
Utility Functions for Ceteris Paribus Preferences

Michael McGeachie
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
mmcgeach@mit.edu

Jon Doyle
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7535
JonDoyle@ncsu.edu

Abstract

Although ceteris paribuspreference statements concisely
represent one natural class of preferences over outcomes or
goals, many applications of such preferences require numeric
utility function representations to achieve computational effi-
ciency. We provide algorithms, complete for finite universes
of binary features, for converting a set of qualitativeceteris
paribuspreferences into quantitative utility functions.

Introduction
Although researchers have developed several logical rep-
resentations of preference information (Doyle, Shoham, &
Wellman 1991; Mura & Shoham 1999; Bacchus & Grove
1996), development of adequate means for automated rea-
soning within and computational use of these representa-
tions remains an underexplored topic. To improve the utility
of these representations for practical applications, we con-
sider the task of constructing or compiling numeric utility
functions to fit logical preference specifications, and present
algorithms for this task appropriate to theceteris paribus
logic of Doyle, Shoham, and Wellman (1991).

Wellman and Doyle (1991) observed thatceteris paribus
preference provides a natural interpretation of a common
type of human preference, and built on this to develop
logical and mathematical formalizations of such informa-
tion (Doyle, Shoham, & Wellman 1991; Doyle & Wellman
1994).Ceteris paribuspreferences express preference com-
parisons over sets of possible worlds or outcomes character-
ized in terms of a set of binary featuresF . Then eachceteris
paribusrule specifies some features of outcomes, and a pref-
erence over them, while ignoring the remaining features, the
intent being that comparisons hold the ignored features con-
stant.

Consider, for example, “Prefer programming tutors re-
ceiving an A in Software Engineering to tutors not receiving
an A, other things being equal.” We imagine a universe of
computer science tutors described by binary features as in-
dicated in Table 1. The preference about tutors stated previ-
ously means that a particular computer science tutor is more
desirable if the tutor received an A in the Software Engi-
neering course, all other features being equal. In particular,

Copyright c© 2002 by Michael McGeachie and Jon Doyle. All
rights reserved.

Tutor p q r
Feature
Graduated false false true
A in Software Engineering true false false
A in Computer Systems true true false
Cambridge resident true true true
Will work Tuesdays false false true

...
...

...
...

Table 1: Properties of possible computer science tutors

the tutorp described in Table 1 is preferred to the tutorq
in that same table, assuming the elided features for each are
identical. In contrast, theceteris paribuspreference makes
no statement about the relative desirability of tutorsp and
r. Tutorsp andq differ only in the feature mentioned in the
preference statement, getting an A in Software Engineering.
The stated preference does not apply to tutorsp andr be-
cause they differ with regard to other features.

Although one can reason from statements expressed in
this logic of preference to determine which of two outcomes
is preferable, if either is, many applications of decision the-
ory require the use of numerical utility functions. This pa-
per describes means for constructing utility functions that
represent preferences stated in a logic of preferenceceteris
paribus.

Ceteris paribuspreference and utility
We employ a restricted logical languageL, patterned after
(Doyle, Shoham, & Wellman 1991) but using only the stan-
dard logical operators¬ and∧, over a set of atomsF corre-
sponding to propositional features mentioned in preference
statements. Byliterals(F) we denote the atoms ofF and
their negations;literals(F) = F ∪ {¬f | f ∈ F}. We call
a complete consistent setm of literals amodel. That is, a
set of featuresm is a model iffm contains, for eachf ∈ F ,
exactly one off and¬f . We useM for the set of all models
of L.

A model ofL assigns truth values to all atoms ofL, and
therefore to all formulae inL. We writef(m) for the truth
value assigned to featuref by modelm. A modelsatisfies
a sentencep of L if the truth valuesm assigns to the atoms

of p makep true. We writem |= p whenm satisfiesp. We
define thepropositionexpressed by a sentencep, denoted[p]
by [p] = {m ∈M | m |= p}.

A preference orderis a complete preorder (reflexive and
transitive relation)% overM. Whenm % m′, we say that
m is weakly preferredto m′. If m % m′ andm′ 6% m, we
write m � m′ and say thatm is strictly preferredto m′.
If m % m′ andm′ % m, then we saym is indifferent to
m′, written m ∼ m′. A utility functionu : M → R maps
each model to a real number. A utility functionu represents
a preference order% just in caseu(m) ≥ u(m′) whenever
m � m′.

