other hand, adding a version
where µ is modified creates a new interval containing only the new version, and in addition may split an
existing interval into two. In general, if µ is modified in k different versions, C(µ) may contain up to
2k + 1 pairs, and in each update, up to two new pairs may need to be inserted into A(µ). In the above
example, if we create a new version p as a child of m and modify π to contain P in this version, then the
interval {j, l, m, n, o, k} splits into two intervals {j, l, m} and {n, o, k}, and the new interval consisting
only of {p} is created. Hence, we would have to add the pairs 〈n,H 〉 and 〈p, P 〉 to C(π).
Provided we can perform the comparison of two versions in constant time, and we store the pairs in

say a red-black tree, we can perform a persistent query by simulating the ephemeral query algorithm,
with a slowdown of O(log |C(µ)|) = O(logm), where m is the total number of versions. In the case of
full persistence, updates also incur a slowdown of O(logm), and incur a O(1) space cost per memory
modification. Maintaining the version list so that two versions can be compared in constant time to
determine which of the two is leftward is known as the list order problem, and has been studied in a
series of papers [22, 90], culminating in an optimal data structure by Dietz and Sleator [24] which allows
insertions and comparisons each inO(1) worst-case time. We conclude:

THEOREM 5.17 [28] Any data structure can be made fully persistent with slowdown O(logm) for both
queries and updates. The space cost isO(1) for each ephemeral memory modification.

Faster Implementations of the Fat Node Method

For arbitrary data structures, the slowdown produced by the fat node method can be reduced by
making use of the power of the RAMmodel. In the case of partial persistence, the versions are numbered
with integers from 1 tom, wherem is the number of versions, and special data structures for predecessor
queries on integer sets may be used. For instance, the van Emde Boas data structure [91, 92] processes
insertions, deletions, and predecessor queries on a set S ⊆ {1, . . . , m} inO(log logm) time each. By using
dynamic perfect hashing [27] to minimize space usage, the space required by this data structure can be
reduced to linear in the size of the data structure, at the cost of making the updates run in O(log logm)
expected time. We thus obtain:

THEOREM 5.18 [28, 27] Any data structure can be made partially persistent on a RAM with slowdown
O(log logm) for queries and expected slowdown O(log logm) for updates. The space cost is O(1) per
ephemeral memory modification.

5-18 CHAPTER 5. TOPICS IN DATA STRUCTURES

At first sight it does not appear possible to use the same approach for full persistence because the versions
are not integers. However, it turns out that algorithms for the list order problemwork by assigning integer
labels to the elements of the version list such that the labels increase monotonically from the beginning
to the end of the list. Furthermore, these labels are guaranteed to be in the range 1..mc where m is the
number of versions and c > 1 is some constant. This means we can once again use the van Emde Boas
data structure to search amongst the versions in O(log logm) time. Unfortunately, each insertion into
the version list may cause many of the integers to be relabeled, and making the changes to the appropriate
auxiliary structures may prove expensive. Dietz [23] shows how to combinemodifications to the list order
algorithms together with standard bucketing techniques to obtain:

THEOREM 5.19 [23] Any data structure can be made fully persistent on a RAM with slowdown
O(log logm) for queries and expected slowdown O(log logm) for updates. The space cost is O(1) per
ephemeral memory modification.

Methods for Linked Data Structures

Themethods discussed above, while efficient, are not optimal and some of them are not simple to code. By
placing some restrictions on the class of data structures which we want to make persistent, we can obtain
some very simple and efficient algorithms for persistence. One such subclass of data structures is that of
linked data structure.
A linked data structure is an abstraction of pointer-based data structures such as linked lists, search trees,

etc. Informally, a linked data structure is composed of a collection of nodes, each with a finite number of
named fields. Some of these fields are capable of holding an atomic piece of information, while others can
hold a pointer to some node (or the value nil). For simplicity we assume the nodes are homogenous (i.e.,
of the same type) and that all access to the data structure is through a single designated root node. Any
version of a linked data structure can be viewed as a directed graph, with vertices corresponding to nodes
and edges corresponding to pointers.
Queries are abstracted away as access operations which consist of a series of access steps. The access

algorithm has a collection of accessed nodes, which initially contains only the root. At each step, the
algorithm either reads information from one of the accessed nodes or follows a non-nil pointer from
one of the accessed nodes; the node so reached is then added to the set of accessed nodes. In actual
data structures, of course, the information read by the query algorithm would be used to determine the
pointers to follow as well as to compute an answer to return. Update operations are assumed to consist of
an intermixed sequence of access steps as before and update steps. An update step either creates an explicitly
initialized new node or writes a value to a field of some previously accessed node. We now discuss how
one might implement persistent access and update operations.

Path Copying

A very simple but wasteful method for persistence is to copy the entire data structure after every
update. Path copying is an optimization of this for linked data structures, which copies only “essential”
nodes. Specifically, if an update modifies a version v by changing values in a set S of nodes, then it suffices
to make copies of the nodes in S, together with all nodes that lie on a path from the root of version v
to any node in S. The handle to the new version is simply a pointer to the new root. One advantage of
this method is that traversing it is trivial: given a pointer to the root in some version, traversing it is done
exactly as in the ephemeral case.
This method performs reasonably efficiently in the case of balanced search trees. Assuming that each

node in the balanced search tree contains pointers only to its children, updates in balanced search trees
such as AVL trees [2] and red-black trees [21] would cause onlyO(log n) nodes to be copied (these would
be nodes either on the path from the root to the inserted or deleted item, or nodes adjacent to this path).

