
Chapter 4 

Know-How 

Given my goal of developing a framework for multiagent systems, it is only 
natural that I should attempt to formalize the concept of know-how. There 
are several reasons for this. In light of the formal framework developed in 
Chapter 2 and used to formalize intentions in Chapter 3, one might ask under 
what conditions an agent with limited control would be guaranteed to succeed. 
Such conditions are technically studied in Chapter 5, but suffice it to note 
here that know-how is an important component of those conditions. An agent 
cannot be guaranteed to succeed with his intentions if he lacks the know-how 
to achieve them. 

Know-How can also be used in specifying complex systems succinctly 
for the purposes of designing them or analyzing their behavior. We can require 
that a given agent under certain conditions have certain know-how. For exam- 
ple, a robot that is designed for helping a handicapped person should, when 
called upstairs, know how to climb the stairs. This requirement might, for a 
particular design, reduce to the requirement that the robot's batteries be fully 
charged, that its load be light, and that it have sufficiently extendible legs. 
These requirements can be further analyzed in designing the robot, e.g., we 
might decide that the robot must recharge itself every hour and that it carry 
only small packages on its stair-climbing missions. But, once the know-how 
of the robot is established, it can also be used in different circumstances as 
well, e.g., when the robot has to go upstairs on its own initiative to deliver an 
unexpected express mail package. 

Requirements of the kind described above arise naturally when one 
gives a formal semantics to the communications between the agents in a multi- 
agent system. This proposal is elaborated in Chapter 6; an example of its 
use was given in section 1.1. Such a semantics for communications provides a 
mechanism by which constraints on the interactions among agents, e.g., that 
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directives to come upstairs are satisfied, are reduced to constraints on the de- 
sign of individual agents, e.g., that  the robot assistant has the know-how and 
the intention to come upstairs. 

I base the proposed theory of know-how on the framework of actions 
and t ime that  was developed in Chapter 2. In section 4.1, I discuss know-how 
and present some intuitions about how we should proceed. In section 4.2, I de- 
fine and axiomatize ability for the case of purely reactive agents; in section 4.3, 
I define and axiomatize it relative to strategies. In section 4.4, I state and 
prove some theorems about the logical properties of ability and its interactions 
with the modalities of t ime and action. In section 4.5, I define and axiomatize 
know-how for the case of purely reactive agents; in section 4.6, I define and ax- 
iomatize know-how relative to strategies. These definitions involve extensions 
to dynamic logic [Kozen & Tiurzyn, 1990]. 

4.1 I n t u i t i v e  C o n s i d e r a t i o n s  o n  K n o w - H o w  

I shall take it as a starting point that  intelligence is intimately tied to action. 
It is an agent's ability or potential to take effective action, and the skills he 
exhibits in doing things that  make us attribute intelligence to him. For this 
reason, a useful conception of knowledge for our purposes is know-how, i.e., the 
knowledge of how to act, or the knowledge of skills. Thus a theory of know-how 
is needed that  gives a definition with an appropriate formal semantics and logic. 
This would allow us to capture our intuitions about know-how straightforwardly 
and to use that  concept directly whenever we need to. 

Traditionally, however, preeminence is given to know-that, or the 
knowledge of facts. And know-how is reduced to know-that. While, no doubt, 
there are profound connections between know-how and know-that, know-how 
cannot be trivially reduced to know-that. Such a reduction buries intuitions 
about know-how and its logical properties within those of know-that. Also, this 
reduction, which was designed for classical planning agents, is inappropriate in 
general. Indeed, it is inappropriate even for planning agents who perform many 
of their actions reactively. This is an important  class of agents in current the- 
ory and practice [Mitchell, 1990; Spector & Hendler, 1991]. I present a formal 
theory of know-how that applies to a wide-range of agents, and especially those 
who plan and react. 

Newell defines knowledge as "[wthatever can be ascribed to an agent, 
such that  its behavior can be computed according to the principle of rationality" 
[Newell, 1982, p. 105]. He sees this definition as corresponding to the common 
scientific practice in AI (p. 125). I agree. However, I submit that  unless know- 
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how is also considered, ascriptions of beliefs or knowledge, and intentions must 
necessarily seem contrived. For example, we cannot conclude from an agent's 
not opening his umbrella that either he does not believe that it is raining or 
intends to get wet. It could just as well be that he does not know how to open 
his umbrella. The point of this example is simply that one cannot assume, as 
is traditionally done, that know-that is theoretically more fundamental than 
know-how, and that the latter should be reduced to it. An independent study 
of know-how would be beneficial in obtaining a better understanding important 
aspects of intelligence and rationality. 

The philosopher Ryle was one of the early proponents of the distinc- 
tion between know-how and know-that [Ryle, 1949]. His primary motivation, 
however, was to debunk "the dogma of the Ghost in the Machine," which is 
Descartes' doctrine of the separation and independence of minds from bod- 
ies (p. 15). Ryle's argument runs roughly as follows: intelligence is associ- 
ated more with know-how than know-that; know-how involves bodies; there- 
fore, intelligence (a quality of minds) is not independent of bodies. He re- 
jects the view that a performance of an action is preceded or accompanied 
by explicit consideration of different rules (p. 29). He also rejects the claim 
that every component of an intelligent action must be planned (p. 31). Thus 
the now popular view that intelligent agents must have reactive components 
is in agreement with, and indeed was anticipated by, Ryle [Mitchell, 1990; 
Spector & Hendler, 1991]. 

I shall show that the intuitions motivated above are naturally cap- 
tured in the proposed framework, and it is good to have some philosophical 
support for them. However, Ryle provides no insights into how know-how may 
be formalized and what technical properties it must have. 

4.1.1 Tradi t ional  Theor ie s  of  A c t i o n  

Moore's work is among the most well-known theories of knowledge and action 
[1984]. Moore's focus is not on know-how and, when he discusses it, it is as 
the know-how to execute a given action description. But he also considers 
the know-how of achieving a certain condition relative to an action description 
(p. 347). An agent knows how to achieve p by doing an action (description), 
P, iff the agent knows that P achieves p, and that he can execute P. He can 
execute P iff he can identify each of the actions in P, i.e., if he knows what 
their rigid designators are. Thus, according to this definition, the agent knows 
how to achieve p only if he knows that for some plan P, that it will yield p, 
and that he will be able to execute it. 
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Moore's work has been extended by Morgenstern to allow an agent's 
plan to include actions such as asking others for information [Morgenstern, 
1987]. However, Morgenstern does not define know-how either, just know-how- 
to-perform, which corresponds to can execute in Moore's theory. Roughly, an 
agent knows-how-to-perform a plan iff he knows all the required rigid designa- 
tors occurring in that plan. Morgenstern's main aim, llke Moore's, is to give 
the know-that requirements for the execution of plans; she does not address 
know-how per se. 

The approaches described above incorporate useful intuitions about 
the relationship between know-how and know-that. They provide an analysis 
of the knowledge requirements of plans. Unfortunately, however, they also 
embody some restrictive assumptions about actions. I hope to relax some of 
the assumptions of these approaches, while retaining their useful components. 

Many of these assumptions were considered in Chapter 2. In particu- 
lar, I have generalized the underlying model of actions by allowing concurrent 
and asynchronous ones. I have also explicitly considered time and related it to 
actions. Furthermore, I admit a reactive layer of the architecture. Strategies, 
which were defined in section 2.5, correspond to plans in traditional theories. 
They do not directly involve basic actions, but instead are macros over them. 

4.1.2 The Proposed Definition 

I now motivate a definition of know-how that, I submit, captures the important 
aspects of our pretheoretic intuitions about it. As argued in section 4.1, even if 
the traditional theories could not be improved upon, it would be useful to have 
an independent treatment of know-how. But, relaxing some of the traditional 
assumptions provides us with a nice opportunity to consider the definition 
anyway. 

The notion of know-how has to do with the ability to perform actions 
in a changing world. The agent is competing with the world, as it were. How- 
ever, unlike in board games, the simplistic notion of turn-taking does not apply 
here. Of course, the world includes other agents. Thus, while the environment 
need not be opposed to the agent, it may be so. The environment and the 
agent must act concurrently: although the agent may wait for some time, the 
environment will not wait for him. As explained in Chapter 2, the outcome of 
an agent's actions depends on other events that take place in the world. These 
events may include the actions of other agents. For example, if I slide a mug 
over a table, it will simply move to its new location, unless someone sticks a 
hand in the way, in which case its contents may spill. By performing his ac- 
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tions, an agent exercises limited control over what transpires in the world. An 
agent must have some control over the world to ever know how to do anything; 
however, in general he cannot have perfect control over it. This is because 
events can always occur that potentially influence the outcome of any of the 
agent's actions. 

The proposed definition of know-how is as follows. An agent, x, knows 
how to achieve p, if he is able to bring about the conditions for p through his 
actions. The world may change rapidly and unpredictably, but x is able to 
force it into an appropriate state. He has only limited knowledge of his rapidly 
changing environment and too little time to decide on an optimal course of 
actions. He can succeed only if he has the required physical resources and is 
able to choose them correctly. 

This definition can be formalized both in terms of basic actions and 
strategies. Therefore, it contrasts both with situated theories of know-that 
[Rosenschein, 1985], and informal, and exclusively reactive, theories of action 
[Agre & Chapman, 1987]. Strategies were defined in section 2.5 as abstract 
descriptions of an agent's behavior. In section 4.3, I give a strategic definition 
of ability and in section 4.6, a strategic definition of know-how. 

I first formalize the concept of ability, which depends solely on the 
actions that an agent can do and the effects of those actions, and ignores the 
agent's knowledge. This concept is simpler than know-how; it is a useful first 
step to formalize it and examine its properties. It is also useful in its own right. 