We define a new languageLr of preference rulesor pref-
erence constraintsto consist of statements of the form, for
p, q ∈ L, of p D q, meaningp is desired at least as much as
q, andp B q, meaningp is desired more thanq. Models of
Lr consist of preference orders over models ofL. We define
the meaning of preference rules in terms of the notions of
L-model equivalence and modification.

The supportof a sentencep ∈ L is the minimal set of
atoms determining the truth ofp, denoteds(p). The support
of p is the same as the set of atoms appearing in an irre-
dundant sum-of-products sentence logically equivalent top.
Two modelsm andm′ areequivalent modulop if they are
the same outside the support ofp. Formally,m ≡ m′ mod p
iff

m\(literals(s(p))) = m′\(literals(s(p)))
Model modification is defined as follows. A set ofmodel
modifications ofm makingp true, written m[p], are those
models satisfyingp which assign the same truth values to
atoms outside the support ofp asm does. That is,

m[p] = {m′ ∈ [p] | m ≡ m′ mod p}.
Formally, we say that a preference order% satisfiesp D q

if and only if for all m in M, m′ ∈ m[p ∧ ¬q] andm′′ ∈
m[¬p ∧ q], we havem′ % m′′. This means that when two
models assign the same truth values to all features not in
the support of eitherp or q, one makingp true andq false
is weakly preferred to one makingp false andq true. The
preference order satisfies a strictceteris paribuspreference
p B q if and only if in addition some case has a model makes
p true andq false strictly preferred to one makingp false and
q true.

For a preference rulec, we write [c] to denote the set of
preference orders overM that satisfyc, that is, consistent
with the constraint expressed byc. We write[C] for a set of
preference rules to denote the set of orders consistent with
eachc ∈ C, that is,[C] =

⋂
c∈C [c]. Consistent rules and

rule sets admit at least one consistent preference order. If a
preference rulec implies thatm′ � m′′, for m′,m′′ ∈ M,
we write m′ �c m′′. For a setC of preference rules, we
write m′ �C m′′ to mean thatm′ �c m′′ for eachc ∈ C.

We define the support ofC, denotedF (C), to be the set
of features inL present in the support of statements ofL ap-
pearing in constraints inC. Formally,F (C) contains those
featuresf such that eitherf or¬f appears in

⋃
c∈C s(c).

The following examines the problem of constructing, for
a finite setC of ceteris paribuspreference rules, a utility
functionu that represents some order in[C].

Intermediate representation
The utility construction methods developed here employ an
intermediate representation in terms of simple rules that re-
late paired patterns of specified and “don’t care” feature val-
ues.

Let C be a finite set of preference rules. Because each
preference rule mentions only finitely many features,F (C)
is also finite, and we writeN to mean|F (C)|.

We construct utility functions representing the constraints
in C in terms of model features. Features not specified in
any rule inC are not relevant to compute the utility of a
model, since there is no preference information about them
in the setC. Accordingly, we focus our attention onF (C).

We define the intermediate representation relative to an
enumerationV = (f1, . . . , fN) of F (C).

We define the languageLr(V) of intermediate rules in
terms of a languageL(V) of intermediate propositions over
the ternary alphabetΓ = {0, 1, ∗}.

A statement inL(V) consists of a sequence ofN letters
drawn from the alphabetΓ, so thatL(V) consists of words of
lengthN overΓ. For example, ifV = (f1, f2, f3), we have
∗10 ∈ L(V). Given a statementp ∈ L(V) and a feature
f ∈ F (C), we writef(p) for the value inΓ assigned tof in
p. In particular, iff = Vi, thenf(p) = pi.

An intermediate rule inLr(V) consists of a triplep � q in
which p, q ∈ L(V) have matching∗ values. That is,p � q
is in Lr(V) just in casepi = ∗ if and only if qi = ∗ for
all 1 ≤ i ≤ N . For example, ifV = (f1, f2, f3), Lr(V)
contains the expression∗10 � ∗00 but not the expression
∗10 � 0∗0. We refer to the statement inL(V) left of the
� symbol in a ruler as the left-hand side ofr, and denote
it LHS (r). We define right-hand sideRHS (r) analogously.
Thusp = LHS (p � q) andq = RHS (p � q).

