
Chapter 13

Process Specifications

13.1 Processes .256
13.2 Describing Dynamics with UML257
13.3 Workflows .259

13.3.1 Exceptions .260
13.3.2 Workflow Interoperability .262
13.3.3 A Metamodel for Workflow .263
13.3.4 Interoperation .264
13.3.5 State of the Art .266
13.3.6 Challenges Facing Workflow Technology266

13.4 Business Process Languages267
13.4.1 BPEL4WS .267
13.4.2 BPML .273
13.4.3 ebXML .274
13.4.4 RosettaNet .284

13.5 The Process Specification Language286
13.6 Notes .289
13.7 Exercises .290

No service is an island. The key point about service-oriented computing is that it involves
extended, loosely coupled activities among two or more autonomous business partners. Such
activities can be thought of as (business) processes that engage several services in a manner
that brings about the desired (business) outcome. The previous chapter described the un-
derpinnings of processes from the perspective of transactions. This chapter covers process
specifications, discussing their modeling and enactment, as well as key emerging standards.

255

Part III: Engagement 13: Process Specifications

13.1 Processes

A process is an activity. Generally a process would be a composite activity and be geared to
serve some purpose. Depending on the specific process, its tasks could be some combination
of services that correspond to queries, transactions, applications, and administrative activities.
These services may be distributed within or across enterprises and would be coordinated by
constraining control and data among them. The services may themselves be composite, i.e.,
implemented as processes. The following discussion emphasizes business processes consist-
ing of services, but the concepts developed could apply equally well to scientific computing
and other settings. Examples of settings where processes apply includeintraenterpriseen-
vironments (i.e., within an enterprise), such as production scheduling and inventory control,
andinterenterpriseenvironments (i.e., across enterprises), such as supply-chain management
and purchase negotiation. Clearly, intraenterprise and interenterprise processes need to cor-
relate with each other, because intraenterprise activities are needed to support interenterprise
interactions.

Processes present a number of technical challenges. First, we must be able to model a
process, incorporating correctness of executions with respect to the model, and respecting the
constraints of the underlying services and their resources. The normal executions of a process
are often easy, since they can be as simple as a partial order of the activities in the process.
By contrast, the exception conditions can be difficult to model and handle. More importantly,
because interesting business processes are often long-running, their mutual interactions are
nonatomic, leading to the prospect that the information they take as input may be subject to
revision and thereby causing their own results to be invalidated. Exceptions and revisions are
the main sources of complication in the modeling of a process.

Second, we must be able to interface a process to underlying functionalities. In the case
of database systems, these would include a suitable model of transactions that incorporates
constraints on the concurrency control and recovery mechanisms of a DBMS. A transaction
model provides the necessary abstractions and shields process models from the implementa-
tional details of DBMSs.

Because processes are used in a number of places in an enterprise to support its internal
functioning as well as its interactions with its business partners, processes can end up be-
ing modeled in several different ways, typically based upon process representations that are
proprietary to the software vendors involved. For example, if production scheduling soft-
ware employs a different modeling formalism than purchase order processing software, then
the enterprise’s participation in a supply chain may be adversely affected. However, inter-
operation among processes, while clearly an important need in practical settings, is nearly
impossible without some kind of translator among process models. The challenges of het-
erogeneity that Section 5.1 on page 74 discussed in the context of information sharing apply
equally to process model interaction.

Before we get into the details, it is worth describing the main perspectives we can have
on processes and the distinctions between them.

Orchestration. This takes the view of a process as a program or a partial order of operations

c© Singh & Huhns 256 7 July 2004

Part III: Engagement 13: Process Specifications

that need to be executed. This view is logically centralized in that it views a process
from the perspective of one “orchestrating” engine. It is as if the process specification
is being executed under the control of or on behalf of a specific party. Orchestra-
tion corresponds best to the workflow representations discussed in Section 13.3 and to
process languages such as BPEL4WS. Representations such as OWL-S (introduced in
Section 15.5.2 on page 331) enable the right orchestrations to be produced, given the
requirements for a desired process and the functionalities of the available services.

Choreography. This takes the view of a process as being a set of message exchanges be-
tween participants. The message exchanges are constrained to occur in various se-
quences and may be required to be grouped into various transactions. Choreography
corresponds best to languages such as WSCL and WSCI.

Collaboration. This takes the view of a process as a collaboration among business partners.
The business partners not only send messages to one another, but also enter into busi-
ness relationships such as contracts and obligations. They generate flexible message
exchanges depending on the evolving circumstances and their local policies, e.g., to
handle business exceptions. Collaboration is emerging as a serious approach for carry-
ing out large-scale business processes.

13.2 Describing Dynamics with UML

UML provides graphical constructs that can be used to describe (1) actions and activities, and
(2) their temporal precedences and flows of control. The allowable control constructs are

• Sequence, which is a transition from one activity to the next in time.

• Branch, which is a decision point among alternative flows of control.

• Merge, where two or more alternative flows of control rejoin.

• Fork, which is a splitting of a flow of control into two or more concurrent and indepen-
dent flows of control.

• Join, which is a synchronization of two or more concurrently executing flows of control
into one flow.

These control constructs are a sufficient set for describing an arbitrary process or workflow.
As such, they can also describe a composite Web service. A particular process is shown on
an activity diagram, an example of which is shown in Figure 13.1 on the following page.

A UML sequence diagram is used to show the interactions among concurrently existing
objects or concurrently executing threads and process instances. It focuses on the time or-
dering of the messages between such entities. Figure 12.5 on page 244 is an example of a
sequence diagram.

c© Singh & Huhns 257 7 July 2004

Part III: Engagement 13: Process Specifications

Receive PO

Get Items from InventoryUpdate Customer Profile

Compute Subtotal

Compute Shipping Cost

Compute Export Tax

Compute International Shipping

Compute Total

[ship within US] [ship outside US]

Ship Order

Fork

Join

Branch

Merge

Figure 13.1: An example UML activity diagram showing the allowable control constructs
that can be used to describe workflows and processes

c© Singh & Huhns 258 7 July 2004

Part III: Engagement 13: Process Specifications

13.3 Workflows

A workflowis an activity that addresses some business need by carrying out specified control
and data flows among subactivities that involve information resources and possibly humans.
A classic example of a workflow is loan processing: when you apply for a loan, you fill out a
form, a clerk reviews it for completeness, an auditor verifies the information, and a supervisor
invokes an external credit agency or uses a credit risk assessment tool. Each person in the
loan process receives information concerning your application, modifies or adds to it, and
forwards the results.

There is a fine line between processes and workflows. Some research seems to treat these
as isomorphic. A lot of the research on processes is based on previous research on workflow.
For example, one of the inputs to the current leading standard for processes, BPEL4WS
(discussed in Section 13.4.1 on page 267), is the Web Services Flow Language (WSFL),
which was closely based on IBM’s Flowmark workflow product.

For the purposes of this book, workflows are a narrower concept than processes. Pro-
cesses may be realized through workflows, but possibly through other means as well, e.g.,
business protocols or conversations among agents, which are introduced in later chapters.
The above definition of workflows emphasizes the control and data flow among subactivities
that are the essence of workflows. These flows are necessary to realize the desired processes.
Ultimately, no matter how you specify a process, control and data flows will occur when it
is enacted. The key point is that in workflow technology, such control and data flows are di-
rectly specified from a logically central perspective. This modeling assumption accounts for
both the strengths and the weaknesses of workflow technology. Service providers can man-
age workflows that are used to implement the given service. An implementation based on
workflow techniques can help manage potential exception conditions better than a traditional
application, which would hide the necessary reasoning. However, workflows too have their
limitations as discussed below.

Take

sevice

request

Check

hardware

availability

&

Schedule

service

installation

Install

service

Stop&

Create

billing

record

Check

credit

(Ok)

(Available)

Figure 13.2: A workflow for processing a telecommunications service order

Figure 13.2 illustrates an example of a workflow that is executed when you order a ser-
vice from a telecommunications provider. You initiate the order by interacting with a sales
representative from the provider, who fills out a form on your behalf. The sales representative

c© Singh & Huhns 259 7 July 2004

Part III: Engagement 13: Process Specifications

checks with a provisioning database to determine whether the necessary hardware is in place.
If it is, you receive an estimate of when the service will be ready for your use. A local service
installer is dispatched to install your service, while the telecommunications provider checks
your credit history.