4.2 Reactive Ability 

As will soon become clear, it is useful to define ability relative to a tree of 
actions. A tree of actions consists of an action, called its radix, and a set of 
subtrees. The idea is that the agent does the radix action initially and, then, 
picks out one of the available subtrees to pursue further. In other words, a tree 
of actions for an agent is a projection to the agent's actions of a fragment of 
T. Such a fragment is diagramed in Figure 2.1. Thus a tree includes some of 
the possible actions of the given agent. For technical simplicity, I shall assume 
that when a tree is defined at a given moment, it is derived from a fragment of 
the model rooted at that moment. Thus it would automatically be executable 
along some scenarios at that moment. 

An agent is able to achieve p relative to a tree of actions, iff on all 
scenarios where he performs the radix of the tree, either p occurs or the agent 
can choose one of the subtrees of the tree to pursue, and thereby achieve p. The 
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definition does not require p to occur on all scenarios where the radix is done, 
only on the scenarios corresponding to the selected subtree. The agent gets to 
choose one subtree after the radix has been done. This is to allow the choice 
to depend on how the agent's environment has evolved. However, modulo this 
choice, the agent must  achieve p by forcing it to occur. For example, a sailor's 
tree might call on him to head straight for the equator and then, depending 
on the wind, to adjust his sails accordingly. He would be able to arrive at his 
destination if, on his arrival at the equator, there is a setting for his sails with 
which he can succeed. 

It is important  to note that  the tree need not be explicitly symbolically 
represented by the agent. The tree simply encodes the selection function the 
agent uses in picking out his actions at each stage. When a tree is finite in 
depth, it puts a bound on the number of actions that  an agent may have to 
perform to achieve something. Since, intuitively, for an agent to be able to 
achieve some proposition, we expect him to be able to achieve the required 
proposition in finite time, this restriction is imposed here. 

Since trees encode the choices that  an agent may make while perform 
actions, there is no loss of generality in requiring that  the different nonempty 
subtrees of a tree have different radices, i.e., begin with different actions. Given 
a tree in which this is not the case, we can easily transform it into one in which 
this restriction is satisfied. Let r '  = (a; r~,.~., r~) and r"  = (a; r~ ' , . . . ,  r~' 1. 
Then define a new tree, r = ( a ; r l , . . . , r k ) ,  where { r l , . . . , r k }  = { r ~ , . . . , r ' }  U 
{r~' , . . . ,  r~"}. Thus one can replace r '  and r"  by r in the original tree. r 
encodes precisely the same choices as r* and r"  do together. This procedure 
can be generalized to any set of subtrees with a given radix. Intuitively, this 
results in a better tree than before. This is because the choices of the agent 
are required to be made one action at a time. The agent is not called upon to 
look ahead and predict the state in which his current action might lead him. 

Let T be the set of trees. 0 is the empty tree. Then T is defined as 
follows. 

TREE-Io ~ E T 

TRE~-2. a E B implies that  a E T 

TREE-3. T1, . . .  , rm E T,  r l , . . ~  ,V m have different radices, and a E B implies 
that  (a; r 1 , . . . ,  rr,) e T 

In the sequel, I shall always assume that  r is of one of the forms above. 

The formal language of this chapter, L: h, is an extension of L:. At this 
point, we require s to have the following operators. The operator [ ) denotes 
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ability relative to trees and the operator ([ ~ ability relative to strategies (see 
section 4.3). The operators Kr~b and K,~b are, respectively, the reactive and 
strategic versions of ability. ~:~ is used later in this chapter. 

SYN-19. All 

Svr,-20. All 

SYr~-21. All 

SYN-22. p E 

SYN-23. p E 

SYN-24. r E 

the rules for / : ,  with s substituted for s 

the rules for L:,, with s substituted for ~:, 

the rules for ~:u, with s substituted for s 

s and x E A implies that  (xK~abp), (xK,abp) E Z h 

L:, h, Y e Z~; and x e A implies that  (z{~Y~p) e f h 

T, x E A, and p E s implies that  x(r)p E f h 

Other extensions will be described as needed. 

Now E h is powerful enough to express the definition of ability via the 
auxiliary operator, { ). Intuitively, x{r)p is true iff the agent, x, can use r as 
a selection function and, thereby, force p to become true. For the empty tree, p 
must  already be true. For a nonempty tree, assuming p is not already true, the 
agent first does the radix of the tree. Depending on the other events that  take 
place then, this action progresses along some scenario. If that  is the only action 
of the tree, p may occur at any moment  while it is being done. Otherwise, one 
of the subtrees is chosen in the state where the initial action ends. From there~ 
the process iterates. 

SEM-21. 

SEM-22. 

SEM-23. 

M ~r x{O)p iff M ~ p 

M ~t z{aIp iff M ~ ,  (Ex(a)true A Ax[a]p) 

M ~t x((a;rl , . . . ,rm))p iff (3S, t ' :  [S;t,t~ e [a] z) and (VS, t ' :  
[S;t,t'] e [a]X=> (St  e { r l , . . . , r ,~}  : M ~t,  x ( r}p) )  

Figure 4.1 shows how the above definition applies in our formal model. 
Assume that  --p and --q hold everywhere other than as shown. Let us consider 
the agent whose actions are written first in the figure and see whether he has 
the ability to achieve p. Since --p holds at to, the agent will have to do some 
actions to achieve p. Clearly, action b would not do him much good, since p 
never occurs on any scenario on which b is performed. If the agent does action 
a and the other agent does action d, then the state of the world is t~, where 
p holds. Therefore, the agent is trivially able to achieve p at t2. Thus at that  
moment ,  the agent would be done. However, action a could just as well lead 
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Figure 4.1: Ability 

to moment tl (if the other agent does action b), where p does not hold. But 
fortunately, at tl, if the agent does action a again, p is guaranteed. In other 
words, at tl, the agent is able to achieve p. Thus the agent is able to achieve 
p even at to, since action a always leads to a state where he is able to achieve 
p. Thus the appropriate tree for this agent is (a; a, 0/. 

Now reactive ability may be defined as follows: 

SEM-24. M ~ t  zK,~bp iff ( 3 r :  M ~ ,  x{r)p) 

xK,~bp means that agent x can force p to occur by performing actions 
in whose resultant states he can perform further actions, and so on, until p 
occurs. K~bp is vacuously true if p holds in the given state. For example, if p 
stands for "open(door)," then K,~p holds if the door is already open. K,a~p also 
holds if p is inevitable, i.e., if p will eventually occur no matter  what happens. 
For example, let p be "returns(Halley's comet)." Assuming it is inevitable 
that Halley's comet will return, K ~ p  holds. I shall return to this point in 
section 4.4. 

The above is a definition of raw ability. It attributes ability to an 
agent, even if he may not be able to make the right choices, just as long as 
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he has the right set of basic actions available. The choices that an agent 
makes depend on his beliefs. Indeed, incorporating beliefs into the picture, as 
I at tempt in section 4.5, yields a general theory of know-how itself. 

Now I present an axiomatization for the definition of K~ab given above 
and a proof of its soundness and completeness. As for the case of intentions, 
discussed in section 3.2.2, axiom Ax-AB-REAOT-3 below is a way of relativizing 
this axiomatization to that of the underlying logic. Note that E(a)true means 
that a is a basic action of the agent at the given moment and is performed by 
him on at least one scenario. 

Ax-AB-REAcT-1. p-~ xKrabp 

Ax-As-REAcT-2. (Va: E(a)true A A[a](xK~abp))~ xK,~bp 

Ax-AB-REACT-3. All substitution instances of the validities of the underlying 
logic 

T h e o r e m  4.1 Axioms Ax-AB-REACT-1 through Ax-AB-REACT-3 yield a sound 
and complete axiomatization for K~ab. 

P roof .  

Construct a branching-time model, M. The moments of M are no- 
tated as t and are maximally consistent sets of formulae that contain all the 
substitution instances of the validities of the underlying logic. The other com- 
ponents of the model, especially, <, B, R, and [ ] are constrained by the formu- 
lae that are true at the different moments. Furthermore, these sets are closed 
under the above two axioms for K~b. We can ignore the agent symbol in the 
following discussion. 

Soundness :  For axiom Ax-AB-REACT-1 above, soundness is trivial 
from the definition of (0)p. For axiom Ax-AB-REACT-2, let (V a : E(a)true A 
A[a]K~bp) hold at t. Then (3S, t ': [S;t,t'] E [a]) and (VS: (Vt'E S :  [S;t, tq E 
[a]=~ (3t" : t < t" < t' and i ~t,, K~abp))). At each t" in the preceding 
expression, (3r' : M ~v, (r ')p).  Soundness may be shown by exhibiting a 
tree, v, such that at moment t, ( r ) p  holds. Clearly, action a must be the radix 
of r.  To construct it, note that if t" = t ', r '  must be a subtree of r.  And, if 
t" < g, then action a is being performed at moment t". Thus the radix of v ~ is 
a. But, in the definition of (~')p, we need to look at the subtrees of r only at 
the moments where its radix, i.e., a, has ended. With this motivation, define 
T1 = {r'[r' is the tree used to make K~bp true at t'}. Define T2 = I.J{r"[r" 
is the tree used to make Kasp true at t", where t" < t'}. Now define r as 
(a;r l , . . .  ,r,,), where {r l , . . . , r ,~}  = T1UT2. Thus M ~ t  ( r )p ,  or M ~ t  K,abp. 
Hence, axiom Ax-AB-REACT-2 is sound. 
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Comple teness :  The proof is by induction on the structure of for- 
mulae. Only the case of formulae of the form K~bp is described below. Com- 
pleteness means that M ~t  K~bp entails K~bp E t. M ~ K~bp iff (3r : M ~t 
{r)p).  This proof is by induction inside the induction on the structure of for- 
mulae. This induction is on the structure of trees with which a formula of the 
form K~bp is satisfied. One base case is the empty tree 0. And M ~t  {0}p iff 
M ~t  p. By AX-AB-RZACT-3, p E t. By axiom Ax-AB-REACT-1 above, K~bp E t, 
as desired. The other base case is for single-action trees: M ~t {a}p iff (3S, t' : 
[S;t,t~ E ~a]) and (VS : (Vt' E S : [S;t,t'] E ~a]=~ (3t" : t < t" < t' and 
M ~ , ,  p))). But, by axiom Ax-As-RZACT-3, we have ( V a :  E(a)ttue A A[a]p). 
Thus by axiom Ax-As-REACT-2, we have K~bp. 