We regard statements ofL(V) containing no∗ letters as
modelsof L(V), and writeM(V) to denote the set of all
such models. We say a modelm satisfiess, writtenm |= s,
just in casem assigns the same truth value to each feature
ass does for each non∗ feature ins. That is,m |= s iff
f(m) = f(s) for eachf ∈ F (C) such thatf(s) 6= ∗. For
example,0011 satisfies both∗0∗1 and00∗∗.

We project models inM to models inM(V) by a map-
ping α : M → M(V) defined, for eachm ∈ M and
f ∈ F (C), so thatf(α(m)) = 1 if f ∈ m andf(α(m)) = 0
if ¬f ∈ m. This projection induces an equivalence rela-
tion onM, and we write[m] to mean the set of models
in M mapped to the same model inM(V) asm, namely
[m] = {m′ ∈M | α(m′) = α(m)}.

We say that a pair of models(m,m′) of L(V) satisfies
a rule r in Lr(V), and write(m,m′) |= r, if m satisfies
LHS (r), m′ satisfiesRHS (r), and m,m′ have the same
value for those features represented by∗ in r, that is,mi =
m′

i for each1 ≤ i ≤ N such thatLHS (r)i = ∗. For exam-
ple,(100, 010) |= 10∗ � 01∗, but(101, 010) 6|= 10∗ � 01∗.

The meaning[r] of a ruler in Lr(V) is the set of all pref-
erence orders� overM such that for eachm,m′ ∈ M, if
(α(m), α(m′)) |= r, thenm � m′. The meaning of a set
R of rules consists of the set of preference orders consistent
with each rule in the set, that is,[R] =

⋂
r∈R[r]. Thus a rule

2

∗∗01 � ∗∗10 represents four specific preferences

0001 � 0010
0101 � 0110
1001 � 1010
1101 � 1110

Note that this says nothing at all about the preference rela-
tionship between,e.g., 0101 and 1010.

To use the intermediate representation, we must translate
setsC of ceteris paribusrules into setsR of intermediate
representation rules in a way that guarantees compatibility
of meaning in the sense that[R] ⊆ [C]. We do this as fol-
lows.

The translation involves considering models restricted to
subsets of features. We writeM[S] to denote the set of
models over a feature setS ⊆ F , so thatM = M[F].
If m ∈ M[S] andS′ ⊆ S , we writem � S′ to denote the
restrictionof m toS′, that is, the modelm′ ∈M[S′] assign-
ing the same values asm to all features inS′. We say that
a modelm ∈ M[S] satisfies a modelm′ ∈ M[S′], written
m |= m′ just in caseS′ ⊆ S andm′ = m � S′.

A set of rulesR of intermediate representation is com-
patible with a rulec = pc � qc in the ceteris paribusrep-
resentation of the previous section just in case[R] ⊆ [c].
If m1 �c m2, this means that for somer ∈ R we have
(m′

1,m
′
2) |= r, wherem1,m2 modelL, m′

1,m
′
2 model

L(V), such thatm1 ∈ [m′
1] andm2 ∈ [m′

2]. We give a
construction for such anr from an arbitraryp.

We first define thecharacteristic modelµ(p) of a state-
mentp in L(V) to be the model inM[s(p)] defined by

µ(p) = {f | f(p) = 1} ∪ {¬f | f(p) = 0}.
Note that form ∈ M we havem |= µ(α(m)), that is,
µ(α(m)) = m � F (C).

We translate a singleceteris paribusrule c ∈ Lr into a
set of intermediate representation rulesR by the support of
c. If c is of the formpc � qc, wherepc, qc are sentences in
L, then models that satisfypc ∧ ¬qc are preferred to models
that satisfy¬pc∧qc, other things being equal. For brevity, let
sc = s(pc∧¬qc)∪s(¬pc∧qc), so thatsc ⊆ F (C) is the set of
support features for each ruler ∈ R, and consider models in
M[sc]. LetWl be the set of such models satisfyingpc∧¬qc,
that is

Wl = {w ∈M[sc] | w |= pc ∧ ¬qc},
and defineWr as the corresponding set of models satisfying
the right-hand side,

Wr = {w ∈M[sc] | w |= ¬pc ∧ qc}.
We construct new setsW ′

l andW ′
r of statements inL(V)

from Wl andWr by augmenting each member and translat-
ing intoL(V). We define these new sets by

W ′
l = {w ∈ L(V) | (µ(w) � sc) ∈ Wl}

W ′
r = {w ∈ L(V) | (µ(w) � sc) ∈ Wr}.

