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Abstract

We examine several formulations of the common practice of jumping to conclusions when actions demand decisions
but solid knowledge fails. This practice permeates artificial intelligence, where systems assume many conclusions
automatically as defaults simply because the questions they decide are known to occur frequently, and where other
assumptions are formulated and adopted only when ignorance stalls action. After developing the motivations and
general nature of these inferences, we introduce a formal basis for describing them. This formulation allows separate
introduction of the several ideas involved, and so facilitates characterization of some important combinations and
some previous proposals. Initial results are proved about these theories, including the aptness of the formal notions
with respect to the intuitive motivations. Benefits of this formulation include an indication of the ways notions from
logic and metamathematics can enter into psychologies without subscribing to all of logic or metamathematics,
an indication of the importance of conservation of mental states in the description of psychologies, and formal
and intuitive relations between the approach of reasoned assumptions and its popular alternatives, deductivism and
Bayesianism.
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Note to the Reader

To keep this paper to a reasonable length, I assume some mathematical sophistication and acquaintance.
Passage of time will, I hope, permit a more relaxed and thorough development. The symbols used are collected and
glossed at the end of the paper. The headings DEFINITION, THEOREM, COROLLARY, LEMMA , and CONJECTURE

serve their usual purposes, and are numbered in a single sequence. Some proofs have been omitted. The heading
QUESTION often indicates an issue calling for proper formulation rather than a simple answer.
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Meditation

Ging heut morgens̈ubers Feld,
Tau noch auf den Gräsern hing;
Sprach zu mir der lustge Fink:

”
Ei, du! Gelt? Guten Morgen! Ei gelt? Du!

Wird’s nicht eine scḧone Welt? scḧone Welt!?
Zink! Zink! schön und flink!
Wie mir doch die Welt gef̈allt!“

Auch die Glockenblum am Feld
Hat mir lustig, guter Ding
Mit dem Glöckchen kling, kling,
Ihren Morgengruss geschellt:

”
Wird’s nicht eine scḧone Welt? scḧone Welt!?

Kling! Kling! Schönes Ding!
Wie mir doch die Welt gef̈allt! Hei—a!“

Und da fing im Sonnenschein
Gleich die Welt zu funkeln an;
Alles, alles, Ton und Farbe gewann in Sonnenschein!
Blum und Vogel, gross und klein!
Guten Tag, guten Tag! Ist’s nicht eine schöne Welt?
Ei du! Gelt? Scḧone Welt!?

Nun fängt auch mein Glück wohl an?!
Nein! Nein! Das ich mein, mir nimmer blühen kann!

G. Mahler,Lieder eines fahrenden Gesellen

L’adoration de la terre;
Le sacrifice

I. Stravinsky,Le Sacre du Printemps

Ich will nur dir zu Ehren leben,
Mein Heiland, gib mir Kraft und Mut,
Dass es mein Herz recht eifrig tut.
Sẗarke mich, deine Gnade würdiglich und mit Danken zu erheben.

J. S. Bach,Weihnachts-Oratorium
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I. Introduction

§1. Recently, increasing attention has been directed toward problems of providing mathematical formulations and
semantics for some of the inferential systems developed in informal, practical terms within artificial intelligence.
The mathematical approach has seldom been popular, for except in rare cases like the treatise of MINSKY and
PAPERTon perceptrons,1 mathematical formulations have lacked force, have seemed mere importation of formalism
without true understanding of the important problems to be addressed. Artificial intelligence has long been a field
for formulation, where ubiquitous problems have defied stable statements.2 In this setting it is natural that outsiders
experience difficulties in looking for important problems, since the set changes with every observation! Fortunately,
circumstances change, and the field has begun to develop its own mathematical formulations of some of these
recognized but poorly articulated problems. These formulations may not yet be as comprehensive or compelling as
those underlying the exact sciences, but they easily support optimism for more satisfying replacements in the near
future.

§2. Our subject here is a reexamination of several proposals concerning the mathematical formulation of cer-
tain non-deductive inference patterns common in artificial intelligence. Artificial intelligence systems draw many
logically peculiar conclusions, and the question has been raised of whether there are coherent patterns among and ju-
stifications for these conclusions. Traditionally the nature of these non-deductive inferences has been hidden behind
the slogan “heuristic,” but realization of the widespread use of particular patterns has prompted their formulation and
explication as important problems for the field. With the works of MCDERMOTT, REITER, MCCARTHY and others
advances have been made, but deficiencies in understanding persist. Motivationally, these efforts articulate some of
the intuitions underlying the field’s practice, but apparently not well enough to communicate these intuitions and
their significance to some inside and many outside the field. Formally, these proposals exhibit some similiarities
so that they all seem to approximate a single answer to a single problem, but they differ widely in detail, and no
exact characterization of their differences or individual powers has been given. My purpose here is to pursue of the
common project of these proposals by summarizing and extending the motivations underlying the subject inference
patterns. I present a common mathematical basis in which I analyze, compare, and extend the previous proposals.
Hopefully this effort will benefit several audiences: artificial intelligence theoreticians and practitioners interested
in better understanding their systems of study, mathematicians and philosophers interested in the formalization and
motivations of these novel inferential systems, and theoretical computer scientists interested in computational que-
stions arising in artificial intelligence.

Briefly, the problem is to formulate the common practice of jumping to conclusions when actions demand
decisions but solid knowledge fails. This practice permeates artificial intelligence systems, where some assumpti-
ons are formulated and adopted only when ignorance stalls action, and where other conclusions are automatically
assumed as defaults simply because the questions they decide are known to occur frequently.

1[M INSKY AND PAPERT 1969]
2Compare [MINSKY 1962].
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II. A Problem, an Approach, and a Solution

§3. Life calls for action, and to act we must decide what to do in ignorance of our true circumstances, capabilities,
and their consequences. We may decide using information about the consequences of our actions in our circumstan-
ces, but are our imagined circumstances our actual ones? Will the actions we perform be the ones we attempt? Will
unforeseen interferences prevent the expected consequences?

The skeptical challenge to the possibility of accurate knowledge of the world has never taken lives; neither
does it halt work in artificial intelligence. One does the best one can. To do so, however, one must be able to admit
and correct one’s errors, and this consideration influences the design of artificial agents as well as the conduct of life.
But in artificial intelligence, incompleteness of information looms larger than inaccuracy. Certainly to admit error
requires one to judge oneself ignorant in the past, but in principle, as in politics, it still allows one to maintain an
opinion on every subject and to assert correctness of all one’scurrentopinions. Nevertheless, there are several severe
obstacles to designing agents whose information about the world is complete, even if inaccurate. The first obstacle
is that apparently accurate complete axiomatizations of the world may not exist. As in arithmetic, we may be able
to state our basic premises, prove their incompleteness, and convince ourselves that any completion we attempt will
involve inconsistencies. Since we expect error anyway, this need not be a strong deterrent, but it does suggest that
completion for its own sake is unwarranted. The second obstacle, one far more serious, is the feasibility of using
complete information even if we attain it. Present-day computation is recursive computation, and an undecidable
complete axiomatization is no better than an incomplete axiomatization. Worse still, even decidable theories may
be intractable, for short theorems may have very long shortest proofs, and answering single questions may involve
exploring very many potential proofs. Since time will not stand still while the agent attempts to compute the answers
it needs, theoretical completeness of the agent’s information can be a practical fraud.3 The third obstacle is simple
unavailability of complete axiomatizations of the world. Even looking to the sciences, one finds searches for new
laws to fill old gaps, and artificial intelligence has spawned an entire discipline devoted simply to elicting all the
facts about the world employed by experts but unseen in the literature. It seems methodologically unwise to postpone
work on artificial intelligence until science completes its inquiry, unless one does not want artificial agents at all.