5.5. PARTIAL AND FULL PERSISTENCE 5-19

Note that this method does not work as well if the search tree only has an amortized O(log n) update
cost, e.g., in the case of splay trees [87, p. 53 ff]. We therefore get the following theorem, which was
independently noted by [74, 81].

THEOREM 5.20 There is a fully persistent balanced search tree with persistent update and query times
O(log n) and with space cost O(log n) per update, where n is the number of keys in the version of the data
structure which is being updated or queried.

Of course, for many other data structures, path copying may prove prohibitively expensive, and even
in the case of balanced search trees, the space complexity is non-optimal, as red-black trees with lazy
recoloring only modifyO(1) locations per update.

The Node Copying and Split Node Data Structures

An (ephemeral) bounded-degree linked data structure is one where the maximum in-degree, i.e., the
maximum number of nodes that are pointing to any node, is bounded by a constant. Many, if not most,
pointer-based data structures have this property, such as linked lists, search trees and so on (some of the
data structures covered earlier in this chapter do not have this property). Driscoll et al. [28] showed that
bounded-degree linked data structures could bemade partially or fully persistent very efficiently, bymeans
of the node copying and split node data structures respectively.
The source of inefficiency in the fat node data structure is searching among all the versions in the

auxiliary data structure associated with an ephemeral node, as there is no bound on the number of such
versions. The node copying data structure attempts to remedy this by replacing each fat node by a collection
of “plump” nodes, each of which is capable of recording a bounded number of changes to an ephemeral
node. Again, we assume that the versions are numbered with consecutive integers, starting from 1 (the
first) tom (the last). Analogously to the fat node data structure, each ephemeral node x is associated with
a set C(x) of pairs 〈t, r〉, where t is a version number, and r is a record containing values for each of the
fields of x. The setC(x) is stored in a collection of plump nodes, each of which is capable of storing 2d+1
pairs, where d is the bound on the in-degree of the ephemeral data structure.
The collection of plump nodes storing C(x) is kept in a linked list L(x). Let X be any plump node in

L(x) and let X′ the next plump node in the list, if any. Let τ denote the smallest time stamp in X′ if X′
exists, and let τ = ∞ otherwise. The list L(x) is sorted by time stamp in the sense that all pairs in X
are sorted by time stamp and all time stamps in X are smaller than τ . Each pair 〈t, r〉 in X is naturally
associated with a valid interval, which is the half-open interval of versions beginning at t , up to, but not
including the time stamp of the next pair inX, or τ if no such pair exists. The valid interval ofX is simply
the union of the valid intervals of the pairs stored in X. The following invariants always hold:

(i) For any pair p = 〈t, r〉 in C(x), if a data field in r contains some value v then the value of the
corresponding data field of ephemeral node x during the entire valid interval of p was also v.
Furthermore, if a pointer field in r contains a pointer to a plump node in L(y) or nil then
the corresponding field in ephemeral node x pointed to ephemeral node y or contained nil,
respectively, during the entire valid interval of p.

(ii) For any pair p = 〈t, r〉 inC(x), if a pointer field in r points to a plump node Y , then the valid
interval of p is contained in the valid interval of Y .

(iii) The handle of version t is a pointer to the (unique) plumpnode inL(root)whose valid interval
contains t .

A persistent access operation on version t is performed by a step-by-step simulation of the ephemeral
access algorithm. For any ephemeral node x and version t , let P(x, t) denote the plump node in L(x)
whose valid interval contains t . Since the valid intervals of the pairs in C(x) are disjoint and partition

5-20 CHAPTER 5. TOPICS IN DATA STRUCTURES

the interval [1,∞), this is well-defined. We ensure that if after some step, the ephemeral access algorithm
would have accessed a set S of nodes, then the persistent access algorithm would have accessed the set
of plump nodes {P(y, t)|y ∈ S}. This invariant holds initially, as the ephemeral algorithm would have
accessed only root , and by (iv), the handle of version t points to P(root, t).

If the ephemeral algorithm attempts to read a data field of an accessed node x then the persistent
algorithm searches among the O(1) pairs in P(x, t) to find the pair whose valid interval contains t , and
reads the value of the field from that pair. By (ii), this gives the correct value of the field. If the ephemeral
algorithm follows a pointer from an accessed node x and reaches a node y, then the persistent algorithm
searches among theO(1) pairs in P(x, t) to find the pair whose valid interval contains t , and follows the
pointer specified in that pair. By invariants (i) and (ii) this pointer must point to P(y, t). This proves the
correctness of the simulation of the access operation.

Suppose during an ephemeral update operation on version m of the data structure, the ephemeral
update operation writes some values into the fields of an ephemeral node x. Then the pair 〈m + 1, r〉 is
added to C(x), where r contains the field values of x at the end of the update operation. If the plump
node P(x,m) is not full then this pair is simply added to P(x,m). Otherwise, a new plump node that
contains only this pair is created and added to the end ofL(x). For all nodes y that pointed to x in version
m, this could cause a violation of (ii). Hence, for all such y, we add a new pair 〈m+ 1, r ′〉 to C(y), where
r ′ is identical to the last record in C(y) except that pointers to P(x,m) are replaced by pointers to the
new plump node. If this addition necessitates the creation of a new plump node in L(y) then pointers to
P(m, y) are updated as above. A simple potential argument in [28] shows that not only does this process
terminate, but the amortized space cost for each memory modification isO(1). At the end of the process,
a pointer to the last node in L(root) is returned as the handle to versionm+ 1. Hence, we have that:

THEOREM 5.21 [28] Any bounded-degree linked data structure can be made partially persistent with
worst-case slowdownO(1) for queries, amortized slowdownO(1) for updates, and amortized space costO(1)
per memory modification.