For the inductive case, M ~t  ( ( a ; r l , . . .  ,Tm))p iff (3S, t ':  [S;t,t'] E 
~a]) and (VS : (Vt' E S : [S;t,t'] E [ a ~  (3i : 1 < i < m and M ~t, 
{r~)K~bp))). But since ~ is a subtree of r ,  we can use the inductive hypothesis 
on trees to show that this is equivalent to (St' : [S; t, t'] E ~a]) and (VS : (Vt' E 
S : IS; t, t'J E [a]=~ M ~=,, K~bp)). But it is easy to see that (3 t ' :  IS; t, t'] E 
~a]~) iff E(a)true. And, using the definition of [], we see that the second conjunct 
holds only if A[a]K,~bp. Thus M ~t (v)p only if M ~t  (V b : E(b)true A 
A[b]K~,bp). But, by axiom Ax-As-REACT-3, ( V b :  E(b)true A A[b]K~p) E t. 
Thus by axiom Ax-As-REACT-2~ K~,bp E t. Hence we have completeness. El 

4.3 Strategic Ability 

The definition of ability given above involves trees of basic actions of a given 
agent. Strategies were introduced in section 2.5 as abstractions over agents' 
basic actions. I now define the ability of an agent relative to a strategy. Defining 
ability and know-how relative to a strategy not only shows us how abstractions 
over basic actions relate to the concepts considered, but also help make the 
connection to intentions clearer. 

The operator ~ is defined as follows, x{[Y~p means that the agent, 
x, is able to perform all the substrategies of Y that he may need to perform, 
and furthermore that he can perform them in such a way as to force the world 
to make p true. Basically, this allows us to have the ability of an agent to 
achieve the conditions in different substrategies combined to yield the ability to 
achieve some composite condition. This is especially important from the point 
of view of designers and analyzers of agents, since they can take advantage 
of the abstraction provided by strategies to consider the ability of an agent 
in terms of his ability to achieve simpler conditions. Not just intuitively, but 
even formally, the ability to achieve simpler conditions as used here is purely 
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reactive, as defined in section 4.2 (see Theorem 4.3 below for the technical 
justification). 

In order to define x{Y~p formally, I need the auxiliary concept of the 
ability-intension of a tree. The ability-intension of a tree r ,  for an agent x, 
and a strategy Y, is notated as IriS-. This is the set of periods on which the 
given agent is able to achieve the given strategy, by following the given tree. 
Precisely those periods are included on which the success of the given strategy 
is assured or forced, and not fortuitous. The ability-intension of trees needs to 
be defined only for the ~ of strategies, which are always of the forms, sk ip  or 
do(q). As usual, the agent symbol is omitted when obvious from the context. 
Formally, we have 

1. The empty  strategy, skip,  is achieved by the empty tree. 

[S; t, t t] e [~]sldp iff ~ = t'. 

2. r follows do(q) iff the agent can achieve q in doing r. 

[S;t,t'] E Jr]do(q)iff 

(a) r = 0 a n d t = t ' a n d M ~ t q ;  

(b) r = a and M ~t,  q and (3tl : t < t ' <  t, and [S; t,t~] Z ia] and 
(Vt2 : t  _< t2 < t' implies M ~t ,  q)); or 

(c) r = (a; r l , . . . ,  r,,,) and M ~t,  q and M ~t {r}q and (3t1: [S;t,t,] Z 
[a] and (3t2, i :  1 < i < m and IS; tl, t,] 6 [ri]do(q) and t,  < t' < t2)) 
and (Vt3 : t < t3 < t' implies M ~t3 q) 

An important  feature of this definition is that  a period, [S; t, t'], is included in 
the ability-intension of do(q), only if no other period is available that  begins at 
or before t and ends sooner than t'. This captures the intuition that,  in order to 
achieve q, an agent has to act only till its first occurrence. Another consequence 
of this definition is that,  for some strategies, the tree (a; 0) may have a different 
ability-intension than the tree a. The former requires the relevant condition 
to hold when a ends, whereas the latter allows it to hold any t ime during the 
execution of a. This is not a problem, since, whenever the tree (a; 0) is available 
to an agent, so is the tree a. 

The ability-intension of a tree for a strategy of the form do(q) helps 
relate the notion of strategic ability as defined in this section to the notion 
of reactive ability as defined in section 4.2. In particular, a period is in the 
ability-intension of a tree relative to do(q) iff the tree can be used as a selection 
function by the agent to force q. Thus, we have the following result. 
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L e m m a  4.2 Let r = (a; r l , . . . ,  Tin). Then, M ~ ( r ) q  if[ (3S, t' : [S;t ,g] E 

P roo f .  

The cases of the empty tree and single-action trees are trivial. The 
inductive case in the right to left direction is also trivial. In the left to right 
direction, let to be the moment  at which a is done. Then, by the definition of 
( ) ,  (3i :  1 <: i < ra and i ~t ((r~))q). By the inductive hypothesis, (3S, t~ : 
IS; t0, t'] E ITi]do(q)). Therefore, (3S, t ' :  IS; t, tq E [(a; r l , . . . ,  rm)ido(q)) O 

Using the definition of ability-intension, the satisfaction conditions 
for ~ ]) can be given as below. 

S~U-25. M ~t x([skip)p iff M ~t p 

SEM-26. i ~,  x([YDpiff ( 3 r :  (3S, t' : [S;t,t I e [r]~,u ) and (VS, t' : [S;t,t I e 

This definition says that an agent is able to achieve p relative to strategy Y iff 
there is a tree of actions for him such that  he can achieve the current part of 
his strategy by following that  tree, and that on all scenarios where he does so, 
he either achieves p or can continue with the rest of his strategy (and is able 
to achieve p relative to that), This definition allows the tree for the current 
part of Y to overlap with the tree for the rest of it. This is desirable, since we 
expect the strategy do(q);do(q) to behave the same as do(q), which it would 
not if a different action were required for each substrategy. 

Now K,abp may be defined as given below. 

SEM-27. M ~ xK~,~bp iff (BY: M ~ x(~Y~p) 

The execution of a strategy by an agent is equivalent to its being 
unraveled into a sequence of substrategies, each of the form do(q). The agent 
follows each substrategy by performing actions prescribed by some tree. Thus 
the substrategies serve as abstractions of trees of basic actions. In this way, the 
definition of ability exhibits a two-layered architecture of agents: the bot tom 
layer determining how substrategies of limited forms are achieved, and the top 
layer how they are composed to form complex strategies. 

Since strategies are structured, the axiomatization of ability relative 
to a strategy must involve their structure. This comes into the axiomatization 
of ~YDp. These axioms resemble those for standard dynamic logic modalities, 
but there are important  differences. Just as for reactive ability, the axiomati- 
zation below is relativized to the underlying logic. 
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Ax-AB-STRAT- 1. 

Ax-AB-STRAT-2. 

AX-AB-STRAT-3. 

AX-AB-STRAT-4. 

AX-AB-STRAT-5. 

Ax-AB-STRAT-6. 

{[skip]/p = p 

{[if q t h e n  Y~ else Y~])p = ( q ~  ~Y~])p) h (~q--+ {~Y2]~p) 

{[while q do YI~p = (q ~  {[YI~ {[while q do Y~])p) A (-~q~ p) 

{[do(q)~p = (q A p) V (~q/~ (V a :  E(a)true A A[a]{[do(q)~p)) 

All substitution instances of the validities of the underlying 
logic 

T h e o r e m  4.3 Axioms Ax-AB-STRAT-1 through Ax-AB-STRAT-6 yield a sound 
and complete axiomatization of ~Y~p. 

Proof.  

Soundness  and  Comple teness :  The proofs of soundness and com- 
pleteness are developed hand-in-hand. Only formulae of the form {[Y~p are 
considered here. As in section 4.2, construct a model whose indices are max- 
imally consistent sets of sentences of the language. Completeness means that 
M ~t {[Y~p entails ~Y~p E t, the corresponding moment in the model, and 
soundness means that {[Y~p E t entails M ~t {[Y~P. The proof is by induction 
on the structure of strategies. 

M ~t  {[skip])p iff M ~t p. But by axiom Ax-AB-STRAT-1, {[skip])p E t 
iff p E t. Thus we simultaneously have soundness for axiom Ax-As-STRAT-1, 
and completeness for this case of strategies. 

Similarly, M ~t  {[if q t h e n  ]I1 else Y2~p iff there exists a tree that 
follows St(if q t h e n  Y1 else ](~) and some further properties hold of it. But 
the truth of q entails that ~t(if q t h e n  Y1 else Y2) = ~tYx and Tt(if q t h e n  Y1 
else Y2) = TtY~. The corresponding condition holds for -,q. Thus M ~t  ~if 
q t h e n  Y1 else Y2I)P iff M ~t  ( q ~  {[Y~])p) and M ~t  (-~q~ {[Y2])p). But by 
axiom Ax-As-STRAT-3, {[if q t h e n  Y1 else Y~])p E t iff (q--, ~YIDP) E t and 
(-~q~ {[Y2~p) E t. By induction, since Y1 and Y2 are structurally smaller than 
the above conditional strategy, and since we have axiom AX-AB-STRAT-6 (which 
applies for --}), we have that ~if q t hen  ]tl else Y2])p E t. 