§4. If we accept the challenge of acting without complete information, we must adopt some approach which
allows both cognizance of incompletenesses and means for overcoming them. To act without awareness of one’s
clear limitations is blind stupidity, yet ignorance need not paralyze either. One approach out of several possible
approaches has dominated work in artificial intelligence, and this is the practice of jumping to conclusions. Many of
the beliefs assumed by default or for heuristic value in mechanized agents are cases of what WILLIAM JAMES called
the “will to believe.”4 JAMES was, like PASCAL before him,5 concerned primarily with questions of momentous,
eternal import rather than the questions of mundane, temporal expediency common in routine thought and action, but
the idea is the same. One judges, either at the moment or in advance, that it is better to adopt a stance on some issue
and risk error than to take no stance at all. The position taken need not be precedential, for along with recognition
of the possibility of error, we may also recognize that other or later circumstances raising similar questions may be
decided differently. In TUKEY ’ S phrase, we often decide to act for the time being as if something were the case,
rather than simply deciding something is the case.6 But precedential or not, the approach of adopting stances carries
with it a commitment to correcting mistakes when they come to light. As JAMES puts it, we might resolve toBelieve
Truth! and toShun Error!, but the preceding suggests the latter resolve is best realized as conscientious correction
rather than intellectual cowardice.

The approach of jumping to conclusions finds many followers in artificial intelligence, but in other dis-
ciplines studying intelligent action other approaches attract the most attention. Of these, the most influential is

3The importance of computational feasibility in artificial intelligence is easily underestimated. See [MINSKY 1963], [MINSKY AND PAPERT

1969], [MINSKY 1975,APPENDIX], [RABIN 1974] and [GAREY AND JOHNSON1979] for illuminating discussions of this issue.
4[JAMES 1897]
5[PASCAL 1662]
6[TUKEY 1960]
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subjective Bayesian decision theory.7 There is much to be said about this alternative, but now is not our time to do
so. For the moment, our task is laying out the motivations, nature, and formalizations of jumping to conclusions as
it is practiced in artificial intelligence. Later we adduce some connections of this approach with subjective Bayesian
decision theory which may illuminate their respective computational conveniences and difficulties.

§5. Once we decide to face the problem of incomplete information by deliberately adopting stances when necessary,
we must also face subsidiary problems: how can we tell when we should jump to conclusions, and which ones
we should settle on? Once again, the practice of artificial intelligence supplies an approach to these problems,
although possibly not the only or best one. This approach usesratiocinative rules of thumbto guide the adoption
of assumptions. These rules state which sorts of circumstances call for making assumptions, which assumption to
try first, and when and how to revise one’s opinion to other assumptions. That is, ratiocinative rules of thumb serve
three functions: to enforce anti-agnosticism when appropriate, to indicate a sequence in which alternatives should
be tried, and to recognize circumstances which might call into question one or more of the alternatives. These rules
are often embodied as general or schematic “defaults” used in drawing conclusions, rules tolerant of exceptions in
that specific conclusions are defeasible on a case-by-case basis without affecting the operation of the general rule
itself.8 For example, one might decide to believe that ordinarily, every bird can fly. This decision might be carried
out by a ratiocinative rule of thumb which infers of each individual bird considered that it can fly. This rule would
continue to make such assumptions about newly considered birds even after particular flightless birds are recognized
and their corresponding assumptions abandoned.

§6. Ratiocinative rules of thumb form an approach, but in the absence of precise criteria for their application and
interpretation are not themselves a solution to the problem of adopting assumptions. These rules guide inferences,
but are not inference rules in the usual logical sense, since questions of soundness do not enter into the discussion.
The point of the rules is, after all, to be unsound, to draw conclusions not strictly entailed by their grounds. We
propose a solution based on interpreting these rules of thumb as expressions ofratiocinative desires, regarding
actions of jumping to conclusions as actions satisfying the ratiocinative desires. In these terms we can cast the anti-
agnostic, sequencing, and defeasibility functions of ratiocinative rules of thumb as components of the following
“syllogism.”

7See, for example, [SAVAGE 1972], [LEVI 1967], and [LUCE AND RAIFFA 1957].
8Widespread use of the term “default” follows MINSKY ’ S influential discussion in [MINSKY 1975]. [REITER 1978] identifies a variety of

appearances of this notion in the practice of artificial intelligence.
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I am in circumstancesA.

When I am in circumstancesA, I prefer being decided aboutQ to being undecided about
Q.

When I am in circumstancesA and am undecided aboutQ, I prefer adopting standC to
adopting standB.

Therefore, I should adopt standC.

We combine and abbreviate the two implicative components of such syllogisms in rules written as

A \\ B ‖− C,

rules read as “A without B givesC” and informally interpreted as “ifA obtains, andB does not, then adoptC.”
These rules are calledreasonsfor their conclusions, and the conclusions drawn are calledreasoned assumptions.
This terminology diverges somewhat from standard usage, in which one calls the premises of the inference the
reasons for the conclusion. We always refer to the premises as premises, hypotheses, antecedents, presuppositions,
etc., and reserve the term reason for the inference step that connects premises with conclusions. We do not insist
on particular forms for what may enter into these rules; as well as logical statements of conditions, other sorts of
mental components can be accommodated, as detailed in the following formal treatment.

We base our interpretations of these encapsulated syllogisms on maximization of the utility of mental
states. Utility maximization has, with some justification, gained a bad name as a descriptive theory of human beha-
vior, but our purpose here is supplying normative theories where none exist, rather than attempting to accommodate
logic to the behavior of some species of agent. Indeed, as we see later, many of the maximizations of interest are
all small, independent, local decisions, easily implemented and suffering from few of the difficulties arising in the
more comprehensive maximizations of subjective Bayesian decision theory. As is familiar from classical decision
theory, there may be several distinct interpretations of maximal utility. Moreover, ratiocinative rules of thumb can
conflict on cases. We hold all desires to be incomparable without“higher-level” desires which recommend satisfying
one ratiocinative desire before another. This means we seek ways to live with conflicts rather than insist on their
resolution, and that maximixing utility involves maximizing the set of ratiocinative desires satisfied by mental states.
For example, suppose we choose to employ the two general rules

∀x [Republican(x) \\ Pacifist(x) ‖− ¬Pacifist(x)]

and
∀x [Quaker(x) \\ ¬Pacifist(x) ‖− Pacifist(x)] .

The first of these says that Republicans should be assumed to be non-pacifists unless known to be pacifists. The
second says that Quakers should be assumed to be pacifists unless known to be otherwise. When we learn that
Richard Nixon is both Republican and Quaker, we can instantiate these general rules to the specific cases

Republican(Nixon) \\ Pacifist(Nixon) ‖− ¬Pacifist(Nixon)

and
Quaker(Nixon) \\ ¬Pacifist(Nixon) ‖− Pacifist(Nixon).

We cannot honor both preferences at once, so if we look to satisfy as many preferences as possible, we find two
alternative coherent sets of assumptions: believing Nixon a Republican Quaker pacifist, and believing him a Repu-
blican Quaker non-pacifist. Thus in accord with the interpretation of reasons as desires, we adopt a stand by picking
one of these coherent sets as our set of assumptions or beliefs.

Some might find it more reasonable to suspend judgement in cases of conflicting preferences, but under
our interpretation that is a poor solution to the difficulty. In adopting these reasons, we have stated our preferences,
and with no further information it is needlessly irrational to forgo all satisfactions simply because a trade-off is
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involved. If the decision were between consuming equally attractive donuts and bagels when there is money to
purchase only one, few would counsel starvation. Nevertheless, behind the apparent questionableness of the above
decisions lies an important point. Just as we may wish to state rules about whennot to be agostic, we may also
wish to state rules about whento beagnostic, and these may refer to otherwise conflicting preferences like those
in the example. Toward this end we introduce the notion ofdefeasible reasons. Defeasible reasons allow inferences
that can be defeated as a whole, rather than by simply challenging one of the particular presuppositions of the
inference. One can encode defeasible reasons in reasons of the above form by introducing explicitly self-referential
presuppositions (e.g.R = “A \\ B or R defeated‖− C ′′), but it is more elegant to simply interpretall reasons
as containing a uniform presupposition of lack of challenges. With this modification to the interpretation, we can
continue to base the interpretation on utility maximization while permitting rules of agnosticism.

