Chapter 14: Formal Specification and Enactment

Service-Oriented Computing: Semantics, Processes, Agents
Munindar P. Singh and Michael N. Huhns, Wiley, 2005

Formal Specification and Enactment

Declarative representations based on logic

- Contrast with procedural flow specifications
 - Branch and join primitives
 - Central execution engine
- Capture the essence of what is required
 - Minimally constrain the execution of services
 - Accommodate greater efficiencies
 - Accommodate better handling of exceptions and opportunities
- Support naturally distributed enactment
Temporal Logic

Logic of time

- Based on **significant events**: events that matter to others
 - Start: \(s \)
 - Commit: \(c \)
 - Abort: \(a \) or rather \(\overline{c} \)
- Declaratively specify **dependencies**, i.e., constraints
- Maximum flexibility bring about the right events to satisfy the stated constraints
- Would support a high-level reasoner

Example Dependencies

- If \(T_1 \) starts then \(T_2 \) starts: \(\overline{s}_1 \lor s_2 \)
- If air ticket transaction starts then hotel booking transaction starts: \(\overline{s}_A \lor s_H \)
- If order (O) is canceled and payment (P) is made then refund (R) is initiated:
 \[c_O \lor \overline{s}_P \lor \overline{c}_P \lor s_R \]
- If refund is initiated then payment must previously have been made: \(\overline{s}_R \lor c_P \cdot s_R \)

Notice events are the atoms, \(\overline{e} \) is the complement of \(e \), and the dot operator \(\cdot \) indicates temporal order
Specification Syntax

- The center dot (·) orders events
- *Complementation* means hard opposite: commit versus abort
 - Used in specifications
- *Negation* means soft opposite: commit versus not commit
 - *Not* used in specifications

\[L_1. \ I \rightarrow dep | dep \land I \ll \text{interleaving} \]
\[L_2. \ dep \rightarrow seq | seq \lor dep \ll \text{choice} \]
\[L_3. \ seq \rightarrow bool | event | event \cdot event \ll \text{ordering} \]
\[L_4. \ bool \rightarrow 0 | \top \]

Specification Semantics

Identify the desirable “runs” or computations

- Universe consists of *legal* runs:
 - Event instances and their complements are mutually exclusive
 - Event instances don’t repeat (transaction identifiers can ensure uniqueness)

\[M_1. \ \tau \models e \iff (\exists i : \tau_i = e) \]
\[M_2. \ \tau \models I_1 \lor I_2 \iff \tau \models I_1 \text{ or } \tau \models I_2 \]
\[M_3. \ \tau \models I_1 \land I_2 \iff \tau \models I_1 \text{ and } \tau \models I_2 \]
\[M_4. \ \tau \models I_1 \cdot I_2 \iff (\exists i : \tau_{[0,i]} \models I_1 \text{ and } \tau_{[i+1,|\tau|]} \models I_2) \]
Example Coordination Relationships

- \(D_\prec = e \lor \overline{f} \lor e \cdot f \)
 - If both \(e \) and \(f \) occur, then \(e \) precedes \(f \)
 - If \(e \) and \(f \) occur on \(\tau \), neither \(\overline{e} \) nor \(\overline{f} \) can occur on \(\tau \). So \(\tau \) must satisfy \(e \cdot f \), which means that an initial part of \(\tau \) satisfies \(e \) and the remainder satisfies \(f \)

- \((\overline{e} \lor f \lor g) \land (\overline{g} \lor e) \land (\overline{g} \lor \overline{f}) \)
 - If \(e \) happens and \(f \) does not, then and only then do \(g \)
 - Typical with data updates, where \(g \) restores consistency (potentially) violated by the success of \(e \) and the failure of \(f \)

Enactment

Control execution of tasks to meet the specifications

- Allow, delay, deny, or trigger events to satisfy dependencies stated
 - A realized run is in each of their denotations

- System state = the runs that are allowed
 - Initially, given by the stated dependencies
 - Narrows down as events occur

- Key requirements
 - Maximal set of allowed runs (flexibility)
 - Compute symbolically and modularly
Residuation

E₁. \(0/e \doteq 0 \)
E₂. \(\top/e \doteq \top \)
E₃. \((D \land F)/e \doteq (D/e \land F/e) \)
E₄. \((D \lor F)/e \doteq (D/e \lor F/e) \)
E₅. \(e/e \doteq \top \)
E₆. \(\bar{e}/e \doteq 0 \)
E₇. \((e \cdot f)/e \doteq f \)
E₈. \((\bar{e} \cdot f)/e \doteq 0 \)
E₉. \((d \cdot e)/e \doteq 0 \)
E₁₀. \((d \cdot \bar{e})/e \doteq 0 \)
E₁₁. \((d \cdot f)/e \doteq d \cdot f \)
E₁₂. \(d/e \doteq d \)