The case of ~do(q)])p is quite simple. This is because axiom Ax-AB- 
STRAT-5 closely resembles the axioms for reactive ability given in section 4.2. 
Using the definition of J.t and ~'~ we have that M ~t {[do(q)])p iff (2r : (3S, t ' :  
[S; t, t s] E It]do(q)) and (VS: (Yt' E S : [S; t, t'] E [7]do(q)=:~ M ~t '  P)))- If 
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r = 0, then the right hand expression reduces to M ~t  (q A p). By axiom Ax- 
As-STRAT-6, qAp E t, which by axiom Ax-AB-STRAT-5 entails that ([do(q)])p E t, 
as desired. If r # 0, we can proceed as follows. 

(3S, t' : [S;t,t  r] e ~r]doO)) entails that (3S, t" : [S;t,t'q e [a]), which 
means that M ~t  E(a)true. It also entails that M ~t  q. Also, by Lemma 4.2, 
(3S, t' : [S;t,t'] E ['r]do(q)) iff M ~t  ([r])q. By definition, M ~ t  ~r])q iff 
(VS, t "  : [S;t,t'q e [a]=~ (3i:  1 < i < m a n d M  ~=t,, (lr, Dq)). Moreover, (VS, t' : 
[S; t, tq e M ~t, p) entails that (VS, t":  IS; t, t'1 e [a]=~ (9i : 1 < 
i < m and (VS, t' : [S;t",t'] E [rl]do(q)~ M ~t, P))). Thus the condition 
for M ~t  A[a](([do(q)~p) is met. By axiom Ax-As-STRAT-6 (which applies for 
quantification over actions), we have (V a :  E(a)true ^ A[a](([do(q)])p)). But by 
the given axiom, this entails ~do(q)Dp, as desired. This proves completeness for 
strategies of the form do(q). It also proves soundness of axiom Ax-AB-STRAT-5 
in the left to right direction. 

For soundness of axiom Ax-AB-STRAT-5 in the right to left direction, we 
just need to note that for the first disjunct of axiom Ax-An-STXAT-5, we can use 
an empty tree to make ([do(q)])p hold; for the second disjunct, using the action 
a for which the quantified expression holds and the trees corresponding to the 
occurrences of ([do(q)])p at the moments it has been done, we can construct a 
tree that would cause the satisfaction of [do(q)])p at the given moment. This 
parallels the construction given in the proof of Theorem 4.1 in section 4.2 for 
reactive ability, and is not repeated here. 

Surprisingly, the trickiest case in this proof turns out to be that of 
sequencing. When $~Y1 = skip, the desired condition for axiom Ax-AB-STRAT-2 

"y. follows trivially. But, when StY~ r skip, the satisfaction condition for ([Y1, 2])p 
.y. recursively depends on that for ~[TtYI~ 2])P. However, this strategy does not 

directly feature in axiom Ax-AB-STRAT-2. Also, it is not necessarily the case 
that Tt Y1;Y2 is a structurally smaller strategy than Y1;Y2, e.g., if Y1 is an 
iterative strategy, TtYx may be structurally more complex than Y1. However, 
we can use the fact that here, as in standard dynamic logic, iterative strategies 
are finitary or, in other words~ lead only to a finite number of repetitions when 
executed at any time. Thus we can assume that for any strategy, Y -# skip and 
moment t, the fragment of < in the model restricted to the execution of Y has 
a finite depth. Here depth of a strategy at a moment is defined as the maximum 
number of recursive invocations of ~ along any scenario at that moment. If Y 
is followed at t, then the TrY is followed at those moments where -LAY has just 
been followed. The depth of TrY equals (depth of Y) - 1. The depth of skip is 
0. Thus the depth is a metric to do the necessary induction on. The remainder 
of the proof is quite simple. 

The case of iterative strategies is now quite simple. Axiom Ax-AB- 
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STRAT-4 directly captures the conditions for ,It and Tt of an iterative strategy. 
Using the above result for sequencing, and the fact that  iterative strategies are 
finitary, we can perform induction on the depth of the strategy. This yields the 
desired result. 

Thus for all cases in the definition of a strategy, M ~t (YDP iff 
(~YDp E t. This proves soundness and completeness. [] 

4.4 Resu l t s  on Abi l i ty  

The axioms for strategies of the form (~do(q)])p, which is the nontrivial base case 
for strategies, are similar to the axioms for reactive ability given in section 4.2. 
Indeed, the following theorem states that  the two concepts are logically identi- 
cal, even though they have differing significance in terms of implementations. 

Theorem 4.4 K~bp ~ K,~bp 

Proof .  

For the left to right direction, Krabp yields ([do(p)])p, which yields 
K,abp. For the other direction, associate with ~YDP a fragment of the model at 
the root of which ~YDp holds and at the leaves of which is the first occurrence 
of p after the root. From this, construct a tree as required in the definition of 
Krabp. The tree for skip  is the empty tree. The definition given above unravels 
a strategy into a finite sequence of strategies of the form do(q). Consider 
the last such strategies that  apply in different parts of the model fragment. 
For each of them, an appropriate tree may be obtained by working from the 
bot tom up in the given model fragment. Since coherence constraint Cor[-5 of 
section 2.3 holds, for each of the leaves of the fragment, there is a last action 
that  ends there. Consider the nodes at which those actions are begun. At 
those nodes, we have a set of trees, each consisting of precisely one action that  
begins there and whose consequences are entirely within the fragment. If the 
original fragment is well-formed with respect to ability, there must  be at least 
one action that  satisfies this requirement. Repeated applications of this yield a 
tree for each strategy of the form do(q), and with respect to which, the agent 
has the required ability. Because of constraint Coil-5, only a finite number of 
applications of this step are required. At each of the nodes where these trees 
are defined, we have a condition of the form ([do(q)])p. Continuing further in 
this way, we obtain a tree for the entire strategy. D 

It is convenient to refer to reactive and strategic ability jointly as KGb. We are 
now able to state and prove some results characterizing the formal properties 
of ability. 
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T h e o r e m  4.5 Kabp~ EFp; and, therefore, -~K,bfalse 

Proof .  

Consider the two axioms for reactive ability. Note that p ~  EFp: this 
takes care of the base case. Also, (Va :  E(a/true A A[a]EFp) entails EFp: this 
takes care of the inductive case. 

It is a trivial consequence of the definitions of E and F that -,EFfalse 
is valid. [] 

T h e o r e m  4.6 K~bp/~ AG(p-+ q )~  K~bq 

Proof .  Consider the two axioms for reactive ability. From axiom Ax- 
As-REACT-l, K~bp holds if p holds. Since AG(p--+ q) is a premise, we also 
have q, which by axiom Ax-AB-REAeT-1 entails K,bq. From axiom AX-AB- 
REACT-2, K~a~p holds if (Va : E(a)true h A[a]K,,bp). But for all actions, a, 
AG(p--+ q ) ~  A[a]AG(p--* q). Therefore, we have (V a :  E(a/true A A[a](K~bp/x 
AG(p~ q))). By the inductive hypothesis, we can conclude (V a :  E(a)true/~ 
A[a]K~bq) which, by axiom Ax-AB-REAeT-2, entails K~q,  as desired. [] 

Theorem 4.7 AFp--, Kabp 

Proof .  Here, we need coherence condition Coil-5 of section 2.3, which 
states that each moment on each scenario may be reached by a finite number of 
actions. Consider the subtree of the model at the leaves of which we have the 
first occurrences of p, which make AFp true. At those moments, we have K~,bp, 
due to axiom Ax-AB-REACT-1. Assign a depth to each of these moments that 
equals the number of actions required to reach that moment. Begin with the 
deepest moments. Let their depth be n. Let the nth action on some scenario 
be a, and let it begin at t. At the moment where that action is begun, we 
have E(a)true, since the action is done on that scenario. Since this is the last 
action begun in the given subtree of the model, we also have A[a] K~,bp. Hence, 
axiom Ax-AB-REACT-2 applies, and we have K~,bp at t. The we simply use 
induction to repeat this step n times to obtain Kr,bp at the root of the subtree, 
which is where AFp holds. [] 

T h e o r e m  4.8 K.bK.bp~ K,bp 

Proof .  Using the definition of reactive ability, construct a single 
tree out of the trees for K,,bKr,bp. For the base case, simply use axiom Ax- 
AB-REACT-1. KrabKrabP holds if K~,bp does, which trivially implies K,,bp. For 
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the inductive case, K,.,,bK,.,,bp holds if (Va : E(a)true A A[a]K,.,,bK,.,,bp). By the 
inductive hypothesis, we obtain (V a :  F(a)true h A[a]K,abp) which, by axiom- 
Ax-AB-REACT-2 implies K~abp, as desired. [] 

This seems intuitively quite obvious: if an agent can ensure that  he 
will be able to ensure p, then he can already ensure p. But see the discussion 
following Theorem 4.10. 

In section 4.2, I gave an example involving Halley's comet. If p is 
"returns(Halley's comet)," then assuming its return is inevitable, K~bp holds. 
But this may seem strange relative to our pretheoretic intuitions about ability: 
we would not ordinarily state that  an agent such as ourselves is able to make 
Halley's comet return. Intuitively, it seems that  an agent can be said to be 
able to achieve something only if it is not inevitable anyway. 

For this reason, it is useful to consider an alternative notion, namely, 
P P of proper ability. Let K~b denote this concept. Then K=b p holds only if p is 

not inevitable and does not hold currently. An obvious formalization of this is 
given next. 