§7. This solution to the problem of adopting assumptions raises but does not address several subsidary problems.
The first of these concerns the origins and justifications of those ratiocinative rules of thumb with which we choose
to endow an agent or which an agent adopts of its own accord. There are several motivations for certain sorts of rules
of thumb that immediately suggest themselves, and there may be more as well. The first motivation is the classical
notion of statistical likelihood, where we might choose a rule of thumb because it calls for adopting the likeliest
alternative. Another motivation is typicality, in which reasons specify the typical conclusion. Typicality might be
the same as statistical likelihood, but there are ways of viewing it as a different notion. Another consideration in
adopting a rule of thumb is the safety of error and ease of correction, that is, whether disastrous consequences follow
from errors, and if not, whether the undesired consequences can be simply remedied. Finally, the weakest motivation
is simple pragmatic utility, which often goes by the name of heuristic in artificial intelligence. In this case, one might
adopt a ratiocinative rule of thumb simply because one is more successful by doing so.

We propose no procedure for adopting ratiocinative rules of thumb, except for those which are themselves
reasoned assumptions. Instead, we separate the issues of formulating, motivating, and adopting ratiocinative rules of
thumb from the issue of interpreting them once adopted. The questions of formulation and motivation of these rules
of thumb arise in other terms in the study of induction, learning, and philosophy of science, and we defer discussion
to that literature.9

§8. A second subsidiary problem raised by adopting assumptions is that of how to revise mistaken assumptions,
of how to honor the commitment to correcting errors as they are discovered. Freshly perceived information can con-
tradict previous beliefs, deductive inferences can bring hidden inconsistencies to light, and one sometimes decides
to abandon or avoid certain attitudes because they prove embarrassing or endanger mental stability. While some
humans seem happy to hide their conflicting attitudes from themselves, some consciously endure their conflicts, and
some die, the usual response to this problem is to give something up, either the new information or previous attitudes,
in everyday life as well as in philosophy and artificial intelligence. But prudence counsels care in abandoning one’s
attitudes. Their acquisition takes time and effort, and they should not be abandoned needlessly. This conservative
stance has been taken repeatedly in philosophy and in artificial intelligence. QUINE christens it the “maxim of mini-
mum mutilation,” that is, when changes are necessary, one makes as small a change as possible.10 Less articulately,
artificial intelligence practice exhibits this principle in many forms, with systems of differing levels of sophistication
employing varying degrees of minimality and effectiveness in revising their attitudes. We pursue this idea as the no-
tion of conservationof mental state, where conservation is equivalent in all but connotation to minimal mutilation. (I
prefer the term conservatism to minimal mutilation, for I would rather be called a conservative or non-conservative
than a mutilator of any degree.) Thus we view acceptable revisions of mental states to be the changes that in one
way or other remedy the difficulty while preserving as much of the previous state as possible. We develop this topic
formally in its own right elsewhere, as it appears many techniques from the practice of artificial intelligence can
be conveniently described in these terms, with many concrete measures of “amount of change” characterizing the

9See [MINSKY 1963], [GOODMAN 1973], [QUINE AND ULLIAN 1978], [DACEY 1978], and [LEVI 1980].
10[QUINE 1970]
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various practical systems. One class of systems, the so-called reason maintenance systems, minimizes the set of
changed reasoned assumptions (see§46), but investigation of more refined measures is just beginning.
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III. Formal Theories of Reasoned Assumptions

§9. This chapter formalizes the intuitive notions, approaches, and solutions of the preceding. The principal
problem in specifying interpretations of reasons is how they may be aggregated in spite of conflicts, and we formalize
this as the problem of defining theadmissible statesof the agent holding the reasons. These admissible states
constitute the “coherent” sets of interdependent reasoned assumptions sanctioned by the agent’s reasons. Our method
in formalization is to construct the set of admissible states from various assumptions about the constitution of the
agent. Different theories of reasoned assumptions arise through the different constitutive assumptions we make (not
to be confused with the reasoned assumptions made by the agent) about the agent’s composition, the interpretation
of individual reasons, and the aggregation of reasons and assumptions. Our first theories concern only the static side
of the agent, but later we consider further constitutive assumptions about conservatism of the agent’s state changes,
and so arrive at evolutionary theories of reasoned assumptions.

§10. We first suppose that there is a domainD of formal or structural elements such that each possible mental state
of the agent can be decomposed into elements ofD. Since we are concerned only with the structure of states vis-à-
vis reasoned assumptions, we make no suppositions about the specific composition ofD. Examples of domains from
artificial intelligence include the set of all sentences in some logical language, the set of all LISP data-structures (S-
expressions), and the set of all “mental agents” in MINSKY and PAPERT’ S society of mind.11 As the latter example
shows, we do not require thatD has grammatical structure or is completely representational, and as the former
examples show, “languages of thought” are acceptable as well. The set of admissible statesS is thus a subset of the
set of all sets of mental components: in other words,S ⊆ PD.

§11. Though we need make no suppositions about the nature of the arbitrary mental component, our second
constitutive assumption is that some mental components can be interpreted as reasons, as specifications for the
composition of the states in which the components occur. Formally, we assume an interpretation functionI : D →
P PD which indicates the sets of components each component sanctions, so that a setS ⊆ D satisfies its component
specifications just in caseS ∈ I(d) for eachd ∈ S. We define the class ofcomponent-admissible setsQ ⊆ PD to
be those sets satisfying all their components, that is,

Q = {S ⊆ D | S ∈
⋂
d∈S

I(d)}.

Formalizing the notion of reasons as state specifications in this way involves several simplifications. First, rather
than distinguish only some state components as reasons and leave the rest uninterpreted, we interpret every state
component and give each non-reasond ∈ D the trivial interpretationI(d) = PD that sanctions all potential
states. Second, we interpret reasons as predicates of all sets of components rather than only as predicates of the
admissible states, that is, to be subsets ofPD rather than subsets ofS . This simplification is innocuous since we
can always take the interpretation of every element to exclude all inadmissible sets. Third, we take the interpretation
of components to be independent of the state containing the component. While the theories examined in this paper
can all be captured within this limitation, we elsewhere consider ideas from artificial intelligence better suited by
state-dependent interpretations which replaceI : D → P PD with I ′ : D × PD → P PD andQ with Q′ =
{S ⊆ D | S

⋂
d∈S I ′(d, S)}. Finally, our fourth simplification is that each state component embodies at most one

reason. The extension to multiple reasons is trivial, since conjoined specifications are interpreted by intersecting
their interpretations.

11[M INSKY 1980]
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§12. Our third constitutive assumption is that all admissible states are component-admissible but that certain
combinations of state components can never occur in admissible states even if they occur in some component-
admissible states, or formally, that we can stipulate the set of admissible statesS to be some subset ofQ, i.e.
S ⊆ Q. For example, if components are sentences of a logical language, we might require every admissible state
to be deductively closed or to be consistent, even if none of its component sentences express non-trivial reasons.
We introduce such general restrictions on the set of admissible states because interpreted components alone cannot
express all interesting restrictions. Actually, nonemptiness of admissible states is the only restriction inexpressible
by components alone, for though∅ is always component-admissible (it having no elements to rule otherwise), we
can always replaceI by I ′, defined so that for alld ∈ D, I ′(d) = S , in which caseQ = S ∪ {∅}.

In many cases of interest, as in the examples of deductive closure, consistency, and nonemptiness above,
it is possible to decompose the specification ofS into the component restrictions and a general restriction on all
sets. That is, one way of specifyingS ⊆ Q is to stipulate a general restriction on statesR ⊆ PD and define

S = Q∩R = {S ∈ R | S ∈
⋂
d∈S

I(d)}.

SinceS ⊆ Q, we can always takeR = S when there is no independently interesting definition ofR. If S = R,
then the component interpretations add nothing to the general restriction. In particular, this circumstance holds whe-
never all component interpretations are trivial. On the other hand, ifR = PD, then there are no general restrictions,
and any restrictions on admissible states must be explicit in the states themselves. This circumstance recalls the cur-
rent efforts in artificial intelligence towards constructing completely “self-descriptive” machines.12 In the theories
to follow, we will defineS either directly or in terms ofR as convenient.

§13. While the notion of admissible state captures an idea of states which specify their own structure, it says
nothing about any form of inference. We introduce the idea ofadmissible extensionas a formalization of the sets
of conclusions or reasoned assumptions permitted within the structure of the agent’s states. Just as the specification
of admissible states involved both “local” (I) and “global” (S or R) restrictions, so also does the definition of
admissible extension.