Although we will not describe them in detail here, similar ideas were applied by Driscoll et al. in the
split node data structure which can be used to make bounded-degree linked data structures fully persistent
in the following time bounds:

THEOREM 5.22 [28] Any bounded-degree linked data structure can be made fully persistent with worst-
case slowdown O(1) for queries, amortized slowdown O(1) for updates, and amortized space cost O(1) per
memory modification.

Driscoll et al. left open the issue of whether the time and space bounds for Theorems 5.21 and 5.22
could be made worst-case rather than amortized. Toward this end, they used a method called displaced
storage of changes to give a fully persistent search tree withO(log n)worst-case query and update times and
O(1) amortized space per update, improving upon the time bounds of Theorem 5.20. This method relies
heavily on the property of balanced search trees that there is a unique path from the root to any internal
node, and it is not clear how to extract a general method for full persistence from it. A more direct assault
on their open problem was made by [25], which showed that all bounds in Theorem 5.21 could be made
worst-case on the RAM model. In the same paper it was also shown that the space cost could be made
O(1)worst-case on the pointer machine model, but the slowdown for updates remainedO(1) amortized.
Subsequently, Brodal [11] fully resolved the open problem of Driscoll et al. for partial persistence by
showing that all bounds in Theorem 5.21 could be made worst-case on the pointer machine model. For
the case of full persistence it was shown in [26] how to achieve O(log logm) worst-case slowdown for
updates and queries and a worst-case space cost ofO(1) per memory modification, but the open problem

5.6. FUNCTIONAL DATA STRUCTURES 5-21

of Driscoll et al. remains only partially resolved in this case. It should be noted that the data structures
of [11, 26] are not much more complicated than the original data structures of Driscoll et al.

5.6 Functional Data Structures

In this section we will consider the implementation of data structures in functional languages. Although
implementation in a functional language automatically guarantees persistence, the central issue is main-
taining the same level of efficiency as in the imperative setting.

The state-of-the-art regarding general methods is quickly summarized. The path-copying method
described at the beginning of the previous section can easily be implemented in a functional setting. This
means that balanced binary trees (without parent pointers) can be implemented in a functional language,
with queries and updates takingO(log n)worst-case time, and with a suboptimal worst-case space bound
of (log n). Using the functional implementation of search trees to implement a dictionary which will
simulate thememory of any imperative program, it is possible to implement any data structure which uses
a maximum ofM memory locations in a functional language with a slowdown ofO(logM) in the query
and update times, and a space cost ofO(logM) per memory modification.

Naturally, better bounds are obtained by considering specific data structuring problems, and we sum-
marize the known results at the end of this section. First, though, we will focus on perhaps the most
fundamental data structuring problem in this context, that of implementing catenable lists. A catenable
list supports the following set of operations:

makelist(a): Creates a new list containing only the element a.

head(X): Returns the first element of list X. Gives an error if X is empty.

tail(X): Returns the list obtained by deleting the first element of listX without modifyingX.
Gives an error if X is empty.

catenate(X, Y): Returns the list obtained by appending list Y to list X, without modifying X
or Y .

Driscoll et al. [29] were the first to study this problem, and efficient but nonoptimal solutions were
proposed in [16, 29]. We will sketch two proofs of the following theorem, due to Kaplan and Tarjan [50]
and Okasaki [71]:

THEOREM 5.23 The above set of operations can be implemented inO(1) time each.

The result due to Kaplan and Tarjan is stronger in two respects. Firstly, the solution of [50] gives
O(1) worst-case time bounds for all operations, while Okasaki’s only gives amortized time bounds. Also,
Okasaki’s result uses “memoization” which, technically speaking, is a side-effect, and hence, his solution is
not purely functional. On the other hand,Okasaki’s solution is extremely simple to code inmost functional
programming languages, and offers insight into how to make amortized data structures fully persistent
efficiently. In general, this is difficult because in an amortizeddata structure, someoperations in a sequence
of operations may be expensive, even though the average cost is low. In the fully persistent setting, an
adversary can repeatedly perform an expensive operation as often as desired, pushing the average cost of
an operation close to the maximum cost of any operation.

We will briefly cover both these solutions, beginning with Okasaki’s. In each case we will first consider a
variant of the problemwhere the catenate operation is replaced by the operation inject(a,X)which adds a
to the end of listX. Note that inject(a,X) is equivalent to catenate(makelist(a),X). Although this change
simplifies the problem substantially (this variant was solved quite long ago [43]) we use it to elaborate
upon the principles in a simple setting.

5-22 CHAPTER 5. TOPICS IN DATA STRUCTURES

Implementation of Catenable Lists in Functional Languages

We begin by noting that adding an element a to the front of a listX, without changingX, can be done in
O(1) time. We will denote this operation by a ::X. However, adding an element to the end ofX involves a
destructive update. The standard solution is to store the listX as a pair of lists 〈F,R〉, withF representing
an initial segment of X, and R representing the remainder of X, stored in reversed order. Furthermore,
we maintain the invariant that |F | ≥ |R|.
To implement an inject or tail operation, we first obtain the pair 〈F ′, R′〉, which equals 〈F, a ::R〉

or 〈tail(F), R〉, as the case may be. If |F ′| ≥ |R′|, we return 〈F ′, R′〉. Otherwise we return
〈F ′ ++ reverse(R′), []〉, where X++Y appends Y to X and reverse(X) returns the reverse of list X. The
functions ++ and reverse are defined as follows:

X++Y = Y if X = [] ,

= head(X) :: (tail(X)++Y) otherwise .
reverse(X) = rev(X, []), where :

rev(X, Y) = Y if X = [] ,

= rev(tail(X), head(X) ::Y) otherwise .