Note that the members ofW ′
l andW ′

r are of length|F (C)|,
while those ofWl andWr are of size|sc|.

We now construct a set of rules inLr(V) to include a rule
for each pair of augmented statements, that is, a set

R = {w′
l � w′

r | w′
l ∈ W ′

l , w
′
r ∈ W ′

r}.

This completes the translation.
Consider a simple example. In the following, we assume

V = (f1,f2,f3,f4). A ceteris paribusrule might be of the
form f2∧¬f4�f3. This expresses the preference for models
satisfying

(f2 ∧ ¬f4) ∧ ¬f3

over models satisfying

¬(f2 ∧ ¬f4) ∧ f3

other things being equal. Notesc = {f2, f3, f4}. Then, fol-
lowing the above construction,Wl = {{f2,¬f3,¬f4}}, and
Wr = {{f2, f3, f4}, {¬f2, f3, f4}, {¬f2, f3,¬f4}}. In this
case we translate these into three intermediate representation
rules:

∗100 � ∗111
∗100 � ∗011
∗100 � ∗010

The above translation can be used to convert a setC of
ceteris paribusrules into a setC ′ of intermediate represen-
tation rules equivalent in the sense that both sets denote the
same set of preference orders[C] = [C ′]. Futhermore, this
translation from rules inLr to rules inLr(V) can be proven
correct, by reference to the defintions of the notations used
in each language. We omit the proof here because, although
the ideas are intuitively simple, the details are cumbersome.
A translation fromLr(V) toLr is also possible, and follows
in much the same way.

It is important to note that the richer languageLr allows
us to represent more complicated preferences than are possi-
ble inLr(V). Accordingly, the translation of a singleceteris
paribus rule might produce many intermediate representa-
tion rules.

Some direct utility functions
We now define several direct utility functions consistent with
a set of preferences in the intermediate representation. One
can use these to define utility functions over models inL by
composition with the model-projection mappingα. Specif-
ically, given a setC of preference rules and a translation of
C into a setC ′ of intermediate preference rules, one finds
the utility of a modelm ∈ M by computing the projection
α(m) ∈M(V) and using one of the functions defined in the
following, each of has the formu : M(V) → R.

To construct these utility functions, we use the rules inC ′

to define a directed graphG(C ′) overM(V), called amodel
graph, that represents the preferences expressed inC ′. Each
node in the graph represents one of the2N possible mod-
elsM(V). Algorithmic constructions can get by explicitly
representing only those nodes of the graph linked by edges,
which typically constitute a smaller subset.

The model graphG(C ′) contains an edgee(m1,m2) from
sourcem1 to sink m2 if and only if (m1,m2) |= r for
some ruler ∈ C ′. Each edge represents a preference for
the source over the sink. IfC ′ is consistent, thenG(C ′) is
acyclic; a cycle would indicate the inconsistency ofC ′. We
can determine whetherm is preferred tom′ by looking for
a path fromm to m′ in G(C ′). The existence of such a path
meansm � m′.

3

We define four utility functions over the model graph
G(C ′), as summarized in Table 2.

uM (“Minimizing”) longest outgoing path length
uD (“Descendant”) number of descendants
uX (“Maximizing”) longest incoming path length
uT (“Topological”) rank in topological-sort order

Table 2: Four model-graph utility functions

• uM , theminimizingutility function, setsuM (m) equal to
the number of nodes on the longest path originating from
m in G(C ′).

• uD, thedescendantutility function, setsuD(m) equal to
the total number of nodes on all paths originating fromm
in G(C ′).

• uX , the maximizingutility function, setsuX(m) equal
to the length of the longest path inG(C ′), denoted
max(G(C ′)), minus the number of nodes on the longest
path originating at any node other thanm and ending at
m in G(C ′).

• uT , the topological-sort utility function, setsuT (m)
equal to2N minus the rank ofm in the order obtained
by a topological sortT of G(C ′).

Each of the ordinal utility functions so defined has somewhat
different properties, particularly in how they assign values to
preferentially-unrelated modelsm1 andm2 such that neither
m1 � m2 or m2 � m1 according toC ′. The ordering
properties specified byC ′ say nothing about how to order
these, so we may order them as convenient. In particular,
a utility function u consistent withC ′ need notu(m1) =
u(m2), but instead can distinguish these utility values.