If S ⊆ D we defineExts(S), the set ofextensions ofor states extendingS, to be the admissible states
includingS as a subset, or formally,

Exts(S) = {E ∈ S | S ⊆ E}.
If E ∈ Exts(S), we also writeS C E. Extensions are defined in the same way for all theories of reasoned assump-
tions.

Just as the “psycho-logic” of mental states interprets (viaI) each state component as a restriction on the
states in which it can occur, we also interpret components as restrictions on the ways they can be derived or occur
in admissible extensions. That is, we assume a functionJ : D×PD → P PD that interprets each state component
to find the extensions it sanctions for various sets of components. We defineQExts(S), thecomponent-admissible
extensionsof a setS ⊆ D, by

QExts(S) = {E ∈ Exts(S) | E ∈
⋂

d∈E

J (d, S)}.

That is,E is a component-admissible extension ofS just in case each element ofE approves (viaJ ) of the way
it occurs inE relative toS. The admissible extensionsAExts(S) are stipulated as a subset of the component-
admissible extensions, or formally,AExts(S) ⊆ QExts(S) ⊆ Exts(S). If E ∈ AExts(S), we also writeS C· E.

Putting all these definitions together, we say that each choice of(D, I,S ,J ,C· ) (or alternatively, each
choice of(D, I,R,J ,C· )) describes the states and inferential structure of anautological agent. This appelation is
meant to recall the ways the agent’s constituents talk about their roles in the “logic” of the agent’s states.

12[M INSKY 1965], [DOYLE 1980], [WEYHRAUCH 1980], [FRISCH AND ALLEN 1982], [SMITH 1982]
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§14. Merely having structures for admissible states and admissible extensions does not in itself support use of the
term “logic,” but we introduce a notion of psychological entailment to excuse this abuse of standard terminology.
Let (D, I,S ,J ,C· ) describe an autological agent. IfA,B, S ⊆ D, we say thatA psychologically entailsB in S
(within the agent’s psychology), writtenA ‖=S B, iff B ⊆ E wheneverA ⊆ E andE ∈ AExts(S).

(14.1) THEOREM. A ‖=S B for everyA,B ⊆ D iff AExts(S) = ∅ or AExts(S) = {D}.

PROOF. Clearly, ifAExts(S) is ∅ or {D}, thenA ‖=S B for everyA,B ⊆ D, so supposeA ‖=S B for every
A,B ⊆ D andAExts(S) 6= ∅. Let E ∈ AExts(S). Then by hypothesis,∅ ‖=S D, and since∅ ⊆ E, we must have
D ⊆ E, henceD = E.

A more specific notion plays a prominent role in the subsequent development where we say thatd ∈ D is inevitable
in S to mean thatd ∈ E wheneverE ∈ AExts(S), that∅ ‖=S {d}.

We introduced the notion of admissible extension to capture the notion of inference within the agent’s
psychology, but unfortunately, the correspondence between inference and entailment so important in mathematical
logic does not obtain in the general psychology. We say thatB is arguable fromA in S, writtenA |∼S B, iff there
is someE ∈ AExts(S ∪A) such thatB ⊆ E.

(14.2) THEOREM. If A |∼S B for everyA,B ⊆ D, thenS C· D.

PROOF. SupposeA |∼S B for everyA,B ⊆ D. Then in particular,∅ |∼S D, so there is someE ∈ AExts(S)
such thatD ⊆ E, henceD = E andS C· D.

We say thatd ∈ D is arguablein S iff there is someE ∈ AExts(S) such thatd ∈ E, in other words,∅ |∼S {d}.

(14.3) COROLLARY. If A ⊆ S, thenA ‖=S B iff ∅ ‖=S B, andA |∼S B iff ∅ |∼S B.

The divergence between arguability and inevitability is seen more clearly in the particular subsequent theories.
Indeed, the point of theories of reasoned assumptions is to set out the coherent sets of assumptions sanctioned by
some set of reasons, and when there are several possible coherent sets of assumptions one hasA |∼S B but not
A ‖=S B, a reflection of the intended “unsoundness” of this sort of psychological inference.

§15. Even among the “unsound” conclusions sanctioned as reasoned assumptions, some conclusions are more
sound than others. IfE,E′ ∈ AExts(S) are such thatE is a proper subset ofE′, then those conclusions inE′

but not inE are, in a sense, less sound than need be. Expedience might force jumping to conclusions, but it need
not force profligacy. To avoid unnecessary unsoundness, we introduce the notion ofstrict arguability, arguability in
minimal admissible extensions.

(15.1) DEFINITION. If X is a set of sets, the minimization ofX, µX, is given byµX = {x ∈ X | ∀y ∈ X y ⊆
x⊃x ⊆ y}. If f is a set functionf : X → PY , then the minimization off is a functionµf : X → PY such that
for eachx ∈ X

(µf)(x) = µ(f(x)) = {y ∈ f(x) | ∀y′ ∈ f(x) y′ ⊆ y⊃ y ⊆ y′}.

Take care to note thatµ finds the minimal elements of sets, not the minimums of sets, so thatµf(x) = ∅ if f(x) = ∅.
Note also thatµX can be empty even whenX is not if X contains an infinite descending chain of sets. This will not
happen in most of the theories we consider. One set function isAExts : PD → PS , and its minimization under
set inclusion, writtenµAExts, is defined for allS ⊆ D by

µAExts(S) = {E ∈ AExts(S) | ∀E′ ∈ AExts(S) E′ ⊆ E ⊃E ⊆ E′}.

While this definition of minimization is specific to set inclusion, we elsewhere treat these ideas in a more general
setting by replacing set inclusion with more specific notions of relative information content. In that treatment,µ
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means minimization with respect to a quasi-orderv onPD refined by⊆, that is, an orderv such thatx v y implies
x ⊆ y but not necessarily vice versa.

With the definition of minimization, we say thatB is strictly arguable fromA in S, writtenAµ|∼S B, iff
there is someE ∈ µAExts(S ∪ A) such thatB ⊆ E. In this way, strict arguability corresponds to arguability with
as few assumptions as possible. Note that ifµAExts = AExts the two versions of arguability coincide.

Corresponding to the notion of strict arguability in an agent, we also have the notion of minimal psycho-
logical entailment, psychological entailment in minimal admissible extensions. Specifically, we sayA minimally
psychologically entailsB in S, written Aµ ‖=S B, iff B ⊆ E wheneverA ⊆ E andE ∈ µAExts(S). Since
µAExts(S) ⊆ AExts(S), it is clear thatAµ‖=S B wheneverA ‖=S B. Unlike strict arguability, minimal psycho-
logical entailment does not play a significant role in the following theories of reasoned assumptions. It is discussed
in more detail in§51 along with the logical notion of circumscription.

§16. Several other inferential relationships are also worth naming. Letd, e ∈ D andS ⊆ D. We sayd ande are
cotenablein S if there is someE ∈ AExts(S) such thatd, e ∈ E, or put another way, if∅ |∼S {d, e}. We sayS is
coherentif AExts(S) 6= ∅, and isincoherentotherwise. We say thatd is assumablein S if S ∪ {d} is coherent, and
realizablein S if someS′ ⊃ S ∪{d} is coherent. Clearly,S is coherent iff∅ |∼S S, d is assumable iff{d} |∼S {d},
andd is realizable iff for someA ⊆ D, A ∪ {d} |∼S {d}. It is also easy to see that ifd ande are cotenable inS,
each is arguable inS; that if S is coherent andd is inevitable inS, d is arguable inS; that if S is coherent and both
d ande are inevitable inS, d ande are cotenable inS; and that ifS is coherent andA,B ⊆ S, thenA |∼S B.