13.3.1 Exceptions

If all goes well, the installer successfully installs the service, the auditors find your credit
history acceptable, the billing department is notified to begin charging you, and the workflow
concludes successfully. However, things do not always go that smoothly. For example, in
checking whether you already have an account, the telecommunications provider might dis-
cover that you have an unpaid and overdue balance—or that someone else previously at the
same address has an unpaid balance. Such discoveries would raise a red flag.

Perhaps the service installer for your area calls in sick, requiring a revision in the instal-
lation schedule. Or the installer might discover that the available hardware is unusable and
must be replaced. Each of these situations can lead to modified behavior, as illustrated in
Figure 13.3. Such modifications might lead to an additional change in schedule or possibly
even cause you to cancel the order altogether because you do not want to wait indefinitely.

Check

credit

Cancel

service

installation

&

Notify

customer

Cancel

billing

record

(Not ok)

(Ok)

Figure 13.3: Exceptions—unexpected occurrences that interrupt and possibly alter a
workflow—can arise during workflow execution

c© Singh & Huhns 260 7 July 2004

Part III: Engagement 13: Process Specifications

These occurrences are instances of exceptions that can arise during process execution.
The number of possible exceptions is extremely large; their scope and the great variety of
possible contexts make it practically impossible to specify all exceptions statically and in
advance. Unfortunately, the only sure thing about exceptions is that they are far from excep-
tional. As a consequence, most natural processes are inherently incomplete.

Exceptions are not just alternative flows of control; indeed, the two are conceptually
distinct. Attempting to include all exceptions is not only futile, but also would clutter the
workflow so much as to render it incomprehensible. For the same reasons that programming
languages such as Java treat exceptions separately, it is preferable to think of exceptions
as parasitic on the main workflow. Of course, if some exceptions occur often enough to
become almost routine, they will be incorporated as explicit alternatives within the workflow,
as illustrated in Figure 13.4.

Schedule

hardware

installation

Install

hardware

Check

hardware

availability
&

(Not available)

Figure 13.4: An exception that occurs often enough to be considered routine can be incorpo-
rated into the workflow as an alternative flow of control

In many cases, multiple workflows can arise and interact with each other. For exam-
ple, in a telecommunications setting, a channel assignment workflow must wait until enough
channels have been created by another workflow. Workflow interactions necessarily occur
when business partners collaborate. By design, these interactions are intended to be useful,
although some might be pernicious in that one workflow could cause the failure of another.
The challenge is to identify the potential interactions and to control them appropriately.

c© Singh & Huhns 261 7 July 2004

Part III: Engagement 13: Process Specifications

13.3.2 Workflow Interoperability

Workflows interact by sharing data or functionality. An interaction can occur (1) directly, (2)
via message passing, (3) through a gateway that translates protocols, or (4) by mutual use of a
common repository. For each of these means of interaction, there are three primitive patterns
for the interoperability—chained, nested, and synchronized—as depicted in Figure 13.5.

Process 1 Process 2

Process 1 Process 2Process 2Process 1

ActionState 1

ActionState 2

ActionState A

Chained Interoperability

ActionState 1

ActionState 2

ActionState A

Nested Interoperability

ActionState 1

ActionState 2

ActionState C

Synchronized Interoperability

ActionState 3

ActionState B

ActionState A

ActionState 3

Figure 13.5: Three primitive patterns for workflow interoperability

In a chained pattern, one process triggers the creation and enactment of another. The
triggering process either terminates at this point or continues independently and concurrently
with the second. In anested pattern, a triggering process creates and enacts the other, and then
waits for the other to return results and terminate. The triggering process can also execute
concurrently with the other process, and receive its results at a later step [yoon Jung et al.,
2004]. In asynchronized pattern, two concurrently executing processes synchronize at a
specified point in their respective executions. Only after both reach that point do they continue
independently.

c© Singh & Huhns 262 7 July 2004

Part III: Engagement 13: Process Specifications

13.3.3 A Metamodel for Workflow

The following terms and meanings are defined and advocated by the Workflow Management
Coalition (WfMC):

• A process, typically a business process, is a collection of tasks organized into a graph.
This reflects the workflow view of processes.

• A taskis an atomic work item.

• A serviceimplements a task and may be implemented.

• An actor is a human or machine that performs a task by fulfilling a service.

• A role abstracts a set of tasks.

• A workflowis an instance of a process that binds and consumes resources in fulfilling
the tasks of a process.

Role Activity Workflow Relevant Data

Workflow Type Definition

Invoked Application

Transition Conditions

1
*

Consists of

* *

uses

* *

may refer to

* *

uses

* *
uses

*

*

may refer to

1

*

has

*

*

may have

Figure 13.6: A basic metamodel for the definition of a workflow and its terminology [WfMC]

A metamodel that shows the relationship among some of these terms is depicted in Fig-
ure 13.6. Figure 13.7 shows the states and state transitions that can occur during the execution
of a typical workflow.

c© Singh & Huhns 263 7 July 2004

Part III: Engagement 13: Process Specifications

Initiate
Initiated

Start

Restart

Restart

Suspend/

Resume

Running

Suspended

Terminate/

Abort

Terminated

Active

Completed

(1 or more activity

instances)

Iterate through

all active

activities

Figure 13.7: A state-transition diagram for an activity or a workflow [WfMC]

13.3.4 Interoperation

A workflow represents the interoperation of possibly several applications and databases. This
interoperation can be achieved by building an appropriate workflow from scratch. However,
standards activities, such as those being led by the WfMC, attempt to define a reference model
for workflow management. The reference model describes how workflow engines ought to
be connected to applications, databases, development tools, runtime tools, and each other.
Figure 13.8 shows the WfMC reference model, depicting the major components and their
interfaces within a workflow architecture. Agents can contribute to achieving interoperation
among the different resources while satisfying the resources’ local constraints.

Another, more profound, kind of interoperation occurs among different workflows. A
workflow represents a meaningful unit of processing that affects a number of people and
information resources. Clearly, multiple units must interact with each other, because some
people participate in more than one, and the units inevitably share resources. Workflow
designers must understand, model, and manage these interactions properly. If they do not, all
manner of chaos may ensue—and indeed often does. For example, one workflow of the above
communications provider might be underway to upgrade wiring with a view to discarding the
old wiring, while another workflow might treat the old wiring as freely available and be
actively assigning new telephone circuits to it.

This requires an ability to communicate and negotiate. Such coordination benefits from
standards that enable workflows modeled and managed by tools from different vendors to be
related. One standard is the Simple Workflow Access Protocol (SWAP) announced by WfMC

c© Singh & Huhns 264 7 July 2004

Part III: Engagement 13: Process Specifications

Other Workflow

Enactment

Service(s)

Process

Definition Tools

API and Interchange Formats

Workflow Enactment Service

Administration

& Monitoring

Tools

Workflow

Client

Applications

API

Workflow

Engine

Invoked

Applications

API

API

A
P

I

Figure 13.8: A reference model for workflow management systems, showing their major
components and interfaces [WfMC]

c© Singh & Huhns 265 7 July 2004

Part III: Engagement 13: Process Specifications

and the IETF. SWAP governs both the control and monitoring of workflows. Control means
instantiating the workflow, starting it, stopping it, being informed of exceptions, being in-
formed of completions, and obtaining the results. Monitoring means checking on the current
status of the workflow and obtaining its history. SWAP’s protocol for basic interaction is

• The client invokescreateProcessInstance command on the workflow server.

• The server returns the URI of the workflow instance.

• The client sends its own URI to the instance.

• When it is done, the workflow instance invokes thecompleted command on the client.

Other commands can be invoked by both the client and server during execution to provide
status, exception, and result information. The resultant protocol is lightweight and, although
it has largely been superseded by business process protocols such as BPEL4WS, it is repre-
sentative of the capabilities needed to describe, control, and monitor a workflow.

13.3.5 State of the Art

There are many workflow tools available in the marketplace—at least 100, and by some
counts as many as 250. Each tool provides some type of modeling mechanism coupled with
an execution framework. In general, the metamodels underlying most workflow tools are
based on a variant of activity networks, which show different activities as nodes and use links
to represent various temporal and exception dependencies among the nodes. Figures 13.2
to 13.4 reflect this general idea.