The above rules apply if we swap \(e \) and \(\bar{e} \)

Example of Residuation

\[
D_\prec = \bar{e} \lor \bar{f} \lor e \cdot f
\]

![Diagram illustrating scheduler states and transitions for \(D_\prec \)]

Figure 1: Scheduler states and transitions for \(D_\prec \)
Distributed Enactment

- Constrain autonomy based only on dependencies
 - Local decisions
- Place a *guard* on each event
 - When true, the event can safely happen
 - Modified as relevant events occur (messages arrive)
- Challenges
 - Representing them
 - Reasoning with them in a distributed manner

Guard Syntax

Enables stating whether an event can occur *now*

\[
\begin{align*}
L_5. \quad & T \rightarrow conj \mid conj \land T \\
L_6. \quad & conj \rightarrow disj \mid disj \lor conj \\
L_7. \quad & disj \rightarrow bool \mid \square seq \mid \Diamond seq \mid \neg event
\end{align*}
\]

- Events are *stable* or durable
- \(\square e\) means \(e\) has occurred
- \(\Diamond e\) means \(e\) has occurred or will occur eventually
- \(\neg e\) means \(e\) has *not yet* occurred
Guard Semantics

- Universe consists of maximal runs (either an event or its complement occurs)

\[M_5. \quad u \models_k E \iff u \models_{0,k} E \]
\[M_6. \quad u \models_{i,k} f \iff (\exists j : i \leq j \leq k \text{ and } u_j = f) \]
\[M_7. \quad u \models_{i,k} E \lor F \iff u \models_{i,k} E \text{ or } u \models_{i,k} F \]
\[M_8. \quad u \models_{i,k} E \land F \iff u \models_{i,k} E \text{ and } u \models_{i,k} F \]
\[M_9. \quad u \models_{i,k} E \cdot F \iff (\exists j : i \leq j \leq k \text{ and } u \models_{i,j} E \text{ and } u \models_{j+1,k} F) \]
\[M_{10}. \quad u \models_{i,k} \top \]
\[M_{11}. \quad u \models_{i,k} \neg E \iff u \not\models_{i,k} E \]
\[M_{12}. \quad u \models_{i,k} \Box E \iff (\forall j : k \leq j \Rightarrow u \models_{i,j} E) \]
\[M_{13}. \quad u \models_{i,k} \Diamond E \iff (\exists j : k \leq j \text{ and } u \models_{i,j} E) \]

Guards for \(D_\prec = \bar{e} \lor \bar{f} \lor e \cdot f \)

\[\neg e \land \neg e \land \neg f \land \neg f \]
\[e, e \rightarrow f, e \rightarrow \bar{f}, f \rightarrow f \]
\[f, f \rightarrow e, e \rightarrow f, f \rightarrow e, f \rightarrow \bar{f}, \bar{f} \rightarrow e \]

- \(G_b(D_\prec, e) = (\neg f \land \neg \bar{f} \land \Diamond (\bar{f} \lor f)) \lor (\Box \bar{f} \land \top) = [\neg f \land \neg \bar{f} \lor \Box \bar{f}] = \neg f \lor \Box \bar{f} = \neg f \)
- \(G_b(D_\prec, \bar{e}) = \top \)
- \(G_b(D_\prec, \bar{f}) = \top \)
- \(G_b(D_\prec, f) = (\neg e \land \neg \bar{e} \land \Diamond \bar{e}) \lor \Box e \lor \Box \bar{e} \equiv \Diamond \bar{e} \lor \Box e \)
Scheduling with Guards: Example

- If e is attempted first
 - $G(e) = \top$: e executes and notifies
 - Notification $\Box e$ changes
 $G(f) = \Diamond \overline{e} \lor \Box e = \top$, enabling f

- If f is attempted first
 - $G(f) = (\Diamond \overline{e} \lor \Box e) \neq \top$, so it waits
 - Notification of $\Box \overline{e}$ or $\Box e$ changes $G(f)$ to \top, thus enabling f

- $G(e) = \top$ and $G(f) = \top$, so they can happen any time

Motivations for Formalization

- Proving correctness when
 - Guards are created by compiling the dependencies
 - Guards are preprocessed
 - Events are executed and guards updated

- Justifying improvements in efficiency
 - Simplifying guards prior to execution
 - Updating guards incrementally
 - Skipping some steps
Formalization Sketch: 1