If D has the structure of the set of sentences of an ordinary logical language, there is a 1-1 function
¬ : D → D taking elements to negations. For this important special class of domains, we introduce the following
terms. We sayd is doubtlessin S iff ¬d is not arguable inS. Similarly,d is conceivablein S iff ¬d is not inevitable
in S. Arguability and doubtlessness are thus dual notions, as are inevitability and conceivability. We sayd is decided
by S iff for every E ∈ AExts(S) eitherd ∈ E or ¬d ∈ E, and thatS is ambivalentaboutd iff d is not decided
by S. We sayS is arguably consistentif there is someE ∈ AExts(S) such that for everyd ∈ D, eitherd /∈ E or
¬d /∈ E, andarguably inconsistentif for somed andE, d,¬d ∈ E ∈ AExts(S). We sayS is inevitably consistent
(or simply consistent) if S is coherent and for everyE ∈ AExts(S) andd ∈ D, eitherd /∈ E or ¬d /∈ E. S is
inevitably inconsistentif S is coherent but there is somed such that for everyE ∈ AExts(S), d ∈ E and¬d ∈ E. It
is clear that ifS is consistent,S is arguably consistent; that ifd and¬d are cotenable inS, S is inconsistent; that if
d is doubtless inS yet decided byS, d is inevitable inS; and that ifd is inevitable inS ande is arguable inS, d and
e are cotenable inS. Note that these notions are weaker than the usual notions of consistency, for we have made no
assumptions about iterated negations, that is we allowd ∈ S but¬¬d /∈ S. If D has the structure of the Lindenbaum
algebra of sentences of a logical language, then¬¬ is the identity. In this case it is clear thatd is decided byS iff ¬d
is decided byS, and thatS is ambivalent aboutd iff ¬d is not decided byS. We pursue these more familiar notions
later under the topicLogical theories.

§17. As is usual with formal systems, we can construct bigger autological agents out of smaller ones. Two basic
constructions are sum and product agents. Let(D1, I1,S1,J1,C· 1) and(D2, I2,S2,J2,C· 2) describe two autolo-
gical agents. The sum of these is an agent(D, I,S ,J ,C· ) such that

(1)D = D1 ∪ D2,

(2) I(d) = {S ⊆ D | d ∈ D1
⊃[S ∩ D1 ∈ I1(d)] ∧ d ∈ D2

⊃[S ∩ D2 ∈ I2(d)]}

(3) S = {S ⊆ D | S ∩ D1 ∈ S1 ∧ S ∩ D2 ∈ S2}

(4)J (d, S) = {E | d ∈ D1 ⊃[E ∩D1 ∈ J1(d, S ∩D1)] ∧ d ∈ D2 ⊃[E ∩D2 ∈ J2(d, S ∩D2)]}
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(5) C· = {(S, S′) | S ∩ D1 C· 1 S′ ∩ D1 ∧ S ∩ D2 C· 2 S′ ∩ D2}.
The product of the two agents is an agent such that

(1)D = D1 ×D2,
(2) I((d1, d2)) = {S ⊆ D | ∃S1 ∈ I1(d1) ∃S2 ∈ I2(d2) S = S1 × S2},
(3) S = {S ⊆ D | ∃S1 ∈ S1 ∃S2 ∈ S2 S = S1 × S2},
(4)J ((d1, d2), S) = {E | ∃S1, E1 ⊆ D1 ∃S2, E2 ⊆ D2

S = S1 × S2 ∧ E = E1 × E2 ∧
E1 ∈ J1(d1, S1) ∧ E2 ∈ J2(d2, S2)},

(5) C· = {(S, S′) | ∃S1, S
′
1 ⊆ D1 ∃S2, S

′
2 ⊆ D2 S = S1 × S2 ∧ S′ = S′1 × S′2 ∧

S1 C· 1 S2 ∧ S′1 C· 2 S′2}.
The sum construction appears quite frequently in artificial intelligence systems, which often divide into independent
databases operating with different inferential schemes.
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Elemental theories

§18. The first theory of reasoned assumptions we consider is the theory ofsimple reasons. Simple reasons are so
named because they involve what seem to be the weakest useful notion of reason, one on which all the following
theories elaborate. This theory makes no assumptions aboutD, has no general restrictions on states, and interprets
all components as (possibly trivial) “simple reasons,” in contrast to the “defeasible reasons” defined in the next
section. We split the definition into two parts due to some intervening subsidiary definitions.

(18.1) DEFINITION (SIMPLE REASONS I). An agent’s use of simple reasons is characterized by
(D, I,S ,J ), where

(i) D is a set,
(ii) For eachd ∈ D, there are setsA,B,C ⊆ D such that

I(d) = A \\ B ‖− C = {S ⊆ D | A ⊆ S ⊆ Bc ⊃C ⊆ S},

(iii) S = Q,
(iv) For eachd ∈ D andS ⊆ D,

J (d, S) = {E | d ∈ E ⊃[d ∈ S ∨ ∃e ∈ E ∃A,B,C ⊆ D
I(e) = A \\ B ‖− C ∧ A ⊆ E ⊆ Bc ∧ d ∈ C]}.

Recalling our earlier notation, we abbreviate the subsets ofPD corresponding to reason interpretations as expressi-
ons of the formA \\ B ‖− C, whereA,B,C ⊆ D. The definition ofI interprets reasons so that the “conclusions”
C must be held if the “antecedents”A are held and none of the “qualifiers”B are held. Note that expressions like
A \\ B ‖− C are part of the metalanguage in which we discuss the agent. The agent’s language of thought, if any,
need not express reasons in the same way. The notationA \\ B ‖− C also allows us to speak of the “same” reason
even when we extendD to a larger domain, since ifA,B,C ⊆ D andD ⊆ D′, we also haveA,B,C ⊆ D′.
This property greatly simplifies mechanizations of agents based on simple reasons expressed in this way, since the
domain of state components can be extended indefinitely without necessitating changes in previously expressed
reasons. Finally, observe that the expression∅ \\ ∅ ‖− ∅means the trivial interpretation, the setPD.

(18.2) DEFINITION. A reason with interpretationA \\ B ‖− C is said to be valid inS iff its antecedent
conditions hold, that is, iffA ⊆ S ⊆ Bc.

In this way, component-admissible extensions are those extensions which locally appear “grounded” since each of
the elements is in the initial set or is a conclusion of a valid reason. We base the general restriction giving admissible
extensions on a notion of globally grounded extensions.

(18.3) DEFINITION. A finite reason is an elementd ∈ D such that there are finite subsetsA,B,C ⊆ D with
I(d) = A \\ B ‖− C.

(18.4) DEFINITION. E is a (finitely) grounded extension ofS iff S C E and for eache ∈ E there is a (finite)
grounding setG ⊆ E and a well-ordering<G of G such thate ∈ G and wheneverd ∈ G, either (1)d ∈ S or (2)
there is some (finite) reasonf ∈ G and setsA,B,C ⊆ D such thatI(f) = A \\ B ‖− C, A ⊆ G, E ⊆ Bc, d ∈ C,
andA <G f <G d. For eachS ⊆ D, GExts(S) denotes the set of grounded extensions ofS, andFGExts(S) the
set of finitely grounded extensions ofS.

(18.5) COROLLARY. If E is a grounded extension ofS, e ∈ E, G is a grounding set ofe, andd ≤G e, then
{g ∈ G | g ≤G d} is a grounding set ford in E, as isG itself.

Grounding sets bear a remarkable similarity to open neighborhoods in a topological space, but I have not been able
to make them into such since the intersection of two grounding sets need not be a grounding set.
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(18.6) COROLLARY. FGExts ⊆ GExts.

(18.7) THEOREM. GExts ⊆ QExts.

PROOF. The claim is just that grounded extensions also appear locally grounded. SupposeE ∈ GExts(S) and
e ∈ E. Then ife /∈ S, there is a grounding setG for e. But sincee ∈ G ande /∈ S, there is a valid reason supporting
e in G, and hence inE as well.

(18.8) DEFINITION (SIMPLE REASONSII). Grounded, finitely grounded, and locally grounded simple reasons
agents are characterized respectively byAExts = GExts, AExts = FGExts, andAExts = QExts.

For the sake of simplicity and practical relevance we normally discuss finitely grounded simple reasons agents, take
AExts = FGExts, and explicitly state whenever we consider general grounded or locally grounded agents.

EXAMPLES. We adopt the convention that if¬ : D → D andA ⊆ D we write¬A to mean{¬a | a ∈ A}, and
if S ⊆ D, we writeI∗(S) to mean{I(d) | d ∈ S}. In all the examples, we usually assumeA,B,C, D and their
negations to be subsets ofD composed of trivially interpreted elements, so ifa ∈ A, thenI(a) = I(¬a) = ∅ \\
∅ ‖− ∅. Comments, if any, follow the example to which they refer.