Before proving that these four types of functions represent
the stipulated preference orders, we illustrate the differences
among them by considering an example in which the rules in
C ′ are such that only the pairs of models related in Table 3
satisfy any rule inC ′. These orderings leave the relationship

m1 � m2

m3 � m4

m4 � m5

m4 � m6

Table 3: Orderings illustrating alternative utility functions

betweenm1 andm3 unspecified, as well as the relationship
between any of these models and some other modelm7. A
utility representation of these orderings may order these un-
related models in any way.

The idea that the distance between nodes in an acyclic
graph can indicate their relative utilities underlies the min-
imizing utility function uM . That function assigns the fol-
lowing values to the models in the example.

uM (m1) = 1 uM (m2) = 0 uM (m3) = 2
uM (m4) = 1 uM (m5) = 0 uM (m6) = 0
uM (m7) = 0

We call this utility function minimizing because it assigns
minimal (0) utility to models not explicitly preferred to other
models according to the preference set. Thus the modelm7,
about which no preferences were specified, is assigned the
value0.

The descendant utility function uses the relationships of
the example to assign the following utilities to models.

uD(m1) = 1 uD(m2) = 0 uD(m3) = 3
uD(m4) = 2 uD(m5) = 0 uD(m6) = 0
uD(m7) = 0

Descendant utility gives slightly higher values tom3 andm4

than minimizing utility, since the former counts all descen-
dants, while the latter counts only the longest path.

The maximizing utility function assigns the following val-
ues to the models of the example.

uX(m1) = 2 uX(m2) = 1 uX(m3) = 2
uX(m4) = 1 uX(m5) = 0 uX(m6) = 0
uX(m7) = 2

This function assignsuX(m7) = 2, the highest value among
those assigned, to the node about which the preferences pro-
vide no information.

In general, a directed graph admits more than one topo-
logical sort. Each topological sort utility function therefore
assigns values that depend on the ordering of nodes in some
specific topological sort. The following assignment of val-
ues reflects one possible topological sort of the models in the
example.

uT (m1) = 7 uT (m2) = 6 uT (m3) = 5
uT (m4) = 4 uT (m5) = 3 uT (m6) = 2
uT (m7) = 1

The class of topological sort utility functions thus illustrates
by itself the ability to vary utility assignments consistent
with the specificied preferences.

We now show that the minimizing and descendant utility
functions defined over model graphs accurately represent the
preferences defining the graphs. We state the corresponding
results for the maximizing and topological sort utility func-
tions, but omit the proofs here due to space limitations.

Theorem 1 The minimizing utility functionuM defined over
a model graphG(C ′) represents some preference order in
[C ′].

Proof. Let uM (m) be equal to the number of nodes on
the longest path originating fromm in G(C ′). ForuM to be
consistent withC ′ requires thatuM (m1) > uM (m2) when-
everm1 � m2 according toC ′. Choose a pairm1,m2 such
thatm1 � m2 according toC ′. By construction ofG(C ′),
there exists a path fromm1 to m2 in G(C ′). SinceG(C ′) is
acyclic, no part of the path fromm1 to m2 can be reached
from m2. This implies that the longest path originating at
m1 contains the longest path originating atm2, but not vice
versa. ThereforeuM (m1) > uM (m2). 2

Theorem 2 The descendant utility functionuD defined over
a model graphG(C ′) represents some preference order in
[C ′].

4

Proof. From the proof of Theorem 1, ifm1 � m2 ac-
cording toC ′, then by construction ofG(C ′) there exists
a path fromm1 to m2 in G(C ′). SinceG(C ′) is acyclic,
and m2 is on a path fromm1, thereforem1 has at least
one more descendent thanm2, namely, m2. Therefore
uD(m1) > uD(m2). 2

Theorem 3 The maximizing utility functionuX defined
over a model graphG(C ′) represents some preference or-
der in [C ′].

Proof omitted.

Theorem 4 Every topological-sort utility functionuT de-
fined over a model graphG(C ′) represents some preference
order in [C ′].

Proof omitted.

Complexity
The utility functions outlined in the previous section, while
conceptually simple, have worst-case complexity exponen-
tial in the number of relevant featuresN = |F (C)|.