The running timeofX++Y is clearlyO(|X|), as is the running timeof reverse(X). Although the amortized
cost of inject can be easily seen to beO(1) in an ephemeral setting, the efficiency of this data structure may
be much worse in a fully persistent setting, as discussed above.
If, however, the functional language supports lazy evaluation andmemoization then this solution can be

used as is. Lazy evaluation refers to delaying calculating the value of expressions asmuch as possible. If lazy
evaluation is used, the expression F ′ ++ reverse(R′) is not evaluated until we try to determine its head or
tail. Even then, the expression is not fully evaluated unless F ′ is empty, and the list tail(F ′ ++ reverse(R′))
remains represented internally as tail(F ′)++ reverse(R′). Note that reverse cannot be computed incre-
mentally like ++ : once started, a call to reverse must run to completion before the first element in the
reversed list is available. Memoization involves caching the result of a delayed computation the first time it
is executed, so that the next time the same computation needs to be performed, it can be looked up rather
than recomputed.
The amortized analysis uses a “debit” argument. Each element of a list is associated with a number

of debits, which will be proportional to the amount of delayed work which must be done before this
element can be accessed. Each operation can “discharge” O(1) debits, i.e., when the delayed work is
eventually done, a cost proportional to the number of debits discharged by an operation will be charged
to this operation. The goal will be to prove that all debits on an element will have been discharged before
it is accessed. However, once the work has been done, the result is memoized and any other thread of
execution which require this result will simply use the memoized version at no extra cost. The debits
satisfy the following invariant. For i = 0, 1, . . ., let di ≥ 0 denote the number of debits on the ith element
of any list 〈F,R〉. Then:

i∑

j=0
di ≤ min{2i, |F | − |R|}, for i = 0, 1, . . .

Note that the first (zeroth) element on the list always has zero debits on it, and so head only accesses
elements whose debits have been paid. If no list reversal takes place during a tail operation, the value
of |F | goes down by one, as does the index of each remaining element in the list (i.e., the old (i + 1)st
element will now be the new ith element). It suffices to pay ofO(1) debits at each of the first two locations
in the list where the invariant is violated. A new element injected into list R has no delayed computation
associated with it, and is give zero debits. The violations of the invariant caused by an inject where no list
reversal occurs are handled as above. As a list reversal occurs only ifm = |F | = |R| before the operation
which caused the reversal, the invariant implies that all debits on the front list have been paid off before

5.6. FUNCTIONAL DATA STRUCTURES 5-23

the reversal. Note that there are no debits on the rear list. After the reversal, one debit is placed on each
element of the old front list (to pay for the delayed incremental ++ operation) andm+1 debits are placed
on the first element of the reversed list (to pay for the reversal), and zero on the remaining elements of the
remaining elements of the reversed list, as there is no further delayed computation associated with them.
It is easy to verify that the invariant is still satisfied after dischargingO(1) debits.

To add catenation to Okasaki’s algorithm, a list is represented as a tree whose left-to-right pre-order
traversal gives the list being represented. The children of a node are stored in a functional queue as
described above. In order to perform catenate(X, Y) the operation link(X, Y) is performed, which adds
root of the tree Y is added to the end of the child queue for the root of the tree X. The operation tail(X)
removes the root of the tree for X. If its children of the root are X1, . . . , Xm then the new list is given
by link(X1, link(X2, . . . , link(Xm−1, Xm))). By executing the link operations in a lazy fashion and using
memoization, all operations can be made to run inO(1) time.

Purely Functional Catenable Lists

In this section we will describe the techniques used by Kaplan and Tarjan to obtain a purely functional
queue. The critical difference is that we cannot assume memoization in a purely functional setting. This
appears to mean that the data structures once again have to support each operation in worst-case constant
time. The main ideas used by Kaplan and Tarjan are those of data-structural bootstrapping and recursive
slowdown. Data-structural bootstrapping was introduced by [29] and refers to allowing a data structure
to use the same data structure as a recursive sub-structure.

Recursive slowdown can be viewed as running the recursive data structures “at a slower speed.” We
will now give a very simple illustration of recursive slowdown. Let a 2-queue be a data structure which
allows the tail and inject operations, but holds a maximum of 2 elements. Note that the bound on the size
means that all operations on a 2-queue can be can be trivially implemented in constant time, by copying
the entire queue each time. A queue Q consists of three components: a front queue f (Q), which is a
2-queue, a rear queue r(Q), which is also a 2-queue, and a center queue c(Q), which is a recursive queue,
each element of which is a pair of elements of the top-level queue. We will ensure that at least one of f (Q)
is non-empty unlessQ itself is empty.

The operations are handled as follows An inject adds an element to the end of r(Q). If r(Q) is full, then
the two elements currently in r(Q) are inserted as a pair into c(Q) and the new element is inserted into
r(Q). Similarly, a tail operation attempts to remove the first element from f (Q). If f (Q) is empty then
we extract the first pair from c(Q), if c(Q) is non-empty and place the second element from the pair into
f (Q), discarding the first element. If c(Q) is also empty then we discard the first element from r(Q).