System analysts design workflows on the basis of their understanding of the given organi-
zation and the abstractions the chosen workflow tool supports. Once designed, the workflow
can be executed automatically by the tool, typically resulting in improved efficiency. For ex-
ample, when workflows involve human workers, the workers can be automatically informed
of the tasks they should be performing and given the resources they need to complete the
tasks, thereby reducing idle time.

13.3.6 Challenges Facing Workflow Technology

Workflow technology is not universally acclaimed, and many CIOs are not convinced of its
capabilities and benefits. One problem is that current workflow technology is often too rigid.
Because workflows are constructed prior to use and are enforced by some central authority,
this rigidity is inevitable. However, the lack of freedom accorded to human participants
causes workflow management systems to appear unfriendly. As a result, workflows are often
ignored or circumvented.

This rigidity also causes productivity losses by making it harder to accommodate the flex-
ible, ad hocreasoning that is the strong suit of human intelligence. This need for flexibility
is most apparent when an exception occurs and rigid workflow management tools behave

c© Singh & Huhns 266 7 July 2004

Part III: Engagement 13: Process Specifications

incorrectly. In our earlier example, if the credit bureau is unresponsive, a poorly designed
workflow might just wait indefinitely, whereas a flexible one would let a human make a deci-
sion based on available information.

Another challenge is that system requirements are rarely static. A workflow’s design
context might not remain applicable in every detail over the workflow’s lifetime. Dynamic
requirements can necessitate arbitrary extensions not recorded in the workflow model itself.
Suppose our telecommunications provider makes a special offer at the start of an academic
year whereby it waives credit-history checks of full-time students. Would this change require
the workflow to be redesigned and reinstalled?

In the future, much as they enable databases to interoperate today, agents (discussed in
Chapter 15) will enable Internet-wide workflow processes to be coordinated and executed
flexibly.

13.4 Business Process Languages

Business processes are distinguished by being possibly long-running, involving multiple au-
tonomous participants, and having correctness and completion guarantees. Such guarantees
might have contractual and even legal implications.

Business processes can be described in two ways.Executable business processesmodel
the actual behavior of a participant in a business interaction.Business protocols, in contrast,
use process descriptions that specify the mutually visible message exchange behavior of each
of the parties involved in the protocol, without revealing their internal behavior. That is, the
descriptions specify interfaces. The process descriptions for business protocols are called
abstract processes and cannot be executed.

13.4.1 BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS) can serve as both
an implementation language for executable processes and a description language for nonex-
ecutable business protocols. It defines a model and a grammar for describing how multiple
Web service interactions among the process’s participants, termedpartners, are coordinated
to achieve a business goal, as well as the state and the logic necessary for the coordination
to occur. Interactions with each partner occur through lower-level Web service interfaces,
as might be defined in WSDL. BPEL4WS can define mechanisms for dealing with excep-
tions and processing faults, including how individual or composite process components are
to be compensated when exceptions and faults occur or when a partner requests an abort.
Figure 13.9 shows the metamodel for BPEL4WS.

A BPEL4WS document uses XML to describe the following aspects of a business pro-
cess:

• partners:a list of the Web services invoked as part of the process.

c© Singh & Huhns 267 7 July 2004

Part III: Engagement 13: Process Specifications

-name

-property

CorrelationSet
CompensationHandler

-name

Process Activity

-myRole

-serviceLinkType

-name

Partner

-messageType

-name

Container

-faultContainer

-faultName

FaultHandler
Reply

Figure 13.9: The BPEL4WS metamodel, specifying that a process consists of an activity, a
number of partners and containers with specific correlation sets, fault handlers, and compen-
sation handlers

c© Singh & Huhns 268 7 July 2004

Part III: Engagement 13: Process Specifications

• containers:the data containers used by the process, providing their definitions in terms
of WSDL message types. Containers are needed to store state data and process history
based on messages exchanged among the component processes.

• variables: the variables that are used and flow through the process.

• faultHandlers:the exception handling routines.

• compensationHandler:compensation actions to take when a transaction rollback oc-
curs.

• eventHandlers:routines for handling external (asynchronous) events.

• correlationSets:precedences and correlations among Web service invocations that can-
not be expressed as part of the main process logic.

• main process logic: a series of nested control flow structures that combine primitive
activities into more complex algorithms. The control structures include

– sequence, for serial execution.

– while, to implement a loop.

– switch, for multiway branching.

– pick, for choosing among alternative paths based on an external event.

– flow, for parallel execution. Within activities executing in parallel, execution
order constraints are indicated by using service links.

• The control structures relate the following atomic actions:

– invoke, invoking a specific Web service.

– receive, a server waiting to receive a message from a client, which would invoke
the server’s service.

– reply, generating the response to an invocation request.

– wait, waiting either for a deadline or some amount of time.

– assign, assigning a value, which might have come from a received message, to a
variable.

– throw, indicating that something went wrong.

– terminate, terminating an entire service instance.

– empty, doing nothing.

In modeling a business protocol as an abstract process, BPEL4WS describes just public as-
pects of the protocol. For example, in a supply-chain protocol, BPEL4WS would describe
the roles of a buyer and a seller as abstract processes, with their relationship modeled as a

c© Singh & Huhns 269 7 July 2004

Part III: Engagement 13: Process Specifications

service link. Abstract processes are restricted to manipulation of values contained in message
properties, and use nondeterministic values to reflect the results of hidden private behavior.

In modeling an executable business process, BPEL4WS does not have to completely
define a partner’s individual implementation, but it does define a portable execution format
for business processes. Such processes execute and interact with their partners in a consistent
way regardless of the supporting platform or the programming model used by a particular
implementation.

The result of using BPEL4WS to model an executable business process is a new Web ser-
vice composed out of existing services. The interface of the composite service is a collection
of WSDL portTypes, just like any other Web service. Figure 13.10 illustrates this external
view of a BPEL4WS process.

Web Service

portType

portType

portType

<receive>

<receive>

<reply>

<reply>

BPEL4WS

Process

Figure 13.10: A BPEL4WS process is a composite Web service with an interface that is a
collection of WSDLportTypes, just like any other Web service

13.4.1.1 Transaction Flow

BPEL4WS provides a compensation protocol that is a variant of earlier work on Sagas and
open nested transactions (see Section 11.5 on page 224). It enables flexible control of roll-
backs and reversals through application-specific definitions for fault handling and compensa-
tion, resulting in Long-Running (Business) Transactions (LRTs).

c© Singh & Huhns 270 7 July 2004

Part III: Engagement 13: Process Specifications

An LRT can be undone by reversing individual operations, using business rules that typ-
ically depend on the application. Scope elements delineate the parts of a behavior that are
allowed to be reversible by a compensation handler. Scopes can be nested to an arbitrary
depth.

An LRT occurs within a single business process instance, and there is no distributed
coordination among the partners regarding an agreed-upon outcome. Achieving distributed
agreement is outside the scope of BPEL4WS, to be solved by using protocols described
in WS-Transaction (see Section 12.4 on page 249). In essence, WS-Transaction uses WS-
Coordination to extend BPEL4WS to provide a context for transactional agreements between
services. Different agreements may be described in an attempt to achieve consistent, desirable
behavior while respecting service autonomy.

13.4.1.2 Implementing a BPEL4WS Web Service

A BPEL4WS process is an algorithm expressed as a flow chart, where each step is an activ-
ity. Information is passed between activities through data containers and the use of〈assign〉
statements. For example, a customer’s address would be copied from a purchase order to a
shipping request by the following:

¨ ¥
<a s s i g n>

<copy>
<from c o n t a i n e r ="PO" p a r t ="customerAddress" />
<t o c o n t a i n e r ="shippingRequest" p a r t ="customerInfo" />

< / copy>
< / a s s i g n>§ ¦

A service link is used to define the relationship between two partners and the role that
each partner plays. For example, a service link between a buyer and seller might be

¨ ¥
<se r v i c e L i n k T y p e name="BuySellLink"

xmlns="http: //schemas.xmlsoap.org/ws/2002/07/service - link/" >
< r o l e name="Buyer" >

<por tType name="BuyerPortType" />
< / r o l e>
< r o l e name="Seller" >

<por tType name="SellerPortType" />
< / r o l e>

< / s e r v i c e L i n k T y p e>§ ¦
The following is a complete example of an executable BPEL4WS process for the imple-

mentation of a stock quoting service:
¨ ¥
<! ENTITY BPEL

"http: //schemas.xmlsoap.org/ws/2002/07/business -process"