(18.9) I∗(S) = {∅ \\ ∅ ‖− ∅}, AExts(S) = {S}
If S has only trivially interpreted elements, it is its own admissible extension.

(18.10) I∗(S) = {∅ \\ ∅ ‖− A}, AExts(S) = {S ∪A}
This sort of reason can be viewed as setting out unqualified premises.

(18.11) I∗(S) = {A \\ ∅ ‖− A}, AExts(S) = {S}
Note thatS ∪A is a component-admissible extension ofS, but neither a grounded component-admissible extension
of S, nor a minimal component-admissible extension ofS, nor a minimal extension ofS.

(18.12) I∗(S) = {∅ \\ ¬A ‖− A}, AExts(S) = {S ∪A}
This sort of reason is commonly called anormal default; a “default” since it sanctions an inference in which one
draws a conclusion because one has no valid reason for drawing the opposite conclusion, and “normal” since this
sort of default is so commonly useful in artificial intelligence. Note thatS ∪ ¬A is also a minimal extension ofS,
but is not component-admissible.

(18.13) I∗(S) = {∅ \\ A ‖− A}, AExts(S) = ∅
Note that whileS ∪A is an admissible state, moreover a minimal extension ofS, it is not component-admissible.

(18.14) I∗(A) = {∅ \\ C ‖− B}, I∗(B) = {∅ \\ ∅ ‖− ∅},
I∗(C) = {∅ \\ ∅ ‖− D}, I∗(D) = {∅ \\ ∅ ‖− C}
AExts(A) = {A ∪B}

Note thatA ∪ C ∪D is a minimal component-admissible extension ofA, but not a grounded extension ofA.
(18.15) I∗(S) = {∅ \\ ¬A ‖− A, ∅ \\ A ‖− ¬A}, AExts(S) = {S ∪A, S ∪ ¬A}

This example exhibits the multiple admissible extensions of the motivating examples of§6.
(18.16) I∗(S) = {∅ \\ A ‖− A, ∅ \\ ∅ ‖− A}, AExts(S) = {S ∪A}

In contrast to 18.13, the second reason supportsA regardless of the incoherence of the first reason.
(18.17) I∗(S) = {∅ \\ A ‖− A, ∅ \\ ∅ ‖− ¬A}, AExts(S) = ∅

Since we have provided no connection between the interpretations ofA and¬A, this example has the same basic
structure as 18.13.

(18.18) I∗(S) = {∅ \\ ∅ ‖− A, ∅ \\ ∅ ‖− ¬A}, AExts(S) = {S ∪A ∪ ¬A}
Since the agent has not been given logical structure, we draw no further conclusions from this inconsistent extension.

(18.19) I∗(S) = {∅ \\ ¬A ‖− A, ∅ \\ ¬B ‖− B, A \\ ∅ ‖− ¬B, B \\ ∅ ‖− ¬A},
AExts(S) = {S ∪A ∪ ¬B, S ∪ ¬A ∪B}

(18.20) I∗(S) = {∅ \\ ¬A ‖− A, ∅ \\ ¬B ‖− B, ∅ \\ ¬C ‖− C, A \\ ∅ ‖− ¬B,
B \\ ∅ ‖− ¬C, C \\ ∅ ‖− ¬A},
AExts(S) = ∅

(18.21) I∗(S) = {∅ \\ ¬A ‖− A, ∅ \\ ¬B ‖− B, ∅ \\ ¬C ‖− C, ∅ \\ ¬D ‖− D,
A \\ ∅ ‖− ¬B, B \\ ∅ ‖− ¬C, C \\ ∅ ‖− ¬D, D \\ ∅ ‖− ¬A},
AExts(S) = {S ∪A ∪ ¬B ∪ C ∪ ¬D, S ∪ ¬A ∪B ∪ ¬C ∪D}

Note how the parity of these cycles (even in 18.19 and 18.21, odd in 18.20) affects the existence of admissible
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extensions.
(18.22) I∗(S) = {∅ \\ B ‖− A, ∅ \\ ∅ ‖− ¬A}, AExts(S) = {S ∪A ∪ ¬A}

Note that contrary conclusions cannot “push backwards” through reasons to support qualifiers.
(18.23) Suppose{di}∞i=0 is a set of distinct elements ofD such that for eachi ≥ 0, I(di) = ∅ \\ ∅ ‖− {di+1}.

ThenAExts({di}) = {{dj | j ≥ i}}. Even though each set{di} is finite, its admissible extension is infinite.
(18.24) LetD = {di}∞i=0 andD = D ⊕ {e, f}, where for eachi ≥ 0, I(di) = ∅ \\ ∅ ‖− {di+1}, and where

I(e) = D \\ ∅ ‖− {f} andI(f) = ∅ \\ ∅ ‖− ∅. Let S = {d0, e}. ThenGExts(S) = {D}, butFGExts(S) = ∅
since no finite argument forf exists.

I apologize for several little white lies among these examples. These stem from the alternative expressions
that some reason interpretations allow. For example, the expressionA \\ ∅ ‖− A means the same set as does
∅ \\ ∅ ‖− ∅, namelyPD. Further, the expression∅ \\ A ‖− A means the same as does∅ \\ ∅ ‖− A. Thus it
is wrong to call{∅ \\ A ‖− A} incoherent yet to call{∅ \\ ∅ ‖− A} coherent. We expressed the examples as
simply as possible for the sake of comprehension, but these difficulties can always be avoided by slightly more
complex statements of examples. For example, ifI(a) = ∅ \\ {b} ‖− {c}, I(b) = I(c) = ∅ \\ ∅ ‖− ∅, and
I(d) = {c} \\ ∅ ‖− {b}, then the set{a, d} is incoherent, while{a, d, c} is coherent.

In spite of their simplicity and practical significance, very little is known about the properties of simple
reason agents. The few results which follow are merely indicative of the questions that remain to be answered. We
first examine some alternate characterizations of the notion of admissible extension.

(18.25) DEFINITION. Let S, E ⊆ D. Then〈Λα〉 (α an ordinal), the levels fromS in E, are defined for all
ordinals by

Λ0(S, E) = S,

Λα+1(S, E) = Λα ∪
⋃
{C ⊆ D | ∃e ∈ Λα(S, E) ∃A,B ⊆ D

I(e) = A \\ B ‖− C ∧ A ⊆ Λα(S, E) ∧ E ⊆ Bc},

and for limit ordinalsλ,

Λλ(S, E) =
⋃

α<λ

Λα(S, E).

We also defineΛ(S, E) =
⋃

α Λα(S, E) to be the sum of all levels. When no confusion is possible, we sometimes
abbreviateΛα(S, E) byΛα andΛ(S, E) byΛ.

(18.26) COROLLARY. If α ≤ β, thenS ⊆ Λα(S, E) ⊆ Λβ(S, E) ⊆ Λ(S, E).

(18.27) COROLLARY. If Λα(S, E) = Λα+1(S, E), thenΛα(S, E) = Λ(S, E).

(18.28) THEOREM. If α is the cardinal number|D|+ 1, thenΛ(S, E) = Λα(S, E).

PROOF. SinceD has fewer thanα elements, it must be that for someβ + 1 ≤ α no new element is introduced
in Λβ+1, in other words,Λβ = Λβ+1. But thenΛβ = Λ, and sinceΛβ ⊆ Λα ⊆ Λ, we haveΛ = Λα.

(18.29) DEFINITION. If e ∈ Λ(S, E), the rank ofe in Λ(S, E) is the least ordinalα such thate ∈ Λα(S, E).
If A ⊆ Λ(S, E), the rank ofA in Λ(S, E) is the least ordinal not less than the rank of any element ofA.

(18.30) LEMMA . If S C E, thenΛ(S, E) ⊆ E.

PROOF. Let S C E. ClearlyΛ0 ⊆ E, so assumeΛβ ⊆ E for eachβ < α. If α is a limit ordinal, then by
definitionΛα ⊆ E. If α is a successor ordinal, sayα = β + 1, let e ∈ Λα. If e ∈ S, thene ∈ E, and ife /∈ S there
is ad ∈ Λβ with I(d) = A \\ B ‖− C, A ⊆ Λβ , E ⊆ Bc, ande ∈ C. SinceE is admissible, this meansC ⊆ E, so
e ∈ E, henceΛα ⊆ E. ThusΛ ⊆ E.
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(18.31) THEOREM (STRATIFICATION). If E ∈ GExts(S) thenΛ(S, E) = E.