As noted earlier, the model graphG(C ′) has2N nodes,
but this exponential size does not in itself imply exponential
cost in computing utility functions because the utility func-
tions derive from graph edges rather than graph nodes. The
descendant utility functionuD, for example, requires count-
ing the number of descendants of nodes, a number at worst
linear in the number of edges. The other utility functions
measure the number of ancestors, or the longest path from
or to a node. Clearly counting the number of ancestors is the
same computational burden as counting the number of de-
scendants. Computing the longest path originating at a node
and ending elsewhere has the same bound, since searching
all descendants can determine the longest path. Accordingly,
the number of edges in the model graph provides a basic
complexity measure for these utility computations.

In fact, a simple and familiar example shows that the
model graph can contain a number of edges exponential in
the size ofF (C). Suppose, for instance, thatF (C) consists
of four features and that the derived intermediate preference
rulesC ′ consist of those displayed in Table 4. These rules

∗∗∗1 � ∗∗∗0
∗∗10 � ∗∗01
∗100 � ∗011
1000 � 0111

Table 4: Lexicographic preference rules

order all models lexicographically in a in a complete linear
order, the same ordering we give models if we interpret them
as binary representations of the integers from 0 to 15. The
longest path throughG(C ′) has length2|F (C)|, so the num-
ber of edges is exponential in|C ′| = |F (C)|. One should
note that this example does not imply utility dependence
among the features, but it does imply that the preferences
over some features dominate the preferences over other fea-
tures. Moreover, the example does not show that derivation

of a utility function must take exponential time, because lex-
icographic utility functions can be expressed in much sim-
pler ways than counting path length. The true complexity of
this problem remains an open question.

In fact, one can trade computation cost between construc-
tion and evaluation of the utility function. The evaluation
of specific utility values can be reduced by significant pre-
processing in the function-construction stage. Clearly the
utility value of m ∈ M(V) could be cached at the cor-
responding node inG(C ′), using, for example, Dijkstra’s
all-paths algorithm. Alternatively, values for a smaller num-
ber of nodes might be cached. The computation of a util-
ity value could then proceed by traversingG(C ′) until each
branch of the search from the starting node reaches a node
with a cached utility value, and then computing the desired
node value from these cached values and the graph portion
traversed in reaching them.

For instance, one might compute a utility function akin
to the descendant utility function by keeping a static set of
nodes with cached utility values. If one findsk separate
branches of the search starting from a nodem and termi-
nating ink nodes with cached valuesu(mi) for i = 1,, k,
and traverses a total oft nodes along these branches, we as-
sign

u(m) = 1 + t +
k∑

i=1

u(mi).

This value can differ from the descendant utility value be-
cause two cached nodes might share some descendants.
Reducing evaluation cost from exponential levels can be
achieved by cutting the number of nodes searched be-
fore reaching cached nodes tolog(|G(C ′)|), but as the
lexicographic example shows, this can require caching
|G(C ′)|/ log |G(C ′)| nodes, implying an exponential level
of preprocessing cost.

Alternatively, one might calculate utility values by repeti-
tively computingG(C ′). One might do this by searching for
a path from a modelm0 by finding rules inr ∈ C ′ such that
(m0,m1) |= r, wherem1 is arbitrary. The proof of Theorem
1 implies that an edgee(m0,m1) in G(C ′) exists if and only
if there exists some(m0,m1) |= r for any r ∈ C ′. Thus,
searching the list of rules inC ′ for a pair(m0,m1) |= r for
somer ∈ C ′ is equivalent to following an edgee(m0,m1)
in G(C ′). Then one recursively looks for rulesr such that
(m1,m2) |= r, and then(m2,m3), and so on, such that the
search becomes a traversal of the graphG(C ′). Each branch
of the search terminates when(mk−1,mk) |= r for some
rule r ∈ C ′, but (mk,mk+1) 6|= s for all ruless in C. We
know that there exists a path fromm0 with lengthk; if k
is the length of the longest such path, one can then assign
u(m0) = k. Note that the heuristics presented by (Boutilier
et al. 1999) do not apply because our preference rules are of
a quite different form, as seen in Table 4.