SE~-28. M ~t xK~bP iff M ~ ,  (xK,bp) and (3S :  (Vt': t' e S-~ M ~,, p)) 

As a consequence of this definition, K~b is a non-normal operator 
[Chellas, 1980, p. 114]. This means that P K=bP h (p--+ q) does not imply that  
K~b q. This is so, because q could be inevitable. For example, since true holds 
everywhere, we have --,K~strue. This complicates the logical properties of K~b. 
Thus, whereas K~b is the intuitively more reasonable sense of ability, K~=b is 
the technically more tractable one. This is one motivation for retaining both. 
Another motivation for K~b is that in some applications, it is even intuitively 
the preferred notion (see section 4.9). 

The operator K~b , can now be axiomatized simply by adding the fol- 
lowing axiom: 

Ax-AB-1. _= K~bp (K,,bp A ~AFp) 

T h e o r e m  4.9 -~K~btrue 
P r o o f .  We trivially have AFtrue, which by axiom Ax-AB-1 entails 

-~K~true. D 

Therefore, despite Theorem 4.6, the corresponding statement for K~b 
fails. Indeed, we have 
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P Theorem  4.10 p ~  Kab p 

P roof .  Trivially again, since p ~  AFp. [] 

Theorem 4.10 states that  if p already holds then the agent cannot be 
felicitously said to be able to achieve it. By a simple substitution, we obtain 

P P ~ P K~bp__ + _,k,v up ,~ whose contrapositive is KabK~p-~ K~b p. This is in direct 
' "ab  ' X a b F ,  

opposition to Theorem 4.8 for Kab, and is surprising, if not counterintuitive. 
It says that  an agent who is able to become able to achieve p is not able to 
achieve p. This too agrees with our intuitions about K~s since we explicitly 
wish to exclude the ability to achieve inevitable propositions. The explanation 
for this unexpected observation is that  when we speak of nested ability, which 
we do not do often in natural language, we use two different senses of ability: 
K~b for the inner one and K~b for the outer one. Thus the correct translation is 

p K~bKabp, which entails K~bp, as desired. 

Theorem 4.11 KabK~,bp K~bp 
Proo f .  K~bK~p =- Kab(K~bp A-~AFp), by definition of K~. Since 

AG((r A q ) ~  r), we can apply Theorem 4.6. Thus the left hand side implies 
KabK~bp, which by Theorem 4.8 implies K~bp. [] 

We can sometimes do better than this. For example, if p describes a 
condition that  persists over time, as many p's in natural language examples do, 
then we also have K~p. Briefly, the persistence of a condition p can be described 
by the formula AG(p--+ AGp), which says that  once p holds, it persists forever 
on all scenarios. For example, if p denotes that  the carpet has an indelible 
stain, then once it holds it will continue to hold forever. 

KabP T h e o r e m  4.12 (K~bK~b p A AG(p-~ AGp))--+ v 

P roo f .  Using the definition of K~b, we can see that  the left hand side 
expression is equivalent to K~b(K~sp A --AFp) A AG(p~ AGp). By Theorem 4.6, 
this implies K~bK~p ^ K~b-~AFp A AG(p--+ AGp). Using Theorem 4.8 on the first 
conjunct and Theorem 4.5 on the second conjunct, we obtain K~sp A EF-,AFp A 
AG(p~ AGp). Now assume AFp. Combining this with the last conjunct of 
the previous expression, we get AFAGp. Note that  EF-,AFp = EFEG-,p. This 
contradicts AFAGp. Hence by reductio ad absurdum, -,AFp. Thus the left hand 
side of the statement of this theorem implies K~bp A --,AFp, which is equivalent 
to KV~p. r3 

Theorem 4.12 can be weakened to apply even in the case of conditions 
that  occur infinitely often, but do not persist forever. For example, the condi- 
tion that  a certain switch is on would not persist forever, simply because any 
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agent could toggle it. However, it might reasonable to assume that the switch 
becomes on infinitely often. AG(p~ A(V a :  (a)Fp)) means that at all moments 
in the future if p holds, then for every scenario, there is a moment in its strict 
future at which Fp holds (this is so because, as required in section 2.1.2, all 
actions take time). Thus for every occurrence of p, there is another occurrence 
of p in its strict future. 

T h e o r e m  4.13 (K,,bK~b p A AG(p~ A(Va: (a)Fp)))---* p K,,bP 
Proof .  As before, using the definition of K~b , we can see that the 

left hand side expression is equivalent to K~b(K~bp A --AFp) A AG(p~ A(Va : 
(a)Fp)). By Theorem 4.6, this implies K~bK~p A K~b-,AFp A AG(p~ A(Va : 
(a)Fp)). Using Theorem 4.8 on the first conjunct and Theorem 4.5 on the 
second conjunct, we obtain K~bp A EF--AFp A AG(p---* A(Va : (a)Fp)). But 
EF-~AFp - EFEG-~p. In other words, there is a scenario, S, on which there 
is a moment, after which there are no more occurrences of p. Now assume 
AFp. This implies that there is at least one occurrence of p on every scenario, 
hence there is an occurrence of p on S. Consider the last occurrence of p (this 
could be at the present time). Combining this with AG(p~ A(Va : (a)Fp)), 
we conclude that there is an occurrence of p on S in the future of the given 
occurrence. This contradicts the assumption of a last occurrence of p. Hence 

p we obtain --AFp. Thus we have K~sp h "-AFp, which is equivalent to Kab p. D 

4.5 Incorporating Action Selection: Reactive 
Know-How 

Ability as defined above considers the choices that an agent can exercise in 
principle. However, it finesses the problem with regard to the agent knowing 
enough to actually be in a position to make those choices. I now seek to 
complete this part of the picture, by explicitly considering an agent's beliefs, 
which influence the choices that he, in fact, makes. For example, if an agent is 
able to dial all possible combinations of a safe, then by the above definition he 
is able to open that safe: for, surely, the correct combination is among those 
that he can dial. On the other hand, for an agent to really know how to open 
a safe, he must not only have the basic skills to dial different combinations on 
it, but also know which combination to dial. 

I introduce the following notation into s 

Svs-25. p E s and x E A implies that (zKhrp) , (xKhsp) E s 
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SYN-26. 

Su 

pE s y , y ,  E s u, and x E A implies that (x[(Y)]p),(x[Y]Y'), 
(x[YJg') E s 

r E T, x E A, and p E/;h implies that x[(r)]p E s 

x[r]p denotes that agent x knows how to achieve p relative to tree r. 
As usual, the agent symbol can be omitted, since it is obvious from the context. 
It reduces notational complexity to extend V to apply to a given range of trees. 
Since distinct trees in each such range have distinct rMix actions, the extension 
of V from actions to trees is not a major step. 

SEM-29. M ~ ,  [~]]p iff M ~ ,  Ktp 

SEM-30. M ~t ~(a)]p iff M ~, Kt(E(a)true A A[a]Ktp) 

S~M-31. M ~t [((a;Tl,...,Tm))]p iff M ~t Kt(E(a)true A A[a](V,_<i<,~r; : 
([~dp))) 

Thus an agent knows how to achieve p by following the empty tree, i.e., by doing 
nothing, if he knows that p already holds. As a consequence of his knowledge, 
the agent will undertake no particular action to achieve p. The nontrivial base 
case is when the agent knows how to achieve p by doing a single action: this 
would be the last action that the agent performs to achieve p. In this case, the 
agent has to know that he will know p at some moment during or immediately 
after the given action. 

It is important to require knowledge in the state in which the agent 
finally achieves the given condition, because it helps limit the actions selected 
by the agent. If p holds, but the agent does not know this, then he might select 
still more actions in order to achieve p. 

Lastly, an agent knows how to achieve p by following a nested tree if 
he knows that he must choose the radix of this tree first and, when it is done, 
that he would know how to achieve p by following one of its subtrees. Thus 
know-how presupposes knowledge to choose the next action and confidence that 
one would know what to do when that action has been performed, provided 
one has the necessary skills, i.e., the necessary actions, available. 

S~M-32. M ~t xKhr p iff (3 r :  M ~, x[r~p) 

Consider Figure 4.2 for an example. Let x be the agent whose actions 
are written first there. Assume for simplicity that each moment is its own 
unique alternative for x. Then, by the above definitions, xKtp holds at t3 and 
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P 

~  

Figure 4.2: Know-how 

t4. Also, XKhr p holds at tl (using a tree with the single action, a) and at t2 
(using the empty tree). As a result, at moment  to, x knows that  if he performs 
a, then he will know how to achieve p at each moment  where a ends. In other 
words, we can define a tree, (a; a, 0), such that  x can achieve p by properly 
executing that  tree. Therefore, x knows how to achieve p at to. 

I now propose the following axioms for Khr. These axioms are moti- 
vated by analogy with the axioms for Kr~b given previously. 

Ax-K~-REACT-1. Ktp--~ Khrp 

Ax-KH-REACT-2. ( V a :  Kt(E(a)true A A[a]KhrP))--* Khr p 

Ax-Kn-RI~ACT-3. All substitution instances of the validities of the underlying 
logic. 

T h e o r e m  4.14 Axioms Ax-AB-REACT-1 through Ax-KH-REACT-3 yield a sound 
and complete axiomatization for Khr. 

P roo f .  
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Construct a branching-time model, M. The moments of M are no- 
tated as t and are maximally consistent sets of formulae that contain all the 
substitution instances of the validities of the underlying logic. The other com- 
ponents of the model, especially, <, B, R, and [], are constrained by the 
formulae that are true at the different moments. Furthermore, these sets are 
closed under the above two axioms for Khr. We can ignore the agent symbol in 
the following discussion. 