The key to the complexity bound is that only every alternate inject or tail operation accesses c(Q).
Therefore, the recurrence giving the amortized running time T (n) of operations on this data structure
behaves roughly like 2T (n) = T (n/2) + k for some constant k. The term T (n/2) represents the cost of
performing an operation on c(Q), since c(Q) can contain atmost n/2 pairs of elements, if n is the number
of elements inQ as a whole. Rewriting this recurrence as T (n) = 1

2T (n/2)+ k′ and expanding gives that
T (n) = O(1) (even replacing n/2 by n− 1 in the RHS gives T (n) = O(1)).
This data structure is not suitable for use in a persistent setting as a single operation may still take

 (log n) time. For example, if r(Q), r(c(Q)), r(c(c(Q))) . . . each contain two elements, then a single
inject at the top level would cause changes at all (log n) levels of recursion. This is analogous to carry
propagation in binary numbers—if we define a binary number where for i = 0, 1, . . . , the ith digit is 0 if
ci(Q) contains one element and 1 if it contains two (the 0th digit is considered to be the least significant)
then each inject can be viewed as adding 1 to this binary number. In the worst case, adding 1 to a binary
number can take time proportional to the number of digits.

A different number system can alleviate this problem. Consider a number systemwhere the ith digit still
has weight 2i , as in the binary system, but where digits can take the value 0, 1 or 2 [19]. Further, we require
that any pair of 2’s be separated by at least one 0 and that the rightmost digit, which is not a 1 is a 0. This

5-24 CHAPTER 5. TOPICS IN DATA STRUCTURES

number system is redundant, i.e., a number can be represented inmore than one way (the decimal number
4, for example, can be represented as either 100 or 020). Using this number system, we can increment a
value by one in constant time by the following rules: (i) add one by changing the rightmost 0 to a 1, or by
changing x 1 to (x + 1) 0; then (ii) fixing the rightmost 2 by changing x 2 to (x + 1) 0. Now we increase
the capacity of r(Q) to 3 elements, and let a queue containing i elements represent the digit i−1. We then
perform an inject inO(1) worst-case time by simulating the algorithm above for incrementing a counter.
Using a similar idea to make tail run inO(1) time, we can make all operations run inO(1) time.

In the version of their data structure which supports catenation, Kaplan and Tarjan again let a queue be
represented by three queues f (Q), c(Q), and r(Q), where f (Q) and r(Q) are of constant size as before.
The center queue c(Q) in this case holds either (i) a queue of constant size containing at least two elements
or (ii) a pair whose first element is a queue as in (i) and whose second element is a catenable queue. To
execute catenate(X, Y), the general aim is to first try and combine r(X) and f (Y) into a single queue.
When this is possible, a pair consisting of the resulting queue and c(Y) is injected into c(X). Otherwise,
r(X) is injected into c(X) and the pair 〈f (X), c(X)〉 is also injected into c(X). Details can be found
in [50].

Other Data Structures

A deque is a list which allows single elements to be added or removed from the front or the rear of the list.
Efficient persistent deques implemented in functional languages were studied in [18, 35, 42], with some
of these supporting additional operations. A catenable deque allows all the operations above defined for a
catenable list, but also allows deletion of a single element from the end of the list. Kaplan and Tarjan [50]
have stated that their technique extends to give purely functional catenable deques with constant worst-
case time per operation. Other data structures which can be implemented in functional languages include
finger search trees [51] and worst-case optimal priority queues [12]. (See [72, 73] for yet more examples.)

5.7 Research Issues and Summary

In this chapter we have described the most efficient known algorithms for set union and persistency.

Most of the set union algorithms we have described are optimal with respect to a certain model of com-
putation (e.g., pointer machines with or without the separability assumption, random access machines).
There are still several open problems in all the models of computation we have considered. First, there are
no lower bounds for some of the set union problems on intervals: for instance, for nonseparable pointer
algorithms we are only aware of the trivial lower bound for interval union–find. This problem requires
 (1) amortized time on a random access machine as shown by Gabow and Tarjan [34]. Second, it is still
open whether in the amortized and the single operation worst-case complexity of the set union problems
with deunions or backtracking can be improved for nonseparable pointer algorithms or in the cell probe
model of computation.

5.8 Defining Terms

Cell probe model: Model of computation where the cost of a computation is measured by the total
number of memory accesses to a random access memory with �log n� bits cell size. All other
computations are not accounted for and are considered to be free.

Persistent data structure: A data structure that preserves its old versions. Partially persistent data
structures allow updates to their latest version only, while all versions of the data structure
may be queried. Fully persistent data structures allow all their existing versions to be queried
or updated.

REFERENCES 5-25

Pointer machine: Model of computation whose storage consists of an unbounded collection of
registers (or records) connected by pointers. Each register can contain an arbitrary amount
of additional information, but no arithmetic is allowed to compute the address of a register.
The only possibility to access a register is by following pointers.

Purely functional language: A language that does not allow any destructive operation—one which
overwrites data—such as the assignment operation. Purely functional languages are side-
effect-free, i.e., invoking a function has no effect other than computing the value returned by
the function.

Random access machine: Model of computation whose memory consists of an unbounded se-
quence of registers, each of which is capable of holding an integer. In this model, arithmetic
operations are allowed to compute the address of a memory register.

Separability: Assumption that defines twodifferent classes of pointer-based algorithms for set union
problems. An algorithm is separable if after each operation, its data structures can be parti-
tioned into disjoint subgraphs so that each subgraph corresponds to exactly one current set,
and no edge leads from one subgraph to another.

Acknowledgments

The work of the first author was supported in part by the Commission of the European Communities
under project no. 20244 (ALCOM-IT) and by a research grant fromUniversity ofVenice “Ca’ Foscari.” The
work of the second author was supported in part by a Nuffield Foundation Award for Newly-Appointed
Lecturers in the Sciences.