Improvements
Elsewhere we improve on the performance of these direct
constructions of utility functions by usingutility indepen-
denceto decompose the utility-construction task into a prob-

5

lem of finding an appropriate combination of subutility func-
tions. We provide methods for partitioning the set of features
into clusters that are mutually utility-independent. We use
the direct utility function constructions described in the pre-
ceding to construct subutility functions over each of these
clusters. We then use the initialceteris paribusstatements
to identify constraints on the relations of these subutility
function values, and apply standard constraint-satisfaction
methods to determine subfunction-combination parameters
that yield overall utility functions satisfying the givenceteris
paribusrules.

Related work
Many researchers have defined related logics of desire
(van der Torre & Weydert 1998; Mura & Shoham 1999;
Shoham 1997) orceteris paribuspreference (Tan & Pearl
1994a; 1994b; Bacchus & Grove 1996; 1995; Boutilieret
al. 1999).

Bacchus and Grove (1995; 1996) have presented a some-
what different conception ofceteris paribuspreference
specification that incorporates numerical representations
from the start and algorithms for computing with it. Similar
to La Mura and Shoham (1999), their computation paradigm
is an adaptation of Bayesian Networks to utility. Both sys-
tems start with probabilistic actions with known probabili-
ties and outcomes with known numeric utility values, and
then discuss optimizations resulting from utility indepen-
dence.

Tan and Pearl (1994a; 1994b) use conditionalceteris
paribus comparatives in a manner similar to theceteris
paribuspreferences used in this work. Their work does not
address computation, instead concentrating on specificity
of preferences and when one preference supersedes another
preference.

Boutilier et al. (1999; 1997), also propose a system of
conditional ceteris paribuspreference statements. They
construct a chain of “flipping feature values” to conduct
dominance queries similar in spirit to the algorithm pro-
posed here. Theceteris paribuspreference representation
they employ is quite different from that of (Doyle, Shoham,
& Wellman 1991), and the methods of (Boutilieret al. 1999)
are not directly applicable to constructing utility functions.

References
Bacchus, F., and Grove, A. 1995. Graphical models
for preference and utility. InProceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, 3–19.
Morgan Kaufmann.
Bacchus, F., and Grove, A. 1996. Utility independence in a
qualitative decision theory. InProceedings of the Fifth In-
ternational Conference on Knowledge Representation and
Reasoning, 542–552. Morgan Kaufmann.
Boutilier, C.; Brafman, R.; Geib, C.; and Poole, D. 1997.
A constraint-based approach to preference elicitation and
decision making. In Doyle, J., and Thomason, R. H., eds.,
Working Papers of the AAAI Spring Symposium on Qualita-
tive Preferences in Deliberation and Practical Reasoning,
19–28. Menlo Park, California: AAAI.

Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. InProceedings of Uncertainty in Artificial
Intelligence 1999 (UAI-99).
Doyle, J., and Wellman, M. P. 1994. Representing pref-
erences asceteris paribuscomparatives. InWorking Notes
of the AAAI Symposium on Decision-Theoretic Planning.
AAAI.
Doyle, J.; Shoham, Y.; and Wellman, M. P. 1991. A logic
of relative desire (preliminary report). In Ras, Z., ed.,Pro-
ceedings of the Sixth International Symposium on Method-
ologies for Intelligent Systems, Lecture Notes in Computer
Science. Berlin: Springer-Verlag.
Mura, P. L., and Shoham, Y. 1999. Expected utility net-
works. InProc. of 15th conference on Uncertainty in Arti-
ficial Intelligence, 366–373.
Shoham, Y. 1997. A mechanism for reasoning about util-
ities (and probabilities): Preliminary report. In Doyle, J.,
and Thomason, R. H., eds.,Working Papers of the AAAI
Spring Symposium on Qualitative Preferences in Deliber-
ation and Practical Reasoning, 85–93. Menlo Park, Cali-
fornia: AAAI.
Tan, S.-W., and Pearl, J. 1994a. Qualitative decision theory.
In AAAI94. Menlo Park, CA: AAAI Press.
Tan, S.-W., and Pearl, J. 1994b. Specification and eval-
uation of preferences for planning under uncertainty. In
Doyle, J.; Sandewall, E.; and Torasso, P., eds.,KR94. San
Francisco, CA: Morgan Kaufmann.
van der Torre, L., and Weydert, E. 1998. Goals, desires,
utilities and preferences. InProceedings of the ECAI’98
Workshop on Decision Theory meets Artificial Intelligence.
Wellman, M. P., and Doyle, J. 1991. Preferential semantics
for goals. InNational Conference on Artificial Intelligence,
698–703.

6