Soundness:  For axiom Ax-KH-RZACT-1 above, soundness is trivial 
from the definition of [($)]p. For axiom Ax-Kn-RZACT-2, let (V a : Kt(E(a/true A 
A[a]Khrp)) hold at t. Then, by semantic condition SzM-30, [a]p holds, which, 
by semantic condition SZM-32, entails Khr p. Hence, axiom Ax-KmREAcT-2 is 
sound. 

Completeness:  The proof is by induction on the structure of formu- 
lae. Only the case of formulae of the form Khr p is described below. Complete- 
ness means that M ~t  Khrp entails Khr p E ~. M ~t KhrP iff (3r :  M ~t [(r~p). 
This proof is by induction inside the induction on the structure of formulae. 
This induction is on the structure of trees with which a formula of the form Kht p 
is satisfied. One base case is the empty tree 0. And M ~t  [(0]p iff M ~t  Ktp. 
By Ax-KII-REACT-3, Ktp E I. By axiom Ax-KII-REACT-I above, Kbr p E 1, as 
desired. 

The other base case is for single-action trees. M ~t ~a]p iff M ~t  
Kt(E(a)true h A[a]Ktp). This is equivalent to the following expression: (Ytb : 
(t, tb) E B=~ (3Sb, t' : [Sb;tb, t'] E [a]) and (YSb : (Vt' e Sb : [Sb;tb, t'] E 
la]=~ (3t" : tb < t" < t' and M ~ , ,  Ktp))). But, by axiom Ax-KrI-RZACT- 
1, Ktp+ KhrP. And, by axiom Ax-Kr~-PmAcT-3, we have that (Vts : (t, tb) 
B=~ (E(a)truehA[a]Khrp)). That is, Kt(E(a)truehA[a]Kh,p) q 1, which trivially 
entails (V a :  Kt(E(a)true h A[a]Khtp) ) E t. Thus by axiom Ax-Kn-RzAcT-2, we 
have Khr p E t. 

For the inductive case, M ~t  [((a; rl,.o., r~)]p iff M ~t Kt(E(a)trueA 
A[a](Vl<,<,~ r i :  ([(r~]p))). This requires tha t ,  for some index i, [(ri]p holds at 
some appropriate moments. Let t~ be one such moment. Therefore, M ~t .  
Khrp. Further, by the inductive hypothesis, we have that KhrP E t,. Conse- 
quently, by axiom Ax-KIt-REAOT-2, we obtain that Khr p E t. Hence we have 
completeness of the above axiomatization. El 
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4 .6  S t r a t e g i c  K n o w - H o w  

The above formalization gives a reactive definition of know-how. It considers 
the beliefs of agents and their influence on the selection of actions by them. 
However, it still remains to be seen if we can incorporate strategies into the 
picture to give an abstract definition of know-how. I introduce an operator, 
[( )], to denote an agent's know-how relative to a strategy, x[(Y)]p means that  
x knows how to follow strategy Y and thereby to achieve p. Knowing how to 
follow a strategy presupposes knowing the right actions to perform in order to 
satisfy it. 

Just as for the .case of ability, I aim to show that the strategic def- 
inition of know-how builds on top of the reactive definition given previously. 
To this end, I define the know-how-intension of a tree, relative to a strategy, 
in analogy with the ability-intension of a tree defined in section 4.3. Let the 
know-how-intension of a tree, v, relative to a strategy, Y, for an agent, x, be 
notated as [{r}]~. This is the set of periods on which the given agent knows 
how to achieve Y by following r. Precisely those periods are included on which 
the agent has the requisite knowledge to force the success of the given stra- 
tegy; mere ability is not sufficient. Just as for the ability-intension of trees, the 
know-how-intension of trees needs to be defined only for the ~ of strategies, 
which are always of one of the forms, skip  or do(q). Formally, we have the 
following cases in the definition of [{r}]~,. 

hux-10. The agent knows how to satisfy the empty strategy, skip ,  by doing 
nothing, i.e., by following the empty tree. 

IS; t, t ~] E [{O}]~klp iff t = t' 

Aux-ll. The agent may know how to satisfy the strategy do(q) in one of three 
ways: (a) by doingnothing,  if he knows that  q holds; (b) by following 
a single action tree, if he knows that  it will force q; or, (c) by following 
a general tree, if doing the radix of that  tree will result in a state in 
which he knows how to satisfy do(q) by following one of its subtrees. 
Thus we have: 

IS; t,t  e 
Aux-1. v = 0 and t = t' and M ~t  xKtq; 

Aux-2. r = a and M ~t  [(r]q and M ~v  xKtq and (3tl : t < t' < tl and 
[S; t, tl] e ~a] and (Vt2: t < tz < t' implies M ~t2 q)); or, 

hux-3, r = ( a ; r l , . . . , r ,~ )  and M ~t' xKtq and M ~ [(r]q and (3tl : 
[S; t, tl] E [[a] and (St2, i : 1 < i < m and [S; tl, t2] e [ri]do(q) 
and tl < t' < t2)) and (Vt3 : t <_ t3 < t' implies M ~ts q) 
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By the above definition, IS; t, t'] E [{r}]~o(q ) means that starting at moment t, 
moment t' is the earliest moment at which x knows how to make q happen by 
following it. As a result, for a scenario, S, and moments t', t" E S, we have that 
[S; t, t'] E [{r}]ao(q ) and [S; t, t"] E [{r}]~ q implies that t' = t" This agrees o() 
with the intuition behind constraint Cor~-I of section 2.3 that an action begun 
at a moment can end at most one moment on each scenario. In other words, 
[{r}]~lo(q) denotes the intension of the abstract action performed by agent x. 
This is x's abstract action of achieving q by exercising his know-how. 

The above is an important intuition about strategies as they have 
been used throughout here. In order to make it explicit, I extend the formal 
language by adding two operators on strategies: ()h and []h. These operators 
are defined in analogy with the operators ( ) and [], which were defined for basic 
actions in section 2.1.3. However, unlike those operators, ()h and []h involve 
the evaluation of the given condition at the final moment of the relevant period. 
Consequently, ( )h and []h are duals of each other. Formally, I add the following 
rule to the syntax of s 

SVN-28. p e  /:~, X e A, and Y e / : h  implies that x[Y]hp, x(Y)hpe s 

Now I give the semantic conditions for the new operators. 

SEM-33. 

SEM-34. 

T M ~s,, x(do(q))hp iff (3T, t' E S :  [S ; t , ~  q [{ }]do(O and M ~s,t, p) 

This means that the abstract action do(q) can be knowingly and 
forcibly performed on the given scenario and, at the moment at which 
it is over, condition p holds. 

M ~s,t x[do(q)]hp iff (W-, t' E S :  [S;t,t ~] E [{r}]~o(q)=~ M ~s,t, p) 

This means that if the abstract action do(q) is knowingly and forcibly 
performed on the given scenario, then at the moment at which it is 
over, condition p holds. It is all right to quantify over all t"s here, 
since, as remarked above, there can be at most one t' (on the given 
scenario) at which the action has been completed. More importantly, 
we must quantify over all trees with which do(q) can be performed, 
because those trees are equally legitimate as ways to perform do(q). 
If only some of the ways of performing do(q) were acceptable, then 
do(q) would not be a reasonable abstraction to use in a strategy: 
one should, instead, have specified do(qS), for an appropriately strong 
q'. In other words, all that is relevant about acceptable scenarios is 
specified in do(q) itself. 
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The notion of know-how relative to a strategy can now be formalized 
to explicitly reflect the idea that strategies are abstractions over basic actions. 
That is, the definition of know-how relative to a strategy should parallel the 
previous, reactive, definition of know-how. The only difference lies in the fact 
that the strategic definition employs the operators on abstract actions defined 
above. An agent knows how to achieve p by following the empty strategy, skip, 
if he knows that p. The justification for this is the same as the one for the case 
of the empty tree, i.e., SEM-29, considered in section 4.5. 

The case of a general strategy is more interesting. Not only must the 
agent know how to perform the relevant substrategies of a given strategy, he 
must know what they are when he has to perform them. I introduce two new 
operators to capture what the agent does now and what he will need to do 
later. The formula x[YJY' means that for the agent z to follow Y at the given 
moment, he must begin by following Y'. In light of the previous discussion, 
Y' must be of one of the forms, skip or do(q). Since we have stipulated that 
the agents' beliefs are true, x[YJY' holds only if Y' =.~tY. However, since the 
agents' beliefs may be incomplete, z[YJY' may be false for all Y'. Assuming 
x[YJY' as above, the formula z[Y]Y" means that for the agent x to follow Y 
at the given moment, he must follow Y" after he has followed Y'. As above, 
z[Y]Y" holds only if Y" =TRY. In other words, [J and [] capture knowledge 
on the agent's part of the ~ and T of a strategy. 