<p r o c e s s name="simple"

c© Singh & Huhns 271 7 July 2004

Part III: Engagement 13: Process Specifications

t a rge tNamespace ="urn:simple:stockQuoteService"

x m l n s : t n s ="urn:simple:stockQuoteService"

xmlns :sqp ="http: // tempuri .org/services/stockquote"

xmlns=&BPEL ; />

<c o n t a i n e r s>
<c o n t a i n e r name="request"

messageType=" tns:request" />
<c o n t a i n e r name=" response"

messageType=" tns:response" />
<c o n t a i n e r name=" invocationRequest"

messageType="sqp:GetQInput" />
<c o n t a i n e r name=" invocationResponse"

messageType="sqp:GetQOutput" />
< / c o n t a i n e r s>

<p a r t n e r s>
<p a r t n e r name="caller"

s e r v i c e L i n k T y p e =" tns:StockQuoteSLT" />
<p a r t n e r name="provider"

s e r v i c e L i n k T y p e =" tns:StockQuoteSLT" />
< / p a r t n e r s>

<sequence name="sequence" >
<r e c e i v e name="receive" p a r t n e r ="caller"

por tType =" tns:StockQuotePT"

o p e r a t i o n ="wantQuote" c o n t a i n e r ="request"

c r e a t e I n s t a n c e ="yes" />
<a s s i g n>

<copy>
<from c o n t a i n e r ="request" p a r t ="symbol" />
<t o c o n t a i n e r =" invocationRequest" p a r t ="symbol" />

< / copy>
< / a s s i g n>
<i nvoke name=" invoke" p a r t n e r ="provider"

por tType ="sqp:StockQuotePT"

o p e r a t i o n ="getQuote"

i n p u t C o n t a i n e r =" invocationRequest"

o u t p u t C o n t a i n e r =" invocationResponse" />
<a s s i g n>

<copy>
<from c o n t a i n e r =" invocationResponse" p a r t ="quote" />
<t o c o n t a i n e r ="response" p a r t ="quote" />

< / copy>
< / a s s i g n>
<r e p l y name="reply" p a r t n e r ="caller"

c© Singh & Huhns 272 7 July 2004

Part III: Engagement 13: Process Specifications

por tType =" tns:StockQuotePT"

o p e r a t i o n ="wantQuote" c o n t a i n e r =" response" />
< / sequence>

< / p r o c e s s>§ ¦
This process is a simple five-step sequence that begins when a request for a quote is

received from the caller. The request is copied to an invocation container, thegetQuote oper-
ation is invoked with the parameters of the request, the result is copied to a result container,
and a reply is returned to the requester.

13.4.1.3 UML to BPEL4WS Translation

The Unified Modeling Language (UML) is a popular representation and methodology for
characterizing software and information processes, so we consider its use here for describing
business processes. BPEL4WS processes are stateful and can have instances, so the appro-
priate UML construct for modeling them is a class with stereotype¿ProcessÀ and whose
attributes are the state variables of the process. The behavior of the class is described us-
ing an activity diagram. Other aspects of a mapping from UML to BPEL4WS are shown in
Table 13.1.

Table 13.1: UML to BPEL4WS Mappings

UML Construct BPEL4WS Concept

¿processÀ class BPEL process definition

Activity graphon a¿processÀ class BPEL activity hierarchy

¿processÀ class attributes BPEL variables

Hierarchical structure BPEL sequence and flow activities

Control flow BPEL sequence and flow activities

¿receiveÀ activities BPEL activities

¿replyÀ activities BPEL activities

¿invokeÀ activities BPEL activities

13.4.2 BPML

The Business Process Modeling Language (BPML) and BPEL4WS share similar roots in
Web services (SOAP, WSDL, and UDDI), take advantage of the same XML technologies
(XPath and XML Schema), and are designed to leverage other specifications (WS-Security
and WS-Transaction). Beyond these areas of commonality, BPML supports the modeling
of real-world business processes through its support for advanced semantics, such as nested

c© Singh & Huhns 273 7 July 2004

Part III: Engagement 13: Process Specifications

processes and complex compensated transactions. BPML builds on the foundation of WSCI
for expressing public interfaces and choreographies.

13.4.3 ebXML

The Electronic Business Extensible Markup Language (ebXML) has been established by the
United Nations CEFACT (Centre for Trade Facilitation and Electronic Business) and the
OASIS (Organization for the Advancement of Structured Information Standards) group to
provide specifications for defining standard business processes and trading agreements among
different organizations. It also specifies the business messages that are exchanged as part of
a business process. The objective is for ebXML to be a global standard for governmental and
commercial organizations of all sizes to find business partners and interact with them.

Suppose you are the owner of a disk-drive manufacturing company that sells its disk
drives to the computer industry, and you decide that your company should receive purchase
orders electronically. To implement this as an ebXML business process, you could follow the
typical three-step procedure described in Figure 13.11.

Business

Organization A

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Publis
h C

olla
bora

tio
n

Pro
to

col P
ro

fil
e

Request ebXML

Specs

Receive ebXML

Info

Business

Process

Business

Scenarios

Business

Profiles

ebXML Repository

Business Process

and Information

Model

(UMM or PSL)

Business

Organization B

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Business Process

and Information

Model

(UMM or PSL)

Request ebXML

Specs

Receive ebXML

Info
Publish Collaboration

Protocol Profile

CPA Information

Figure 13.11: The design of an ebXML system typically follows the steps shown here, from
modeling a business process to constructing the CPP and CPA specifications

According to this procedure, the recommended way for you to design an ebXML process
is to first construct a model of one of your business processes, using a process modeling lan-
guage. For example, you might use the UN/CEFACT Modeling Methodology (UMM), which

c© Singh & Huhns 274 7 July 2004

Part III: Engagement 13: Process Specifications

is a qualified UML notation for business processes, or you might use the Process Specification
Language (PSL). Based on your process model and using the ebXML Business Process Spec-
ification Schema (BPSS), you would then extract and format the set of elements necessary to
configure an ebXML runtime system that will be able to execute the required set of ebXML
business transactions. The result is an ebXML Process-Specification Document, which might
be a RosettaNet Partner Interface Process (PIP) as introduced in Section 13.4.4 on page 284.
The following example describes a transaction whereby a customer (buyer) issues a request
for a purchase order (PO) and your company, the seller, confirms the purchase order.

Listing 13.1 is the Process-Specification Document corresponding to a well-known Roset-
taNet PIP for purchase orders and acknowledgments. RosettaNet has given this PIP an iden-
tifier 3A4, hence the use of that string in the document.

Listing 13.1: An example ebXML Business Process Specification Schema document¨ ¥
<P r o c e s s S p e c i f i c a t i o n

xmlns="http: //www.ebxml.org/BusinessProcess"

name="PIP3A4RequestPurchaseOrder" >

<!−− The r e q u e s t document and i t s XML Schema−−>
<BusinessDocument name="PO Request"

nameID="Pip3A4PORequest"

s p e c i f i c a t i o n L o c a t i o n ="PurchaseOrderRequest .xsd" />

<!−− The c o n f i r m a t i o n document and i t s XML Schema−−>
<BusinessDocument name="PO Confirmation"

nameID="Pip3A4POConfirmation"

s p e c i f i c a t i o n L o c a t i o n ="PurchaseOrderConfirmation.xsd" />

<!−− Th i s p r o c e s s s p e c i f i c a t i o n has one b u s i n e s s−−>
<!−− t r a n s a c t i o n c o n s i s t i n g o f a r e q u e s t i n g and−−>
<!−− a respond ing b u s i n e s s a c t i v i t y−−>
<B u s i n e s s T r a n s a c t i o n name="Request PO"

nameID="RequestPO_BT" >
<R e q u e s t i n g B u s i n e s s A c t i v i t y

name="PO Request Action"

nameID="PORequestAction"

i s A u t h o r i z a t i o n R e q u i r e d =" true"

i sNon Repu d ia t i onR equ i r ed =" true"

t imeToAcknowledgeReceip t="PT2H" >
<DocumentEnvelope

bus inessDocument="PO Request"

bus inessDocument IDRef="Pip3A4PurchaseOrderRequest" />
< / R e q u e s t i n g B u s i n e s s A c t i v i t y>
<R e s p o n d i n g B u s i n e s s A c t i v i t y

name="PO Confirmation Action"

nameID="POConfirmationAction"

c© Singh & Huhns 275 7 July 2004

Part III: Engagement 13: Process Specifications

i s A u t h o r i z a t i o n R e q u i r e d =" true"

i sNon Repu d ia t i onR equ i r ed =" true"

t imeToAcknowledgeReceip t="PT2H" >
<DocumentEnvelope

bus inessDocument="PO Confirmation"

bus inessDocument IDRef="Pip3A4PurchaseOrderConfirmation" />
< / R e s p o n d i n g B u s i n e s s A c t i v i t y>