References

[1] Ackermann, W., Zum Hilbertshen Aufbau der reelen Zahlen,Math. Ann., 99, 118–133, 1928.
[2] Adel’son-Vel’skii, G.M, and Landis, E.M., An algorithm for the organization of information,

Dokl. Akad. Nauk SSSR, 146, 263–266, (in Russian), 1962.
[3] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., On computing least common ancestors in trees,

Proc. 5th Annual ACM Symposium on Theory of Computing, 253–265, 1973.
[4] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.
[5] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., Data Structures and Algorithms, Addison-Wesley,

Reading, MA, 1983.
[6] Ahuja, R.K., Mehlhorn, K., Orlin, J.B., and Tarjan, R.E., Faster algorithms for the shortest path

problem, J. Assoc. Comput. Mach., 37, 213–223, 1990.
[7] Aït-Kaci, H., An algebraic semantics approach to the effective resolution of type equations,

Theoret. Comput. Sci., 45, 1986.
[8] Aït-Kaci, H. and Nasr, R., LOGIN: A logic programming language with built-in inheritance, J.

Logic Program., 3, 1986.
[9] Apostolico, A., Italiano, G.F., Gambosi, G., and Talamo, M., The set union problem with

unlimited backtracking, SIAM J. Computing, 23, 50–70, 1994.
[10] Arden, B.W., Galler, B.A., and Graham, R.M., An algorithm for equivalence declarations,

Comm. ACM, 4, 310–314, 1961.

5-26 CHAPTER 5. TOPICS IN DATA STRUCTURES

[11] Brodal, G.S., Partially persistent data structures of bounded degree with constant update time,
Technical Report BRICS RS-94-35, BRICS, Department of Computer Science, University of
Aarhus, 1994.

[12] Brodal, G.S. and Okasaki, C., Optimal purely functional priority queues, J. Functional Pro-
gramming, to appear, 1996.

[13] Ben-Amram, A.M. and Galil, Z., On pointers versus addresses, J. Assoc. Comput. Mach., 39,
617–648, 1992.

[14] Blum,N., On the single operationworst-case time complexity of the disjoint set unionproblem,
SIAM J. Comput., 15, 1021–1024, 1986.

[15] Blum, N. and Rochow, H., A lower bound on the single-operation worst-case time complexity
of the union–find problem on intervals, Inform. Proc. Lett., 51, 57–60, 1994.

[16] Buchsbaum, A.L. andTarjan, R.E., Confluently persistent deques via data-structural bootstrap-
ping, J. Algorithms, 18, 513–547, 1995.

[17] Chazelle, B., How to search in history, Information and Control, 64, 77–99, 1985.
[18] Chuang, T-R. and Goldberg, B., Real-time deques, multihead Turing machines, and purely

functional programming, Proceedings of the Conference of Functional Programming and Com-
puter Architecture, 289–298, 1992.

[19] Clancy, M.J. and Knuth, D.E., A programming and problem-solving seminar, Technical Report
STAN-CS-77-606, Stanford University, 1977.

[20] Cole, R., Searching and storing similar lists, J. Algorithms, 7, 202–220, 1986.
[21] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms, MIT Press, Cam-

bridge, MA, 1990.
[22] Dietz, P.F., Maintaining order in a linked list, Proc. 14th Annual ACM Symposium on Theory of

Computing, 122–127, 1982.
[23] Dietz, P.F., Fully persistent arrays, Proc. Workshop on Algorithms and Data Structures (WADS

’89), Lecture Notes in Computer Science, 382, Springer-Verlag, Berlin, 67–74, 1989.
[24] Dietz, P.F. and Sleator, D.D., Two algorithms for maintaining order in a list, Proc. 19th Annual

ACM Symposium on Theory of Computing, 365–372, 1987.
[25] Dietz, P.F. and Raman, R., Persistence, amortization and randomization, Proc. 2nd Annual

ACM-SIAM Symposium on Discrete Algorithms, 77–87, 1991.
[26] Dietz, P.F. and Raman, R., Persistence, amortization and parallelization: On some combina-

torial games and their applications, Proc. Workshop on Algorithms and Data Structures (WADS
’93), Lecture Notes in Computer Science, 709, Springer-Verlag, Berlin, 289–301, 1993.

[27] Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf derHeide, F., Rohnhert, H., and Tarjan,
R.E., Dynamic perfect hashing: upper and lower bounds, Proc. 29th Annual IEEE Conference
on the Foundations of Computer Science, 1988, 524–531. The application to partial persistence
was mentioned in the talk. A revised version of the paper appeared in SIAM J. Computing, 23,
738–761, 1994.

[28] Driscoll, J.R., Sarnak, N., Sleator, D.D., and Tarjan, R.E., Making data structures persistent, J.
Computer Systems Sci., 38, 86–124, 1989.

[29] Driscoll, J.R., Sleator, D.D.K., and Tarjan, R.E., Fully persistent lists with catenation, J. ACM,
41, 943–959, 1994.

[30] Dobkin, D.P. and Munro, J.I., Efficient uses of the past, J. Algorithms, 6, 455–465, 1985.
[31] Fischer, M.J., Efficiency of equivalence algorithms, in Complexity of Computer Computations,

R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 153–168.
[32] Fredman, M.L. and Saks, M.E., The cell probe complexity of dynamic data structures, Proc.

21st Annual ACM Symposium on Theory of Computing, 345–354, 1989.
[33] Gabow, H.N., A scaling algorithm for weighted matching on general graphs, Proc. 26th Annual

Symposium on Foundations of Computer Science, 90–100, 1985.

REFERENCES 5-27

[34] Gabow, H.N. and Tarjan, R.E., A linear time algorithm for a special case of disjoint set union,
J. Comput. Sys. Sci., 30, 209–221, 1985.

[35] Gajewska, H. and Tarjan, R.E., Deques with heap order, Information Processing Letters, 22,
197–200, 1986.

[36] Galil, Z. and Italiano, G.F., A note on set union with arbitrary deunions, Information Processing
Letters, 37, 331–335, 1991.