SrM-35. M ~t  x[skipJskip 

SEM-36. M ~, x[do(q)Jdo(q) iff M ~t  "q 

S~M-37. M ~t  x[do(q)Jskip iff M ~t xKtq 

S~M-38. M ~t  z[if r then  I11 else ~/Y' iff M ~ ,  (zKtr A x[~JY') V (xKt-.r A 
x[Y2JY') 

SgM-39. M ~t  x[Y~;Y2JY' iff 
(a) Y' r skip and M ~ ,  x[YlJY', or 

(b)  M ~t  (x[Yl~kip A x[Y2JY') 

Seu-40. M ~t  x ~ h i l e  r do YlJY' iff 
(a) M ~t  (xKtr A xLYlJY'), or 
(b) Y' = skip and M ,~t xKt'~r 

SEM-41. M ~t x[skip]skip 

SV.M-42. M ~t  x[do(q)]skip 
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SEM-43. M x[if r then Y1 else Y2]Y' iff M (xKtr A x[Ya]Y') V (xKt-,r h 
zFY IY') 

SEM-44. M 
(a) 
(b) 

SEM-45. M 

~ zFY1;Y2]Y' iff 
M ~t  (z[Y~Jskip A x[Y2]Y'), or 
(3Y",Yo : Yo # skip and Y ' =  Y";Y2 and M ~t (xLY~JYoAz[Yx]Y")) 

~t x[while r do Y~]skip iff M ~ ,  (zKt-~r V x[YxJskip) 

S~M-46. M ~t  x[while r do Y~]Y' iff (3Yo : Yo # skip and Y' = Yo;(while r 
do Y1) and M ~t  (zKtr A z[Ya]Yo)) 

A consequence of these definitions is Lemma 4.15, which states that an agent 
can have at most one substrategy to perform at a given moment and at most 
one substrategy to perform on doing the first one. Another consequence is 
Lemma 4.16, which states that, if x knows what substrategy to follow at a 
given moment, he knows what substrategy to follow after the first substrategy 
is over. In analogy with Lemma 2.28, which states that ~tY = skip entails that 
TrY = skip, we have Lemma 4.17, which states that z[Yjskip entails z[Y]skip. 
None of the lemmas mentioned above require the agent's beliefs to be true; 
they all just require them to be mutually consistent. Also, since true is valid, 
by the semantic definition of B (or Kt), Le., SEM-16 in section 2.6, we have 
that xKttrue is valid. The only clause in the definition of x[YJY' that allows 
Y' = do(q), i.e., SEM-36, requires that -~q hold in the model, which cannot be 
the case for true. Therefore, x[YJY' entails that Y' # do(true). 

L e m m a  4.15 (VY', Y": M ~t x[YJY'Az[YJY" implies Y' = Y") and (VY', Y":  
M ~t x[Y]Y' A x[Y]Y" implies Y ' =  Y") 

Proof.  It is easily seen that this claim holds for the base cases, i.e., 
for Y of one of the forms, skip and do(q). The conditions in the other semantic 
clauses are also mutually exclusive, so that at most one recursive invocation of 
L J and [], respectively, is possible in each case. 

L e m m a  4.16 (3Y' : M ~, xLYjr' ) implies that (3Y" : M ~t x[Y]Y") 

Proof.  The semantic clauses given above give the conditions that 
determine whether (3Y': M ~, x[YJY') holds. Some of these conditions involve 
the knowledge of agent x at moment t. It can be seen by inspection that, except 
for the case where Y is of the form do(q), whenever M ~t x[YJY' holds, so does 
M ~t x[Y]Y", for some Y". When Y is of the form do(q), then M ~t  x[Y]skip 
holds in all cases. This proves the above claim. 
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The converse of the above claim fails because M ~t  x[do(q)lskip may 
be true even when M ~t qA ",xKtq. In that case, neither condition SEM-36, nor 
condition S~M-37 applies and, therefore, (3Y': M ~t x[do(q)JY') is false. [] 

L e m m a  4.17 x[YJskip entails x[Y]skip 

Proof.  By inspection of the semantic conditions for [J and [1. The 
lemma holds for the cases of skip and do(q) trivially. It can be proved for the 
other cases by checking their semantic conditions pairwise. [] 

4.7 Strategic Know-How Defined 

An agent, x, knows how to achieve a proposition p by following a strategy Y, if 
there is a strategy Y' such that (a) x[YJY' holds; (b) he knows how to perform 
Y'; and, (c) he knows that, in each of the states where Y' is completed, he would 
know how to achieve p relative to TrY. Since Y' is always of one of the forms, 
skip or do(q), Y is progressively unraveled into a sequence of substrategies of 
those forms. Formally, we have 

SEM-47. M [==, x[(skip)]p iff M ~t xKtp 

SEM-48. M ~t x[(Y)]p iff M ~t xKt(Ex($tY)htrue A Ax[ltY]hx[(TtY)]p) and 
M ~t z[YJ ltY 

An interesting observation about the above definition is that it requires an 
agent to know what substrategy he must perform only when he has to begin 
acting on it. The knowledge prerequisites for executing different strategies can 
be read off from the above semantic definitions. For example, a conditional 
or iterative strategy can be executed only if the truth-value of the relevant 
condition is known. 

In rough analogy with the axioms for ability, and with the knowledge 
of agents explicitly considered, we can come up with the following axioms for 
know-how. 

Ax-KI-I-STRAT-1. x[(skip)]p -=. xKtp 

Ax-KH-STRAT-2. x[(Y1;Y2)]p ~ xKY1)]x[(Y2)] p 

Ax-KH-STRAT-3. x[(if q then  Y1 else Y2/]P -= 
(xKtq A x[(Y1)]p) V (xKt-q A x[(Y~)]p) 
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Ax-KtI-STRAT-4. 

AX-KH-STRAT-5. 

Ax-KH-STRAT-6. 

x[(while q do Y1)]p - (xKtq A x[(Y1)]x[(while q do Y1)]p) V 
(xKt-~q A xKtp) 

x[(do(q))]p ~ ("qA (V a :  xKt(Ex(a)trueAAx[a][(do(q))]p)))V 
xKt(q A p) 

All substitution instances of the validities of the underlying 
logic 

T h e o r e m  4.18 Axioms AX-KH-STRAT-1 through Ax-Kti-STRAT-6 yield a sound 
and complete axiomatization of x[(Y)]p. 

Proo f .  

S o u n d n e s s  and  C o m p l e t e n e s s :  The proofs of soundness and com- 
pleteness are developed together. Only formulae of the form x[(Y)]p are consid- 
ered here. As before, construct a model whose indices are maximally consistent 
sets of sentences of the language. Completeness means that M ~t x[(Y)]p en- 
tails x[(Y)]p E t and soundness means that  x[(Y)]p E t entails i ~t x[(Y)]p. 
The proof is by induction on the structure of strategies. 

M ~ x[(skip)]p iff M ~ xKtp. But, by axiom Ax-KH-STaAT-1, 
x[(skip)]p E t i f f  xKtp E t. Thus, we simultaneously have soundness for ax- 
iom AX-KH-STRAT-1, and completeness for strategies of the form skip.  

Let Y = if q t h e n  Y1 else Y2. Then, M ~t  x[(Y)]p iff x first performs 
Y' and then Y", where i ~ (xLYJY' A x[Y]Y"). But this holds only if xKtq or 
xKt-,q holds at t. By the definitions SEM-38 and SEw-43, M ~t  (xKtq A xLYlJYP A 
x[Y~]Y") V (xKt-,q A x[Y2JY' A x[Y2]Y"). Therefore, using the definition of [( )], we 
obtain M ~t x[(Y)]p iff M ~t  (xKtq h x[(Y1)]p) V (xKt~q h x[(Y2)]p). Thus, we 
simultaneously have soundness for axiom Ax-K.-ST~T-3, and completeness for 
conditional strategies. 

Let Y = do(q). Using definitions SEM-37, S~M-36, and S~.M-42 and 
the definition of [(skip)]p (SEM-47), we have that  i ~t z[(do(q))]p iff M ~ ,  
(xKtq A xKtp) or M ~ -~q A xKt(Ex(do(q))httue A x[do(q)]hxKtp). The first 
case is taken care of by one disjunct of axiom AX-KH-STKAT-5. Let tb be a 
moment  such that  (t, tb) E B(x).  Let v be a tree that  makes Ex{do(q))htrue 
hold at tb. Consider the same tree in the definition of []h. 

The rest of the proof of this case is by induction on the structure of 
trees. Initially, since "~q holds, r # 0. However, r = 0 is considered as a base 
case of the induction. At any moment,  t', if r = 0 satisfies Ez(do(q))httue, then 
Ex(do(q))httueAx[do(q)]hxKtp implies that  zKt(qAp) which, by axiom Ax-Kn- 
STRAW-5, entails z[(do(q))]p holds at t'. If r = a then, since the first occurrence 
of q is relevant, -~q must  hold at the given moment.  Also, Ex(do(q))httue A 
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x[do(q)lhzKtp entails Ex(a)true A x[a]zKt(q A p). By the definition of Kt, we 
obtain zKt(Ex(a)true A x[a]xKt(q A p)) at moment  t. This trivially entails 
( V a :  xKt(ex(a)ttue ^ z[a]zKt(q A p))). By axiom Ax-KH-STRAT-5, zKt(q A p) 
entails x[(do(q))]p. Thus the previous expression yields (V a :  xKt([:x(altrue A 
x[a]z[(do(q))]p)). Since -~q also holds at t, we have x[(do(q))]p by axiom Ax- 
KH-STRAT-5. 

The case when ~" = <a; r l , . . . ,  7,~) follows quite simply by induction. 
The tree T follows do(q) over a period iff (a) the period ends at the first 
occurrence of q and xKtq also holds at that  moment;  and (b) the radix, a, is 
done in a prefix of the period and one of the ri follows do(q) over the rest of 
the period. By the inductive hypothesis applied to r~, x[(do(q))]p holds at each 
of the moments  at which a is performed. Axiom AX-KH-STRAT-5, then, entails 
that  z[(do(q))]p holds at the moment  at which r was begun. The rest of the 
argument is the same as for single-action trees. This proves completeness for 
strategies of the form, do(q). It also proves soundness of axiom AX-KH-STRAT-5 
in the left to right direction. 

For soundness of axiom Ax-KH-STItAT-5 in the right to left direction, 
note that  for the second disjunct of axiom AX-KH-STRAT-5, the empty tree makes 
x[(do(q))]p hold wherever xKt(q A p) holds. For the first disjunct, let t be the 
given moment.  Using the action for which the quantified expression holds and 
the trees corresponding to the occurrences of x[Ido(q))]p at the moments  that  
action has been done, we can construct a tree at each alternative moment  of 
t that  makes x[(do(q))]p true at t. This parallels the construction given in the 
proof of Theorem 4.1 in section 4.2, and is not repeated here. 