< / B u s i n e s s T r a n s a c t i o n>

<!−− The b i n a r y c o l l a b o r a t i o n a s s e r t s t h a t t h e buyer i s−−>
<!−− t h e i n i t i a t o r o f t h e above b u s i n e s s t r a n s a c t i o n and−−>
<!−− t h e s e l l e r i s t h e responder , and t h e p r o c e s s b e g i n s−−>
<!−− i n t h e Reques t PO s t a t e−−>
<B i n a r y C o l l a b o r a t i o n name="Request PO"

nameID="RequestPO_BC" >
< I n i t i a t i n g R o l e name="Buyer" nameID="BuyerId" />
<RespondingRole name="Seller" nameID="SellerId" />
<S t a r t t o B u s i n e s s S t a t e ="Request PO" />
<B u s i n e s s T r a n s a c t i o n A c t i v i t y name="Request PO"

nameID="RequestPO_BTA"

b u s i n e s s T r a n s a c t i o n ="Request PO"

b u s i n e s s T r a n s a c t i o n I D R e f ="RequestPO_BT"

f r omAutho r i zedRo le ="Buyer"

f romAuthor i zedRo le IDRef ="BuyerId"

t o A u t h o r i z e d R o l e ="Seller"

t oAu tho r i zedRo le IDRe f ="SellerId"

t imeToPer form="PT1D" />
< / B i n a r y C o l l a b o r a t i o n>

< / P r o c e s s S p e c i f i c a t i o n>§ ¦
This example specifies two business documents—a purchase order request and a purchase

order confirmation—whose format has been defined by RosettaNet, one business transaction
named “Request PO” that your company will support, and a choreography for this transaction
into a binary collaboration with buyer and seller roles and associated parameters, such as
timeToPerform. The various times are encoded as strings such as “PT1D” and “PT2H”—
these use the XML Schema duration syntax adopted from the ISO 8601 standard and mean
periods of time equal to one day and two hours, respectively.

You and your customers use this ebXML Process-Specification Document to form ebXML
Collaboration-Protocol Profiles (one for you (as the seller) and one for each customer (as a
buyer)). Finally, you would construct a Collaboration-Protocol Agreement, which links you
with any one of your customers. Listing 13.2 is an example of the CPP for one of your
customers, named PCInc and identified by its DUNS number.

Listing 13.2: An example of an ebXML Collaboration Protocol Profile¨ ¥
<c p : C o l l a b o r a t i o n P r o t o c o l P r o f i l e

c© Singh & Huhns 276 7 July 2004

Part III: Engagement 13: Process Specifications

xmlns :cp ="http: //www.ebxml.org/specs/cpp-cpa-v2_0.xsd" >
<c p : P a r t y I n f o cp:par tyName="PCInc"

c p : d e f a u l t M s h C h a n n e l I d ="asyncChannelA1" >
<c p : P a r t y I d

c p : t y p e ="urn:ebxml -cppa:partyid - type:duns" >
123456789

< / c p : P a r t y I d>
<c p : P a r t y R e f

x l i n k : h r e f ="http: //PCInc.com/about.html" />
<c p : C o l l a b o r a t i o n R o l e c p : i d ="BuyerId" >

<c p : P r o c e s s S p e c i f i c a t i o n c p : v e r s i o n ="2.0"

cp:name="PIP3A4RequestPurchaseOrder"

x l i n k : t y p e ="simple"

x l i n k : h r e f =
"http: //www.rosettanet .org/processes/3A4.xml" />

<cp :Ro le cp:name="Buyer"

x l i n k : h r e f =
"http: //www.rosettanet .org/processes/3A4.xml#Buyer" />

<c p : S e r v i c e B i n d i n g>
<c p : S e r v i c e>

b p i d : i c a n n : r o s e t t a n e t . org:3A4v2 . 0
< / c p : S e r v i c e>
<cp:CanSend>

<c p : T h i s P a r t y A c t i o n B i n d i n g c p : i d ="PCInc_ABID1"

c p : a c t i o n ="PO Request Action"

c p : p a c k a g e I d ="PCInc_RequestPackage" >
<c p : C h a n n e l I d>asyncChannelA1< / c p : C h a n n e l I d>
<c p : B u s i n e s s T r a n s a c t i o n C h a r a c t e r i s t i c s

c p : i s N o n R e p u d i a t i o n R e q u i r e d =" true"

c p : i s S e c u r e T r a n s p o r t R e q u i r e d =" true"

c p : i s A u t h o r i z a t i o n R e q u i r e d =" true"

cp : t imeToAcknowledgeRece ip t ="PT2H"

cp : t imeToPer fo rm ="PT1D" />
< / c p : T h i s P a r t y A c t i o n B i n d i n g>

< / cp:CanSend>
< / c p : S e r v i c e B i n d i n g>

< / c p : C o l l a b o r a t i o n R o l e>
< / c p : P a r t y I n f o>

< / c p : C o l l a b o r a t i o n P r o t o c o l P r o f i l e>§ ¦
Listing 13.3 provides a feel for the additional practically important, but conceptually

trivial details that must be worked out in a collaboration protocol profile to make it effective.
These details involve message delivery, transport protocol (the following is a wordy way of
specifying HTTPS), reliable messaging, and security, including nonrepudiation.

Listing 13.3: Additional details to include within thepartyInfo element of Listing 13.2 to

c© Singh & Huhns 277 7 July 2004

Part III: Engagement 13: Process Specifications

make it complete¨ ¥
<c p : D e l i v e r y C h a n n e l c p : c h a n n e l I d ="asyncChannelA1"

c p : t r a n s p o r t I d =" transportA2"

cp :docExchange Id ="docExchangeA1" >
<c p : M e s s a g i n g C h a r a c t e r i s t i c s

cp:syncReplyMode="none"

cp : a c k R e q u e s t e d ="always"

c p : a c k S i g n a t u r e R e q u e s t e d ="always"

c p : d u p l i c a t e E l i m i n a t i o n ="always" />
< / c p : D e l i v e r y C h a n n e l>
<c p : T r a n s p o r t c p : t r a n s p o r t I d =" transportA2" >

<c p : T r a n s p o r t S e n d e r>
<c p : T r a n s p o r t P r o t o c o l c p : v e r s i o n ="1.1" >

HTTP
< / c p : T r a n s p o r t P r o t o c o l>
<c p : T r a n s p o r t C l i e n t S e c u r i t y>

<c p : T r a n s p o r t S e c u r i t y P r o t o c o l c p : v e r s i o n ="3.0" >
SSL

< / c p : T r a n s p o r t S e c u r i t y P r o t o c o l>
< / c p : T r a n s p o r t C l i e n t S e c u r i t y>

< / c p : T r a n s p o r t S e n d e r>
< / c p : T r a n s p o r t>
<cp:DocExchange cp :docExchange Id ="docExchangeA1" >

<cp:ebXMLSenderBinding c p : v e r s i o n ="2.0" >
<c p : R e l i a b l e M e s s a g i n g>

<c p : R e t r i e s>3< / c p : R e t r i e s>
<c p : R e t r y I n t e r v a l>PT2H< / c p : R e t r y I n t e r v a l>
<cp :MessageOrderSemant i cs>

Guaran teed
< / cp :MessageOrderSemant i cs>

< / c p : R e l i a b l e M e s s a g i n g>
<cp :SenderNonRepud ia t i on>

<c p : N o n R e p u d i a t i o n P r o t o c o l>
h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig #

< / c p : N o n R e p u d i a t i o n P r o t o c o l>
<cp :HashFunc t i on>

h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # sha1
< / cp :HashFunc t i on>
<c p : S i g n a t u r e A l g o r i t h m>

h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # dsa−sha1
< / c p : S i g n a t u r e A l g o r i t h m>

< / cp :SenderNonRepud ia t i on>
<c p : S e n d e r D i g i t a l E n v e l o p e>

<c p : D i g i t a l E n v e l o p e P r o t o c o l c p : v e r s i o n ="2.0" >
S /MIME

< / c p : D i g i t a l E n v e l o p e P r o t o c o l>

c© Singh & Huhns 278 7 July 2004

Part III: Engagement 13: Process Specifications

<c p : E n c r y p t i o n A l g o r i t h m>
DES−CBC

< / c p : E n c r y p t i o n A l g o r i t h m>
< / c p : S e n d e r D i g i t a l E n v e l o p e>

< / cp:ebXMLSenderBinding>
< / cp:DocExchange>§ ¦

The CPP specifies the buyer role for this customer in a RosettaNet PIP, with aservice
binding elementspecifying the customer’s ability to send a purchase order request. Adelivery
channel elementdefines characteristics of the business transaction and the messaging. The
transport elementdefines the buyer’s network communication capabilities. Together, the
CPA and CPP agreements serve as configuration files (e.g., messaging headers) for ebXML
Business Service Interface software.