[37] Galil, Z. and Italiano, G.F., Data structures and algorithms for disjoint set union problems,
ACM Computing Surveys, 23, 319–344, 1991.

[38] Galler, B.A. and Fischer, M., An improved equivalence algorithm, Comm. ACM, 7, 301–303,
1964.

[39] Gambosi, G., Italiano, G.F., and Talamo, M., Worst-case analysis of the set union problem with
extended backtracking, Theoret. Comput. Sci., 68, 57–70, 1989.

[40] Hogger, G.J., Introduction to Logic Programming, Academic Press, 1984.
[41] Italiano, G.F. and Sarnak, N., Fully persistent data structures for disjoint set union problems,

Proc. Workshop on Algorithms and Data Structures (WADS ’91), Lecture Notes in Computer
Science, 519, Springer-Verlag, Berlin, 449–460, 1991.

[42] Hood, R., The Efficient Implementation of Very-High-Level Programming Language Constructs,
Ph.D. Thesis, Cornell University, 1982.

[43] Hood, R. and Melville, R., Real-time operations in pure Lisp, Information Processing Letters,
13, 50–53, 1981.

[44] Hopcroft, J.E. and Karp, R.M., An algorithm for testing the equivalence of finite automata,
TR-71-114, Dept. of Computer Science, Cornell University, Ithaca, NY, 1971.

[45] Hopcroft, J.E. and Ullman, J.D., Set merging algorithms, SIAM J. Comput., 2, 294–303, 1973.
[46] Hudak, P., Jones, S.P., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman, M.M., Hammond,

K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W., and Peterson, J., Report on
the functional programming language Haskell, version 1.2, SIGPLAN Notices, 27, 1992.

[47] Huet, G., Resolutions d’equations dans les langages d’ordre 1, 2, . . . ω, Ph.D. Dissertation, Univ.
de Paris VII, France, 1976.

[48] Hunt, J.W. andSzymanski, T.G., A fast algorithmfor computing longest commonsubsequences,
Comm. Assoc. Comput. Mach., 20, 350–353, 1977.

[49] Imai, T. and Asano, T., Dynamic segment intersection with applications, J. Algorithms, 8, 1–18,
1987.

[50] Kaplan, H. and Tarjan, R.E., Persistent lists with catenation via recursive slow-down, Proc. 27th
Annual ACM Symposium on the Theory of Computing, 93–102, 1995.

[51] Kaplan, H. Tarjan, R.E., Purely functional representations of catenable sorted lists, Proc. 28th
Annual ACM Symposium on the Theory of Computing, 202–211, 1996.

[52] Karlsson, R.G., Algorithms in a restricted universe, Technical Report CS-84-50, Department
of Computer Science, University of Waterloo, 1984.

[53] Kerschenbaum, A. and van Slyke, R., Computing minimum spanning trees efficiently, Proc.
25th Annual Conf. of the ACM, 518–527, 1972.

[54] Knuth, D.E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-
Wesley, Reading, MA, 1968.

[55] Kolmogorv, A.N., On the notion of algorithm, Uspehi Mat. Nauk., 8, 175–176, 1953.
[56] La Poutré, J.A., Lower bounds for the union–find and the split–find problem on pointer ma-

chines, Proc. 22nd Annual ACM Symposium on Theory of Computing, 34–44, 1990.
[57] Levcopolous, C. and Overmars, M.H., A balanced search tree with O(1) worst-case update

time, Acta Informatica, 26, 269–278, 1988.
[58] Loebl, M. and Nešetřil, J., Linearity and unprovability of set union problem strategies, Proc.

20th Annual ACM Symposium on Theory of Computing, 360–366, 1988.

5-28 CHAPTER 5. TOPICS IN DATA STRUCTURES

[59] Mannila,H.andUkkonen, E., Thesetunionproblemwithbacktracking,Proc. 13th International
Colloquium on Automata, Languages and Programming (ICALP 86), Lecture Notes in Computer
Science, 226, Springer-Verlag, Berlin, 236–243, 1986.

[60] Mannila, M. and Ukkonen, E., On the complexity of unification sequences, Proc. 3rd Inter-
national Conference on Logic Programming, Lecture Notes in Computer Science, 225, Springer-
Verlag, Berlin, 122–133, 1986.

[61] Mannila, H. and Ukkonen, E., Timestamped term representation for implementing Prolog,
Proc. 3rd IEEE Conference on Logic Programming, 159–167, 1986.

[62] Mannila, H. and Ukkonen, E., Space-time optimal algorithms for the set union problem with
backtracking. Technical Report C-1987-80, Department of Computer Science, University of
Helsinki, Finland.

[63] Mannila,H. andUkkonen, E., Timeparameter andarbitrarydeunions in the set unionproblem,
Proc. 1st Scandinavian Workshop on Algorithm Theory (SWAT 88), Lecture Notes in Computer
Science, 318, Springer-Verlag, Berlin, 34–42, 1988.

[64] McCarthy, J., Recursive functions of symbolic expressions and their computation by machine,
Commun. ACM, 7, 184–195, 1960.

[65] Mehlhorn, K., Data Structures and Algorithms, Vol. 1: Sorting and Searching, Springer-Verlag,
Berlin, 1984.

[66] Mehlhorn, K.,Data Structures and Algorithms, Vol. 2: Graph Algorithms and NP-Completeness,
Springer-Verlag, Berlin, 1984.

[67] Mehlhorn, K., Data Structures and Algorithms, Vol. 3: Multidimensional Searching and Com-
putational Geometry, Springer-Verlag, Berlin, 1984.