Now let Y = Y1;Y2. If ~tY1 = skip,  the desired condition for ax- 
iom AX-KH-STRAT-2 follows trivially. But, if ~tY1 # skip,  the satisfaction con- 
dition for z[(Y~;Y2)]p recursively depends on that  for x[(TtY1;Y2)]p. Therefore, 
as in the proof of Theorem 4.3 in section 4.3, we use the fact that  strategies 
are finitary. That  is, they have a finite depth or, in other words, require only 
a finite number of applications of ~ when performed at any time. Thus we 
can assume that  for any moment  t and strategy Y, such that  ,~tY # skip,  the 
fragment of the model restricted to the execution of Y has a finite depth. If 
Y is followed at t, then the TrY is followed at those moments  where ~tY has 
just been performed. The depth of TrY equals (depth of Y) - 1. The depth of 
sk ip  is 0. Thus the depth is a metric to do the necessary induction on. The 
remainder of the proof is quite simple. 

Finally, let Y = whi le  q do I/1. Axiom AX-KH-STRAT-4 captures the 
conditions for the L J and [ ] of Y. Using the above result for sequencing, and 
the fact that  iterative strategies are finitary, we can perform induction on the 
depth of the strategy. This yields the desired result. 
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Thus for all cases in the definition of a strategy, M ~t x[(Y)]p iff 
�9 [(Y)]p E t. This proves soundness and completeness of the proposed axioma- 
tization. D 

S~M-49. M ~t  xKhsP iff (3Y: M ~t x[(Y)]p) 

4 .8  R e s u l t s  o n  K n o w - H o w  

Just as for the case of ability, the strategic definition of know-how exploits its 
previous, reactive, definition. The following theorem states that strategic and 
reactive know-how are logically identical. 

T h e o r e m  4.19 Khr p = Khs p 

Proof .  

The left to right direction is trivial. In the other direction, associate 
with [(YI]P a fragment of the model whose root satisfies [/Y)]p and whose leaves 
satisfy the first occurrence of Ktp since the root. From this, construct a tree as 
required for Khr p. The details of this construction are identical to those in the 
proof of Theorem 4.4. D 

It is often convenient to refer to reactive and strategic know-how jointly as K h. 
Below, we state and prove some results about know-how and its interaction with 
time and knowledge. These properties help us better delineate the concept of 
know-how as captured by the formalization presented above. 

T h e o r e m  4.20 Khp~ KtKhp 

Proof .  

Consider the two axioms for reactive know-how one by one. Ktp 
entails KtKtp. Thus, by the base axiom, we get KtKhp. For the inductive 
axiom, (Va :  Kt(E/a)true/~ A[a]Khp)) entails ( V a :  KtKt(E/a)true A A[a]KhP)) 
by introspection. And, that entails Kt(V a :  Kt(E/a)true ^ A[a]Khp)). Thus we 
obtain KtKhp. D 

T h e o r e m  4.21 KhP~ KtEFp; consequently, -~Khfalse 
Proof. 
It sufficient to consider the two axioms for reactive know-how. Since 

p---, EFp is valid, we have Ktp-'~ Ktl=Fp by axioms Ax-BI~L-3 and Ax-BEL-4. This 
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takes care of the base case. Also, (V a : Kt(E<a)true A A[a]KtEFp)) entails 
KtE(a)EFp, which entails KtEFp: this takes care of the inductive case. 

It is a trivial consequence of the definitions of E and F that -~EFfalse 
is valid. Hence, by definition of Kt, -~KtEFfalse is valid. Thus, -,Khfalse holds. 
D 

Theo rem  4.22 KhP A KtAGKt(p~ q )~  Khq 

Proof.  It sufficient to consider the two axioms for reactive know- 
how. From axiom Ax-KI-I-REACT-1, Khr p holds if Ktp holds. KtAGKt(p~ q) 
entails Kt(p---* q). Thus, by axiom Ax-BEL-4, we have Ktq, which by axiom Ax- 
KI-I-REACT-1 entails Khq. From axiom Ax-KI-I-REACT-2, Khr p holds if (Va : 
Kt(E(a)true A h[a]Khrp) ). But, as a consequence of the definitions of A and G, 
we have that for all actions, a, KtAGKt(p---~ q)--* KtA[a]AGKt(p---r q). There- 
fore, we have (V a :  Kt(E(a)true A A[a](KhrpA AGKt(p~ q)))). By the inductive 
hypothesis, we can conclude (V a :  Kt(E(a)trueAA[a]Khrq) ) which, by axiom Ax- 
KH-REACT-2, entails Khrq, as desired. [] 

For the next theorem, we need to add an assumption about know- 
ledge. The relations, B(x), which were assumed to be reflexive and transitive 
in section 2.6, are now additionally assumed to be symmetric. This validates 
the following axiom of negative introspection [Chellas, 1980]. 

AX-BEL-5. ~xKtp---~ xKt-~xKtp 

I shall assume this axiom in the rest of this section. 

Theo r em  4.23 KhKhp~ Khp 

Proof.  Using the definition of reactive know-how, construct a single 
tree out of the trees for KhrKhr p. For the base case, simply use axiom Ax- 
KH-REAcT-1. KhrKhr p holds if KhrP does, which trivially implies Khrp. For 
the inductive case, KhrKhr p holds if (Va : Kt(E(a)true A A[a]KhrKhrP) ). By 
the inductive hypothesis, we obtain (Va : Kt(E(a)true A A[a]KhrP) ) which, by 
axiom-Ax-Kn-REAcT-2 implies KhrP, as desired. [] 

This seems intuitively quite obvious: if an agent can ensure that he 
will be able to ensure p, then he can already ensure p. But see the discussion 
following Theorem 4.25. 

If p is "returns(Halley's comet)," then assuming the agent knows that 
he will come to know that it has returned, Khp holds. The condition here is 
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stronger than for ability, but is perhaps too weak relative to our pretheoretic 
intuitions. For this reason, it is useful to consider an alternative notion, proper 
know-how, notated as K~ that prevents this inference. Its semantic condition 
and axiomatization are as follows. 

S~M-50. M ~, xKPhp iff M ~t (xKhP) A (-'xKtAFxKtp) 

Ax-AB-2. K~p = (Khp A -,KtAFKtp) 

T h e o r e m  4.24 --K~true 

Proof.  We trivially have Kttrue, which entails AFKttrue, which entails 
KtAFKttrue. By axiom Ax-AB-2, that entails -,K~true. [] 

Therefore, despite Theorem 4.22, the corresponding statement for K~ 
fails. Indeed, we have 

T h e o r e m  4.25 Ktp--* --K~p 

Proof.  Ktp entails KtKtp, which entails KtAFKtp. Hence, -~K~p. [] 

Theorem 4.25 states that if p is known then the agent does not prop- 
erly know how to achieve it. By substitution, we obtain K~p~ -,tep tep~.,h,,h~,, whose 
contrapositive is K~ K~p--* ~K~p. This is in direct opposition to Theorem 4.23 
for Kh, and is surprising. The explanation for this observation is that when we 
speak of nested know-how, which we do not do often in natural language, we 
use two different senses of know-how: K~ for the inner one and K h for the outer 
one. Thus the correct translation is K h K~p, which entails Khp , as desired. 

Theorem 4.26 KhK~p~ Khp 

Proof.  KhK~p = Kh(Khp A -~KtAFKtp), by definition of K~. Since 
KtAGKt((r A q )~  r), we can apply Theorem 4.22. Thus the left hand side 
implies K h Khp , which by Theorem 4.23 implies Khp. D 

4.9 C o n c l u s i o n s  

I presented two sound and complete logics for ability and know-how that were 
developed in the same framework as used for intentions earlier in this work. 
This formalization reveals interesting properties of ability and know-how and 
helps clarify some of our intuitions about them. Capturing these intuitions is 
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an important first step in applying these concepts rigorously in the design and 
analysis of intelligent agents. The process of formalization helps uncover certain 
technical nuances that might never have been brought to the fore otherwise. 
This is a valuable service. Interestingly, many proofs from the proposed axioms 
turn out to be much simpler than those that might be given using purely model- 
theoretic reasoning. 

For some purposes, the proper notion of know-how may be preferred, 
since it excludes cases where the given condition holds and is known to hold 
already. For most purposes, however, the general notion of know-how is pre- 
ferred. For example, a household robot should know how to get upstairs when 
called; in this case, there is no problem if it knows that it is already upstairs. 

Of special technical interest are the operators ~ 1) and [( )], which differ 
from those in standard dynamic logic. These operators provide a viable formal 
notion with which to capture the ability and know-how of an agent whose 
behavior is abstractly characterized in terms of strategies. The differences 
between the reactive and strategic definitions of these concepts lie mainly in 
the complexity of the agents to whom they may be attributed. As explained 
in section 2.5, the strategic definition lets an agent be specified and reasoned 
about using something akin to macros over reactive actions. 

This approach complements previous work on knowledge and action 
[Moore, 1984; Morgenstern, 1987] in some respects. The details of the condi- 
tions that are achieved have been abstracted out, but could be filled in. For 
example, definite descriptions could be included easily: an agent's strategy can 
be do(q), where q stands for "dialed(combination of the safe)." 

At this point, I have formalized intentions and know-how within the 
same general framework of actions and time. Now the question arises as to 
whether we can pull these formalizations together to prove the kinds of results 
we are most interested in. The next chapter answers this question with a yes. 
And the chapter after the next reaffirms that for the problem of specifying 
communications among agents. 