To summarize, the vocabulary used for an ebXML specification consists of the following
three parts:

1. A Process-Specification Document describing the activities of the parties in an ebXML
interaction.

2. A Collaboration Protocol Profile (CPP), which describes an organization’s profile, i.e.,
which business processes it supports, its roles in those processes, the messages ex-
changed, and the transport mechanism for the messages.

3. A Collaborative Partner Agreement (CPA), which is an intersection of two CPP’s, rep-
resenting a technical agreement between two or more partners, and potentially negoti-
ated as shown in Figure 13.12. It may have legal binding.

13.4.3.1 Implementing ebXML

ebXML is just a set of specifications, and an enterprise may build and deploy its own ebXML
compliant application. In addition, ebXML compliant applications and components are com-
mercially available as shrink-wrapped products. ebXML can also be implemented by aBusi-
ness Service Interface(BSI), a wrapper that enables a noncompliant party to properly partic-
ipate in an ebXML exchange. As shown in Figure 13.13, a Business Service Interface can
interface with a legacy system, is aware of its own Collaborative Protocol Profile, and handles
transactions based on all of the current agreements (CPAs).

Listing 13.4: The general form of an ebXML Collaboration Protocol Agreement¨ ¥
<C o l l a b o r a t i o n P r o t o c o l A g r e e m e n t

xmlns="http: //www.ebxml.org/namespaces/ tradePartner"

xmlns :cp ="http: //www.ebxml.org/specs/cpp-cpa-v2_0.xsd"

xmlns:bpm="http: //www.ebxml.org/namespaces/businessProcess"

xmlns :ds ="http: //www.w3.org /2000/09/xmldsig#"

x m l n s : x l i n k ="http: //www.w3.org /1999/xlink"

c p : c p a i d ="OurMutualCPA" c p : v e r s i o n ="2.0" >

c© Singh & Huhns 279 7 July 2004

Part III: Engagement 13: Process Specifications

Request

Information on

Organization B

Business

Organization A

Negotiate

Terms

Business

Organization B

Negotiate

Terms

Request Organization B’s

Profiles and Scenarios

Receive Organization B’s

Information

Business

Process

Business

Scenarios

Business

Profiles

ebXML Repository
Exchange Partner Agreement

(CPA)Accept Partner

Agreement

Figure 13.12: Discover partner information and negotiate

ebXML World
Legacy

Application

Transform

Layer

Business

Service

Interface

Message

Layer

(TR & P)

CPA

Document

Business

Process

Figure 13.13: Business Service Interface

c© Singh & Huhns 280 7 July 2004

Part III: Engagement 13: Process Specifications

<c p : S t a t u s v a l u e ="proposed" />
<c p : S t a r t>2004−04−07 T08:30 :00< / c p : S t a r t>
<cp:End>2006−04−07 T23:59 :59< / cp:End>
<!−−C o n v e r s a t i o n C o n s t r a i n t s MAY appear 0 or 1 t ime−−>
<c p : C o n v e r s a t i o n C o n s t r a i n t s c p : i n v o c a t i o n L i m i t ="100"

c o n c u r r e n t C o n v e r s a t i o n s ="4" />
<c p : P a r t y I n f o> <!−−my i n f o r m a t i o n as i n CPP−−>

. . .
< / c p : P a r t y I n f o>
<c p : P a r t y I n f o> <!−−your i n f o r m a t i o n as i n CPP−−>

. . .
< / c p : P a r t y I n f o>
<c p : P a c k a g i n g i d ="N20" > <!−−one or more−−>

. . .
< / c p : P a c k a g i n g>
<!−−d s : s i g n a t u r e MAY appear 0 or more t i m e s−−>
<d s : S i g n a t u r e>any comb ina t i on o f t e x t and e le me n ts
< / d s : S i g n a t u r e>
<!−− cp:Comment may appear 0 or more t i m e s−−>
<cp:Comment xml : lang ="en-gb" >any t e x t< / cp:Comment>

< / C o l l a b o r a t i o n P r o t o c o l A g r e e m e n t>§ ¦
ThePartyInfo element consists of the following child elements:

• One or more REQUIREDPartyId elements that provide a logical identifier for the
organization (Party).

• A REQUIREDPartyRef element that provides a pointer to more information about the
Party.

• One or more REQUIREDCollaborationRole elements that identify the roles that this
Party can play in the context of a Process Specification.

• One or more REQUIREDCertificate elements that identify the certificates used by this
Party in security functions.

• One or more REQUIREDDeliveryChannel elements that define the characteristics of
each delivery channel that the Party can use to receive Messages. It includes both
the transport level (e.g., HTTP) and the messaging protocol (e.g., ebXML Message
Service).

• One or more REQUIREDTransport elements that define the characteristics of the trans-
port protocol(s) that the Party can support to receive Messages.

• One or more REQUIREDDocExchange elements that define the message-exchange
characteristics, such as the messaging protocol, that the Party can support.

c© Singh & Huhns 281 7 July 2004

Part III: Engagement 13: Process Specifications

Listing 13.5: The PartyInfo field for an ebXML Collaboration Protocol Agreement¨ ¥
<P a r t y I n f o>

<P a r t y I d t ype ="..." > <!−−one or more−−>
. . .

< / P a r t y I d>
<Par t yRe f x l i n k : t y p e ="..." , x l i n k : h r e f ="..." />
<C o l l a b o r a t i o n R o l e> <!−−one or more−−>

. . .
< / C o l l a b o r a t i o n R o l e>
<C e r t i f i c a t e> <!−−one or more−−>

. . .
< / C e r t i f i c a t e>
<De l i ve ryChanne l> <!−−one or more−−>

. . .
< / De l i ve r yChanne l>
<T r a n s p o r t> <!−−one or more−−>

. . .
< / T r a n s p o r t>
<DocExchange> <!−−one or more−−>

. . .
< / DocExchange>

< / P a r t y I n f o>§ ¦
Listing 13.6: The CollaborationRole field for an ebXML Collaboration Protocol Agreement¨ ¥
<C o l l a b o r a t i o n R o l e i d ="N11" >

<P r o c e s s S p e c i f i c a t i o n name="BuySell " ve rs i on="1.0" >
. . .

< / P r o c e s s S p e c i f i c a t i o n>
<Role name="buyer" x l i n k : h r e f ="..." />
<C e r t i f i c a t e R e f c e r t I d ="N03" />
<!−−pr imary b i n d i n g w i th p r e f e r r e d De l i ve ryChanne l−−>
<S e r v i c e B i n d i n g name="aProc"

c h a n n e l I d ="N02" package Id ="N06" >
<!−−o v e r r i d e d e f a u l t De l i ve ryChanne l−−>
<Ove r r i de a c t i o n ="OrderAck"

c h a n n e l I d ="N05" package Id ="N09"

x l i n k : t y p e ="simple" x l i n k : h r e f ="..." />
< / S e r v i c e B i n d i n g>
<!−− t h e f i r s t a l t e r n a t e b i n d i n g−−>
<S e r v i c e B i n d i n g c h a n n e l I d ="N04" package Id ="N06" >

<Ove r r i de a c t i o n ="OrderAck"

c h a n n e l I d ="N05" package Id ="N09"

x l i n k : t y p e ="simple" x l i n k : h r e f ="..." />
< / S e r v i c e B i n d i n g>

< / C o l l a b o r a t i o n R o l e>

c© Singh & Huhns 282 7 July 2004

Part III: Engagement 13: Process Specifications

§ ¦
Based on the above CPA and CPP documents, the following would be an example of a

message header for sending aPurchase Order Request document from a buyer to a seller.