- Evaluation strategy: a function that captures
 - Evolution of guards
 - Execution of events
- An evaluation strategy generates a run \(u \) if
 - For each event \(e \) that occurs on \(u \),
 - \(u \) satisfies \(e \)'s current guard due to the strategy
 - At the index preceding \(e \)'s occurrence
- Generation is more abstract than execution:
 - A true guard may involve \(\Diamond \) expressions

Formalization Sketch: 2

- Begin with trivial strategy
 - Easily correct, but useless
- Replace with better strategies
 - Symbolically calculate guards from dependencies
 - Safely discard certain terms
 - Process messages symbolically
Symbolically Calculating Guards

- \(G(0, e) \triangleq 0 \)
- \(G(\top, e) \triangleq \top \)
- \(G(D \lor F, e) \triangleq G(D, e) \lor G(F, e) \)
- \(G(D \land F, e) \triangleq G(D, e) \land G(F, e) \)
- \(G(e, e) \triangleq \top \)
- \(G(\overline{e}, e) \triangleq 0 \)
- \(G(d \cdot e, e) \triangleq \square d \)
- \(G(d \cdot \overline{e}, e) \triangleq 0 \)
- \(G(e \cdot f, e) \triangleq \neg f \land \Diamond f \)
- \(G(\overline{e} \cdot f, e) \triangleq 0 \)
- \(G(d, e) \triangleq \Diamond d \)
- \(G(d \cdot f, e) \triangleq \Diamond (d \cdot f) \)

The above rules apply if we swap \(e \) and \(\overline{e} \).

Calculating Guards: Example

For \(D_\prec = \overline{e} \lor \overline{f} \lor e \cdot f \):
- \(G(D_\prec, e) = (\Diamond \overline{f} \lor (\neg f \land \Diamond f)) \cong \neg f \)
- \(G(D_\prec, \overline{e}) = \top \)
- \(G(D_\prec, f) = \Diamond \overline{e} \lor \Box e \)
- \(G(D_\prec, f) = \top \)
Assimilating Messages

<table>
<thead>
<tr>
<th>Old: G</th>
<th>Message: M</th>
<th>New: $G \div M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_1 \lor G_2$</td>
<td>M</td>
<td>$G_1 \div M \lor G_2 \div M$</td>
</tr>
<tr>
<td>$G_1 \land G_2$</td>
<td>M</td>
<td>$G_1 \div M \land G_2 \div M$</td>
</tr>
<tr>
<td>$\Box e$</td>
<td>$\Box e$</td>
<td>\top</td>
</tr>
<tr>
<td>$\Diamond e$</td>
<td>$\Box e \lor \Diamond e$</td>
<td>\top</td>
</tr>
<tr>
<td>$\Box \neg e \lor \Diamond \neg e$</td>
<td>$\Box e \lor \Diamond e$</td>
<td>0</td>
</tr>
<tr>
<td>$\Diamond (e \cdot f)$</td>
<td>$\Box e$</td>
<td>$\Diamond f$</td>
</tr>
<tr>
<td>$\Diamond (e \cdot f)$</td>
<td>$\Diamond (e \cdot f)$</td>
<td>\top</td>
</tr>
<tr>
<td>$\Diamond (e \cdot f)$</td>
<td>$\Box (f \cdot e) \lor \Diamond (f \cdot e) \lor \Box \neg e \lor \Diamond \neg e$</td>
<td>0</td>
</tr>
<tr>
<td>$\neg e$</td>
<td>$\Box e$</td>
<td>0</td>
</tr>
<tr>
<td>$\neg \neg e$</td>
<td>$\Box e \lor \Diamond e$</td>
<td>\top</td>
</tr>
<tr>
<td>G</td>
<td>M</td>
<td>G, otherwise</td>
</tr>
</tbody>
</table>

Event Classes

- **Flexible**, agent can delay or omit
- **Inevitable**, agent can delay but not omit
- **Immediate**, agent will neither delay nor omit

![Event Classes Diagram]

\[D_\prec = \neg \neg e \lor \neg f \lor e \cdot f \]

\[D = \neg e \lor \neg f \cdot e \]

\[D'_\prec = \neg e \cdot f \lor \neg f \lor e \cdot f \]

\[e \text{ is inevitable} \]

\[e \text{ is immediate} \]

\[D' = 0 \]
Summary

- Generic approach to describe processes and extended transactions
 - Hides low-level details
 - Combines declarative specifications and operational decision procedures

- Directions
 - Refining methodologies, based on assessment of scenarios
 - Accommodating richer heuristics for distributed evaluations