[68] Mehlhorn, K. and Näher, S., Dynamic fractional cascading, Algorithmica 5, 215–241, 1990.
[69] Mehlhorn, K., Näher, S., and Alt, H., A lower bound for the complexity of the union–split–find

problem, SIAM J. Comput., 17, 1093–1102, 1990.
[70] Milner, R., Tofte, M., and Harper, R., The Definition of Standard ML,MIT Press, Cambridge,

MA, 1990.
[71] Okasaki, C., Amortization, lazy evaluation, and persistence: Lists with catenation via lazy

linking, Proc. 36th Annual Symposium on Foundations of Computer Science, 646-654, 1995.
[72] Okasaki, C., Functional Data Structures, in Advanced Functional Programming, Lecture Notes

in Computer Science, 1129, Springer-Verlag, Berlin, 67–74, 1996.
[73] Okasaki, C., The role of lazy evaluation in amortized data structures, Proc. 1996 ACMSIGPLAN

International Conference on Functional Programming, 62–72, 1996.
[74] Reps, T., Titelbaum, T., and Demers, A., Incremental context-dependent analysis for language-

based editors, ACM Transactions on Programming Languages and Systems, 5, 449–477, 1983.
[75] Sarnak, N., Persistent Data Structures, Ph.D. Thesis, Department of Computer Science, New

York University, 1986.
[76] Sarnak, N. andTarjan, R.E., Planar point location using persistent search trees,Commun. ACM,

28, 669–679, 1986.
[77] Schönage, A., Storage modification machines, SIAM J. Comput., 9, 490–508, 1980.
[78] Stearns, R.E. and Lewis, P.M., Property grammars and tablemachines, Information andControl,

14, 524–549, 1969.
[79] Stearns, R.E. and Rosenkrantz, P.M., Table machine simulation, Conf. Rec. IEEE 10th Annual

Symp. on Switching and Automata Theory, 118–128, 1969.
[80] Steele Jr., G.L., Common Lisp: The Language, Digital Press, Bedford, MA, 1984.
[81] Swart, G.F., Efficient algorithms for computing geometric intersections, Technical Report 85-

01-02, Department of Computer Science, University of Washington, Seattle, WA, 1985.
[82] Tarjan, R.E., Testing flow graph reducibility, Proc. 5th Annual ACM Symp. on Theory of Com-

puting, 96–107, 1973.

FURTHER INFORMATION 5-29

[83] Tarjan, R.E., Finding dominators in directed graphs, SIAM J. Comput., 3, 62–89, 1974.
[84] Tarjan, R.E., Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach.,

22, 215–225, 1975.
[85] Tarjan, R.E., A class of algorithms which require nonlinear time to maintain disjoint sets, J.

Comput. Sys. Sci., 18, 110–127, 1979.
[86] Tarjan, R.E., Application of path compression on balanced trees, J. Assoc. Comput. Mach., 26,

690–715, 1979.
[87] Tarjan, R.E., Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.
[88] Tarjan, R.E., Amortized computational complexity, SIAM J. Alg. Disc. Meth., 6, 306–318, 1985.
[89] Tarjan, R.E. and van Leeuwen, J., Worst-case analysis of set union algorithms, J. Assoc. Comput.

Mach., 31, 245–281, 1984.
[90] Tsakalidis, A.K., Maintaining order in a generalized linked list, Acta Informatica, 21, 101–112,

1984.
[91] van Emde Boas, P., Preserving order in a forest in less than logarithmic time and linear space,

Inform. Processing Lett., 6, 80–82, 1977.
[92] van Emde Boas, P., Kaas, R., and Zijlstra, E., Design and implementation of an efficient priority

queue,Math. Systems Theory, 10, 99–127, 1977.
[93] van Leeuwen, J. and van der Weide, T., Alternative path compression techniques, Technical

Report RUU-CS-77-3, Department of Computer Science, University of Utrecht, Utrecht, The
Netherlands, 1977.

[94] van der Weide, T., Data Structures: an Axiomatic Approach and the Use of Binomial Trees in
Developing and Analyzing Algorithms,Mathematisch Centrum, Amsterdam, The Netherlands,
1980.

[95] Vitter, J.S. and Simons, R.A., New classes for parallel complexity: A study of unification and
other complete problems for P, IEEE Trans. Comput. C-35. 1989.

[96] Warren, D.H.D. and Pereira, L.M., Prolog—the language and its implementation compared
with LISP, ACM SIGPLAN Notices, 12, 109–115, 1977.

[97] Westbrook, J. and Tarjan, R.E., Amortized analysis of algorithms for set union with backtrack-
ing, SIAM J. Comput., 18, 1–11, 1989.

[98] Westbrook, J. and Tarjan, R.E., Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7, 433–464, 1992.

[99] Yao, A.C., Should tables be sorted? J. Assoc. Comput. Mach., 28, 615–628, 1981.

Further Information

Research on advanced algorithms and data structures is published in many computer science journals,
including Algorithmica, Journal of ACM, Journal of Algorithms, and SIAM Journal on Computing. Work on
data structures is published also in the proceedings of general theoretical computer science conferences,
such as the “ACM Symposium on Theory of Computing (STOC),” and the “IEEE Symposium on Foun-
dations of Computer Science (FOCS).” More specialized conferences devoted exclusively to algorithms
are the “ACM–SIAM Symposium on Discrete Algorithms (SODA)” and the “European Symposium on
Algorithms (ESA).” Online bibliographies for many of these conferences and journals can be found on the
World Wide Web.
Galil and Italiano [37] provide useful summaries on the state of the art in set union data structures. A

in-depth study of implementing data structures in functional languages is given in [72].