Listing 13.7: An example SOAP message header for sending a Purchase Order Request doc-
ument¨ ¥
<SOAP:Envelope

xmlns:SOAP="http: //schema.xmlsoap.org/soap/envelope/" >
<SOAP:Header

xmlns :eb ="http //www.ebxml.org/msg-header -2_0.xsd" >
<eb:MessageHeader i d ="123" e b : v e r s i o n ="2.0"

SOAP:mustUnderstand="1" >
<eb:From><e b : P a r t y I d>123456< / e b : P a r t y I d>< / eb:From>
<eb:To>

<e b : P a r t y I d e b : t y p e ="someType" >987654< / e b : P a r t y I d>
<eb :Ro le>

h t t p : / / r o s e t t a n e t . org / p r o c e s s e s / 3A4 . xml# s e l l e r
< / eb :Ro le>

< / eb:To>
<eb:CPAId>ur i :companyA−and−companyB−cpa< / eb:CPAId>
<e b : C o n v e r s a t i o n I d>987654321< / e b : C o n v e r s a t i o n I d>
<e b : S e r v i c e e b : t y p e ="anyURI" >

b p i d : i c a n n : r o s e t t a n e t . org:3A4v2 . 0
< / e b : S e r v i c e>
<e b : A c t i o n>Purchase Order Reques t Ac t ion< / e b : A c t i o n>
<eb:MessageData>

<eb :Message Id>UUID−2< / eb :Message Id>
<eb:T imestamp>2000−07−25 T12:19 :05< / eb:T imestamp>
<eb:RefToMessageId>UUID−1< / eb :RefToMessageId>

< / eb :MessageData>
<e b : D u p l i c a t e E l i m i n a t i o n />

< / eb :MessageHeader>
< / SOAP:Header>
<SOAP:Body

xmlns :eb ="http //www.ebxml.org/msg-header -2_0.xsd" >
<e b : M a n i f e s t e b : v e r s i o n ="2.0" >

. . .
< / e b : M a n i f e s t>

< / SOAP:Body>
< / SOAP:Envelope>§ ¦

All things considered, ebXML’s BPSS enables us to express collaboration protocols and
agreements about protocols in a nice manner. This facilitates interoperation in cross-enterprise
settings. However, despite its overall appealing structure, BPSS is quite limited in what it can
express. In particular, it suffers from two main limitations:

c© Singh & Huhns 283 7 July 2004

Part III: Engagement 13: Process Specifications

Expressiveness.BPSS is limited to simple request-response protocols. Business interac-
tions can be quite complex and, as we saw in the context of extended transactions,
can be long-lived. It is important to understand the contents of the states of an ongo-
ing interaction, so that exceptions can be accommodated in a manner that respects the
participants’ local constraints as well as the context in which they are doing business.

Semantics.BPSS lacks a formal semantics and, thus, it is not clear if specifications con-
structed by one party would have the same interpretations by another party. Such dis-
agreements are common and expensive. The motivation behind the development of
ontologies as discussed in the context of describing services also applies to describing
processes involving services.

Both of these limitations are being addressed in emerging approaches, some of which are
introduced later in this book.

13.4.4 RosettaNet

RosettaNet is a consortium of information technology, semiconductor manufacturing, and
telecommunications companies working to create and implement open e-business process
standards. These standards, in the form of business documents, such as purchase orders,
and Partner Interface Processes (PIPs), such as purchasing, comprise a common e-business
language that can align the interactions among supply-chain partners on a global basis. As
exemplified in Figure 13.14, a PIP in RosettaNet defines the process of exchanging messages
between two partners. Unfortunately, after a message departs a partner’s computer system, it
is impossible to find out whether it was received and correctly processed by the partner orga-
nization. All RosettaNet offers is a fixed time-out for the confirmation of each message. If
the message is not confirmed during this time (e.g., 2 hours), the original partner (recognizing
that the message has been sent already) resends the message to the same or another partner.

Companies need to monitor the processes and status of messages not only internally, but
also externally. It means that they must know not only the status of the order from their own
perspective (e.g., that the PO has been sent 1 hour ago), but also the status of the order from
the perspective of their partners (e.g., the order has been scheduled for acceptance 10 minutes
ago). Distributed information systems remain isolated entities and do not allow for this level
of visibility within supply chains.

Some organizations are adopting proprietary business protocols that are not machine in-
terpretable. For example, RosettaNet uses UML diagrams to describe PIPs and relationships
among the messages exchanged as part of the PIPs. The meaning of the UML diagrams is
informal and no direct machine interpretation is possible. Electronic Data Interchange (EDI)
does not define any standard processes at all: industrial applications of EDI are based on best
practices. However, there is no recognized way to describe the process of exchanging EDI
messages.

We saw above how ebXML’s BPSS could be used to define a RosettaNet PIP. An im-
portant distinction between RosettaNet PIPs and ebXML BPSS is that PIPs define specific

c© Singh & Huhns 284 7 July 2004

Part III: Engagement 13: Process Specifications

Back-end application

Create Order Log order confirmation

Order instance

(object)

Semantic Web enabled RosettaNet

Semantic Web enabled RosettaNet

Send PO Receive PO Ack

PO instance
PO Ack

instance

Create PO Request Analyze PO Ack

PO instance
PO Ack

instance

Receive PO Send PO Ack

Analyze PO Create PO Ack

Back-end application

Confirm PO (some or all line

items may be rejected)

Ontologies of

data structures,

business logic

and message

exchange

protocols

Mediation of

data structures,

business logic

and message

exchange

protocol

Figure 13.14: Creating a purchase order in accordance with a RosettaNet PIP

c© Singh & Huhns 285 7 July 2004

Part III: Engagement 13: Process Specifications

processes (like a purchase-order process), whereas BPSS is alanguagefor defining pro-
cesses. ebXML as such does not define processes and RosettaNet does not provide a process
modeling or definition language.

13.5 The Process Specification Language

The Process Specification Language (PSL) is designed for describing or exchanging infor-
mation among models of discrete processes, i.e., processes consisting of individually distinct
events, tasks, or service invocations [Gruninger, 2003]. Examples of such processes are
production scheduling, resource planning, workflows, and project management. PSL is not
appropriate for continuous processes, whose behavior might be more appropriately described
by differential equations.

PSL is intended to be a process representation that is common to all business and man-
ufacturing applications, and powerful enough to represent the processes in any given appli-
cation. This representation would facilitate interoperation by serving as an interlingua (i.e.,
a lingua franca) for process models. To achieve this, PSL has a formally defined semantics
in the language of first-order logic and represented using the Knowledge Interchange Format
(KIF). (KIF is now included in the proposed ISO standard called Common Logic.) The se-
mantics consist of a set of KIF definitions that enable PSL statements about processes to be
understood. For example, the KIF statement

(between ?task1 ?task2 ?task3)

is given semantics by the definition

(defrelation between (?a ?b ?c) ≡
(and (before ?a ?b)(before ?b ?c)))

which definesbetweenin terms ofbefore. The semantics ofbeforeis provided by axioms,
such as

(forall (?x) (not (before ?x ?x)))

which states that nothing can be before itself.
A first-order semantics for PSL has several advantages. First, we can specify and imple-

ment inference techniques that are sound and complete with respect to models of the theories,
i.e., a theory is consistent if and only if there exists a model that satisfies the axioms of the
theory. Second, a process ontology with a first-order axiomatization can be more easily inte-
grated with other ontologies. Third, a first-order semantics allows a simple characterization
of incomplete service specifications.

There are six basic things that are important to consider for an ontology of business and
manufacturing processes, such as PSL:

• Objects, which are concepts in the world that have identity. An example is Mike’s
credit card.

c© Singh & Huhns 286 7 July 2004

Part III: Engagement 13: Process Specifications

• ActivityOccurrences, which are actions or events that have a temporal extent and in-
volve specific objects. An example is checking Mike’s credit rating beginning at 10:00
a.m. and ending at 11:00 a.m. on October 24.

• TimePoints, which are instances that separate discrete states. An example is the instant
between Mike’s account having a balance of $1,000 and a balance of $900.