PROOF. SupposeE ∈ GExts(S). SinceS C E, by the preceding lemma we haveΛ ⊆ E. To see thatE ⊆ Λ,
supposee ∈ E. SinceE is a grounded extension ofS, there is a grounding setG ⊆ E for e from S in E. We
showG ⊆ Λ by <G-induction. Letf ∈ G have no predecessors in<G. Clearlyf is the minimum ofG, and by
definition ofG, we must havef ∈ S, hencef ∈ Λ. Now suppose thatf ∈ G and for eachd <G f , eitherd ∈ S
or there is a grounding subargumentG′ ⊆ G for d. If f ∈ S, thenf ∈ Λ, and if f /∈ S, there is ad ∈ G such
thatI(d) = A \\ B ‖− C, A <G d <G f , E ⊆ Bc, andf ∈ C. By the inductive hypothesis,A ⊆ Λ andd ∈ Λ,
so there is some ordinalα such thatA ⊆ Λα andd ∈ Λα. But then by constructionC ⊆ Λα+1, sof ∈ Λ. Hence
E ⊆ Λ, soE = Λ(S, E).

(18.32) COROLLARY. If E ∈ GExts(S) andα = |E|+ 1, thenE = Λα(S, E).

(18.33) COROLLARY. If E ∈ GExts(S) andα is its rank, thenE = Λα(S, E).

(18.34) COROLLARY. If E ∈ FGExts(S), thenE = Λω(S, E).

PROOF. Let E ∈ FGExts(S) ande ∈ E. Sincee has a finite grounding setG, the rank ofe is at most|G|,
hencee ∈ Λω(S, E). ThusE ⊆ Λω(S, E), so by Lemma 18.30,E = Λω(S, E).

(18.35) THEOREM (FIXED POINT). If E = Λ(S, E), thenE ∈ GExts(S).

PROOF. SupposeΛ = E. SinceS ⊆ Λ, S ⊆ E. Let e ∈ E with I(e) = A \\ B ‖− C, and suppose
A ⊆ E. Then there is an ordinalα such thate ∈ Λα andA ⊆ Λα, so by construction ifE ⊆ Bc as well, then
C ⊆ Λα+1 ⊆ E. ThusE is admissible. We proveE is a grounded extension ofS by induction on rank. Specifically,
we prove that each element ofE has a rank-preserving grounding set, a setG ⊆ E such thatrank(a) ≤ rank(b)
whenevera ≤G b. Let e ∈ E have rankα. If α = 0, thene ∈ S and we are done since{e} is a rank-preserving
grounding argument fore from S in E. Now assume thatα > 0 and all elements of rank less thanα have rank-
preserving grounding arguments. By construction, there is someβ < α andd ∈ Λβ such thatI(d) = A \\ B ‖− C,
A ⊆ Λβ , E ⊆ Bc, ande ∈ C. Then by inductive hypothesis each element of{d} ∪ A has a rank-preserving
grounding argument, so merge these arguments preserving rank-order, and adde to the end, so producing a rank-
preserving grounding argument fore. ThusE ∈ GExts(S).

(18.36) COROLLARY. E ∈ GExts(S) iff E = Λ(S, E).

(18.37) THEOREM. If every reason inD is finite, thenE ∈ FGExts(S) iff E = Λω(S, E).

PROOF. Suppose every reason inD is finite. By Corollary 18.34, we need only show thatΛω = E implies
E ∈ FGExts(S). SupposeΛω = E. We first showΛω = Λ. Suppose, by way of contradiction, thatΛ 6= Λω. Then
there must be a least ordinalα ≥ ω such that for somee ∈ D, e ∈ Λα+1 − Λα. Sinceα is minimal,Λω = Λα, for
otherwiseΛω = Λω+1 and henceΛω = Λ. By construction, there is somef ∈ Λα, I(f) = A \\ B ‖− C, A ⊆ Λα,
E ⊆ Bc, ande ∈ C. SinceA is finite, this means the rank ofA is also finite. Thus there is someβ < ω such that
A ⊆ Λβ andf ∈ Λβ , soe ∈ Λβ+1 ⊆ Λω, a contradiction. ThusΛ = Λω, and sinceΛω = E, by Theorem 18.35
E is a grounded extension ofS. We see thatE is finitely grounded by induction on rank. Clearly, ife ∈ Λ0, then
e ∈ S, hence{e} is a rank-preserving grounding set. Now suppose the rank ofe is α+1 < ω. Then by construction
there is somef ∈ Λα with I(f) = A \\ B ‖− C, A ⊆ Λα, E ⊆ Bc, ande ∈ C. By inductive hypothesis, each of
f andA have finite rank-preserving grounding sets, so merge these preserving rank-order, adde to the end, and the
result is a finite rank-preserving grounding order fore.

(18.38) QUESTION. For each simple reasons agent, can one characterize those sets which have no admissible
extensions? Unique admissible extensions? Multiple admissible extensions? Finitely many admissible extensions?
Infinitely many admissible extensions? Only finite admissible extensions? Only infinite admissible extensions? Or,
turning the order around, can one characterize simple reasons agents in which all sets are coherent or have finite
or unique admissible extensions?
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(18.39) THEOREM (GROUNDED M INIMALITY ). GExts ⊆ µQExts.

PROOF. GExts ⊆ QExts by Theorem 18.7, so supposeE ∈ GExts(S), E′ ∈ QExts(S), andE′ ⊆ E.
We first showΛ(S, E) ⊆ Λ(S, E′) by induction. ClearlyΛ0(S, E) ⊆ Λ0(S, E′) since each equalsS. Assume
Λβ(S, E) ⊆ Λβ(S, E′) for eachβ < α. If α is a limit ordinal, then by definitionΛα(S, E′) ⊆ Λα(S, E). If α is a
successor ordinal, sayα = β+1, lete ∈ Λα(S, E). If e ∈ S, thene ∈ E′, and ife /∈ S there is ad ∈ Λβ(S, E) with
I(d) = A \\ B ‖− C, A ⊆ Λβ(S, E), E ⊆ Bc, ande ∈ C. But sinceE′ ⊆ E ⊆ Bc, this meanse ∈ Λα(S, E′).
HenceΛ(S, E) ⊆ Λ(S, E′). But by Theorem 18.31 and Lemma 18.30,E = Λ(S, E) ⊆ Λ(S, E′) ⊆ E′.

(18.40) COROLLARY. GExts = µGExts andFGExts = µFGExts.

(18.41) COROLLARY. If S C· D, thenAExts(S) = {D}.

PROOF. SupposeS C· D. Now if E ∈ AExts(S), thenE ⊆ D, and sinceAExts = µAExts by the previous
corollary, this meansE = D.

(18.42) COROLLARY. If S C· D, thenA ‖=S B for everyA,B ⊆ D.

(18.43) COROLLARY. If A |∼S B for everyA,B ⊆ D, thenA ‖=S B for everyA,B ⊆ D.

Note that the converse does not hold ifS is incoherent.

(18.44) THEOREM (TRIVIAL COHERENCE). A trivially interpreted set is its own admissible extension.

PROOF. SupposeS ⊆ D, and for alld ∈ S, I(d) = PD. ThenS is admissible, and it is clearly finitely
grounded, soAExts(S) = {S}.

(18.45) DEFINITION. A monotonic reason is an elementd ∈ D such that for someA,C ⊆ D, I(d) = A \\
∅ ‖− C.

“Monotonic” is used because extensions of a state cannot invalidate such a reason, so that the set of conclusions
added by the reason is monotone nondecreasing with enlargements of the state. Note that all trivially interpreted
state components are finite and monotonic.

(18.46) THEOREM (MONOTONIC COHERENCE). If D contains only monotonic reasons, every subset ofD
has a unique grounded extension.