Each of these can be typed, i.e.,

• The type of anObject is aClass.

• The type of anActivityOccurrence is anActivity.

• The type of aTimePoint is Time.

Next, we can define relationships between some of the pairs of these six basic things. Ignor-
ing Time andTimePoint for the moment, out of the ten possibilities for domain-independent
relationships among the remaining four things, the following seven are meaningful:

1. instanceOfbetweenObject andClass.

2. subclassbetweenClass andClass.

3. subclassbetweenActivity andActivity.

4. occurrenceOfbetweenActivityOccurrence andActivity.

5. partOf betweenObject andObject.

6. subactivityOfbetweenActivityOccurrence andActivityOccurrence.

7. participatesInbetweenObject andActivityOccurrence.

A relationship betweenActivity andClass is not meaningful, e.g., between all hammeringAc-
tivityOccurrencesand all hammers. Similarly, relationships betweenObject andActivity and
betweenClass andActivityOccurrence are not meaningful. Note that the binary relationssub-
class, partOf, andsubactivityOfare partial orders (transitive, antisymmetric, and reflexive)
as described in Section 6.5.

Each of the seven basic relationships leads to a form of inference: classification and
instantiation for things related byinstanceOf, subsumption for things related bysubclass,
aggregation for things related byoccurrenceOf, subactivityOf, andpartOf, and association
for things related byparticipatesIn.

WhenTime andTimePoint are included, there are 21 possible binary relationships. In
addition to the seven above, the following are meaningful:

1. existsAtbetweenObject andTimePoint.

2. existingForbetweenObject andTime.

c© Singh & Huhns 287 7 July 2004

Part III: Engagement 13: Process Specifications

3. occursAtbetweenActivityOccurrence andTimePoint.

4. occurringForbetweenActivityOccurrence andTime.

5. subsetbetweenTime andTime.

6. instanceOfbetweenTimePoint andTime.

7. equality, lessThan, andgreaterThanbetweenTimePoint andTimePoint.

subClass

subActivityOf

Activity
Occurrence

Activity Class

occurenceOf

subClass

Object

partOf

instanceOf

Time subSet

TimePoint equality,

less than,

greater than
participatesIn

instanceOf

existsAt

existingFor

occursAt

beginOf, endOf (unique)

occursFor

Figure 13.15: The key concepts and relationships of PSL.

Class andTime, Class andTimePoint, Activity andTime, andActivity andTimepoint do not
participate in meaningful relationships. Finally, PSL provides the two functionsbeginOfand
endOf, which return theTimePoints that define the temporal extent of anActivityOccurrence.

In the PSL conceptual model, time is understood as discrete. This is based on the intuition
that measurable time is essentially discrete, although mathematically approximated via a con-
tinuous set, such as the real numbers. ATime can then be represented by a linearly ordered
set of integers. Hence, the correct relationship betweenTimePoint andTime is instanceOf,
notpartOf.

c© Singh & Huhns 288 7 July 2004

Part III: Engagement 13: Process Specifications

PSL consists of the core set of concepts listed above and several extensions. The PSL
core includes axioms specifying the semantics of the core concepts. An example axiom is
that everything is either anActivityOccurrence, an Object, or a TimePoint, and that each of
these are distinct.

There are five defined extensions: durations, activities and duration, temporal ordering
relations, reasoning about state, and interval activities. Within these extensions are definitions
for

Ordering. ActivityOccurrences can take place in sequences delimited byTimePoints.

Concurrency. ActivityOccurrences can take place at the same time, i.e., during the same time
interval.

Resource.A Resource is anObject that is used or consumed during anActivityOccurrence.

PSL also provides support for you to define your own extensions for specific domains or
applications. More importantly, PSL can be used to define translations among different pro-
cess ontologies. For example, we can specify that thecomposedOfproperty in OWL-S is
equivalent to thesubactivityrelation in PSL by the following KIF statement:

(forall (?activity1 ?activity2)
(iff (composedOf ?activity1 ?activity2)

(subactivity ?activity2 ?activity1)))

For another example, aCompositeProcessin OWL-S (see Section 15.5.2 on page 331) is a
PSLactivity that is notprimitive:

(forall (?activity)
(iff (CompositeProcess ?activity)

(and (activity ?activity)
(not (primitive ?activity)))))

Via PSL, specifications for Web services in workflows, BPEL4WS (see Section 13.4.1 on
page 267), OWL-S, and others can be given a sound and complete axiomatization, and inter-
operation among services specified in different formalisms can be facilitated.

13.6 Notes

In 2003, BPEL4WS was submitted to the OASIS Web Services Business Process Execu-
tion Language (WSBPEL) Technical Committee. The committee is working on refining the
specification for the language.

Piccola is an experimental composition language that has been developed recently [Achermann
and Nierstrasz, 2001]. It is based on theπ-calculus, and represents an attempt to define a for-
mal execution semantics for workflows composed from Web services.

Information on RosettaNet is available fromhttp://www.rosettanet.org.

c© Singh & Huhns 289 7 July 2004

Part III: Engagement 13: Process Specifications

13.7 Exercises

13.1. Construct a UML activity diagram for a process with which you are familiar, such as
withdrawing money from an ATM, paying for a purchase with a credit card, registering
for classes, paying tuition and fees, or obtaining a student or visitor visa. Imagine
that each is a two-party interaction: you and the other participant (bank, merchant,
university registrar, university cashier, foreign consulate, respectively).

13.2. For the scenario described in Exercise 13.1, construct an equivalent BPEL4WS de-
scription.

13.3. Repeat Exercise 13.1 but model three parties for each case. For example, add in the
ATM network, credit card company, university department, financial aid office, and
host (who provides you with an invitation letter for a visa), respectively.

13.4. For the scenario described in Exercise 13.3, construct an equivalent BPEL4WS de-
scription.

13.5. A bank manager must be able to monitor a customer’s account to make sure the cus-
tomer has not transferred any money to terrorists. For this use-case, the detailed inter-
actions between the manager and the system are

Manager starts the monitoring system.
Monitoring system asks for customer ID.
Manager enters customer ID.
Monitoring system retrieves customer information from account database.
Monitoring system requests table of terrorist names from FBI database.
FBI database sends table of terrorist names to monitoring system.
Monitoring system compares customer information with table from FBI.
Monitoring system notifies manager if there is a match.
Manager halts the monitoring system.

Construct a UML activity diagram for this scenario.

13.6. For the scenario described in 13.5, construct an equivalent BPEL4WS description.

13.7. Consider the workflow for recording student registration in Figure 13.16. As shown,
some of the tasks require operations on databases. Assume that each database man-
agement system implements the two-phase commit protocol for transactions. When
student Bob registers, Task #2 is a check with the Graduate Coordinator to verify that
he has completed the necessary prerequisites for the courses for which he is registering.
Assume that Tasks #3, #4, and #5 succeed, but that Task #2 fails.

• As the system administrator, what operations would you have to perform in order
to restore consistency to your system?

c© Singh & Huhns 290 7 July 2004

Part III: Engagement 13: Process Specifications

• How would you modify the workflow in order to prevent problems such as this
from occurring in the future?

1. Record

registration

information

2. Check for

prerequisites

3. Verify

student in

good

standing

4. Issue bill

for tuition

and fees

5. Record

fee payment

6. Record

student as

registered

Student

submits

course

registration

information

Student

pays fees

Graduate

coordinator

Course

enrollment DB

Student

records DB

Billing DB

Figure 13.16: An example workflow for student registration

13.8. Develop an OWL representation of PSL’s conceptual model as captured in Figure 13.15.

13.9. PSL: Two time intervals meet if the end time of the first equals the start time of the
second. This can be represented by the following defrelation:

(defrelation meet (?task1 ?task2) ≡
(equal (endOf ?task1)(beginOf ?task2)))

Assuming that the temporal predicatebeforehas not already been defined in PSL,
definebeforein terms ofmeet.

13.10. PSL has a foundation in thesituation calculus, which has the primitivessituation,
action, andfluent(a fluent is a relation that might vary over time). It has been claimed
that if a situation involves more than one process and if information about the exact

c© Singh & Huhns 291 7 July 2004

Part III: Engagement 13: Process Specifications

timings of the steps in the processes is unavailable, then a situation-calculus reasoner
will fail. Discuss why this claim might or might not be true.

c© Singh & Huhns 292 7 July 2004