PROOF. Suppose all reasons are monotonic, and letS ⊆ D. ConsiderE = Λ(S, ∅). Since all reasons are
monotonic,Λ(S, ∅) = Λ(S, X) for eachX ⊆ D. In particular,E = Λ(S, ∅) = Λ(S, E), so by Theorem 18.35E ∈
GExts(S). Now if E′ ∈ GExts(S), thenE′ = Λ(S, E′) = E by the previous observation, soGExts(S) = {E}.

(18.47) COROLLARY. If D contains only finite monotonic reasons, every subset ofD has a unique finitely
grounded extension.

As Example 18.24 shows, we cannot drop the finiteness restriction unless we allow infinite grounded arguments.

(18.48) DEFINITION. SupposeS ⊆ D andd ∈ D. The setS mentionsd iff for somee ∈ S, I(e) = A \\ B ‖−
C andd ∈ A ∪ B ∪ C. Two setsA,B ⊆ D have disjoint mention sets iffA mentions nob ∈ B andB mentions no
a ∈ A. A subsetA ⊆ S is an isolated subset ofS iff A andS −A have disjoint mention sets.

Note thatS and∅ are isolated subsets ofS.
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(18.49) THEOREM (DISJOINT SUM). Suppose〈Si〉ni=0 and〈Êi〉ni=0 (n ≤ ∞) are sequences such that for all

i, 0 ≤ i ≤ n, Si ⊆ D andÊi = AExts(Si). Suppose further that for alli, j, if 0 ≤ i 6= j ≤ n, then eachE ∈ Êi

andE′ ∈ Êj have disjoint mention sets. Then

AExts(
n⋃

i=0

Si) = {
n⋃

k=0

Ek | 〈Ek〉nk=0 ∈
n∏

i=0

Êi}.

PROOF. Let E =
⋃

k Ek for some〈Ek〉 ∈ ΠiÊi. We first check the admissibility ofE. Let e ∈ E. If e is
trivially interpreted, thenE ∈ I(e), and ife has a nontrivial interpretation, thene ∈ El for somel. Now El ∈ I(e)
by hypothesis, and since the other parts ofE are not mentioned byEl, they also satisfye, henceE is admissible.
Now if e /∈

⋃
i Si, then it is in someEl. By hypothesis,e has a finite grounding argument inEl, and since it does

not mention the rest ofE, this same argument groundse in E. HenceE is a finitely grounded extension ofS, so
E ∈ AExts(

⋃
i Si). Now supposeE ∈ AExts(

⋃
i Si), and considerE ∩

⋃
Êi. No element in this set mentions any

other in
⋃

Êj for j 6= i, so it must be thatE ∩
⋃

Êi ∈ AExts(S).

(18.50) COROLLARY. S ⊆ D is incoherent ifS has an incoherent isolated subset.

PROOF. SupposeA ⊆ S ⊆ D, A is isolated inS, andAExts(A) = ∅. ThenAExts(A)× AExts(S − A) = ∅,
so by the disjoint sum theorem,AExts(S) = ∅.

(18.51) COROLLARY. SupposeS =
⋃

i Si, where for eachi, AExts(Si) = {Ei}, and ifj 6= i, Ei andEj have
disjoint mention sets. ThenAExts(S) = {

⋃
i Ei}.

PROOF. Since eachSi has a unique extension, there is only one sequence in the product of the extension sets,
so the claim follows by the disjoint sum theorem.

(18.52) COROLLARY. SupposeS =
⋃

i Si and ifj 6= i, Ei andEj have disjoint mention sets. Then|AExts(S)| >
1 if for somei, |AExts(Si)| > 1.

PROOF. SupposeSi has several admissible extensions. Then the product of the extension sets contains several
sequences. The unions of these sequences cannot be identical, since by the disjointness of mention sets this would
mean the supposedly distinct extensions ofSi were identical. Thus by the disjoint sum theorem, the union of the
sets has several admissible extensions.

(18.53) COROLLARY. S is coherent iff every isolated subset ofS is coherent.

(18.54) COROLLARY. S has a unique extension iff every isolated subset ofS has a unique extension.

(18.55) DEFINITION. A setS ⊆ D is called simple iffS has no isolated subsets other than itself and∅.

For example, ifD = {a}, thenD is simple, and ifD = {a, b} where both elements have trivial interpretations, then
D is not simple, since each of{a} and{b} is.

(18.56) LEMMA . There are incoherent simple sets.

PROOF. As before, ifI(a) = ∅ \\ {b} ‖− {c}, I(b) = I(c) = ∅ \\ ∅ ‖− ∅, andI(d) = {c} \\ ∅ ‖− {b}, then
{a, d} is simple but incoherent.

(18.57) THEOREM. For eachn ∈ N there is a simple setS ⊆ D with |AExts(S)| = n.

PROOF. If n = 0, the simple set must be incoherent, and the preceding lemma applies. Ifn > 0, let D and
E be two disjoint sets with|D| = |E| = n, D = {di}ni=1 and E = {ei}ni=1. For eachi, 1 ≤ i ≤ n, let
I(di) = ∅ \\ E − {ei} ‖− {ei} andI(ei) = ∅ \\ ∅ ‖− ∅. Then eachdi mentionsE, soD is simple. But clearly,
AExts(D) = {D ∪ {ei} | 1 ≤ i ≤ n}. Hence|AExts(D)| = n.
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Rather than pursue this structure theory further here, we merely mention the possibility of deriving suffi-
cient conditions on coherence from MCDERMOTT’ S termination theorem for RMS.13 (RMS is an artificial intelli-
gence system for maintaining a database by means of reasons. It is discussed in§46.)

By a finite agentwe mean one with finite domainD. Necessarily, all reasons of a finite agent are finite as
well. Suppose for the time being that(D, I) characterizes a simple reasons agent and|D| = n < ω. We then have
|I| = O(n2), and the following results.

(18.58) THEOREM. Is S ∈ S ? can be computed in timeO(n2).

PROOF. Checking the interpretation of each element ofS requiresO(n) steps, andS can have up ton elements.

(18.59) THEOREM. Is E ∈ Exts(S)? can be computed in timeO(n2).

PROOF. CheckingE ⊃ S requiresO(|E|+ |S|) = O(n) steps, and checking admissibility ofE requiresO(n2)
steps as above.

(18.60) THEOREM. Is E ∈ QExts(S)? can be computed in timeO(n2).

PROOF. CheckingE ∈ Exts(S) requiresO(n2) steps, as above. We can check component-admissibility ofE
at the same time by marking the consequences of each valid reason encountered in checking the admissibility ofE,
and when done scanningE to see if all unmarked elements are inS. This is alsoO(n2).

(18.61) THEOREM. Is E ∈ FGExts(S)? can be computed in timeO(n3).

PROOF. Consider the following algorithm.
1. Λ0 ← S, i← 0
2. WhileΛi 6= Λi−1 do

3. i← i + 1
4. Λi ← Λi−1

5. For eache ∈ Λi−1 do
6. I(e) = A \\ B ‖− C
7. If A ⊆ Λi−1 andE ⊆ Bc thenΛi ← Λi ∪ C.

8. ReturnE =?Λi.
The algorithm clearly answersE ∈ FGExts(S), since by Corollary 18.36E ∈ FGExts(S) iff E = Λ, andΛi = Λ
wheneverΛi = Λi+1. Steps 1, 4, 6, 7 and 8 costO(n). The iteration of step 5 may runO(n) times, so the cost
of 5-7 isO(n2). Now note that since|D| = n, the loop of step 2 can run at mostn + 1 times, so the total cost is
O(n) +O(n) · (O(n) +O(n2)) = O(n3).

(18.62) THEOREM. Find E ∈ Exts(S)! is in P, FindE ∈ QExts(S)! and FindE ∈ FGExts(S)! are in NP,
and CountExts(S)!, CountQExts(S)!, and CountFGExts(S)! are in #P.

PROOF. D ∈ Exts(S) for everyS (as we observe later in Theorem 20.1), so finding an extension is trivial. The
other five problems may all be computed by guessing setsE ⊆ D and accepting iff the desired condition is true, all
deterministic polynomial computations from the above theorems.

(18.63) CONJECTURE. Find E ∈ QExts(S)! is NP-complete.

(18.64) QUESTION. Is FindE ∈ FGExts(S)? NP-complete?

13[CHARNIAK , RIESBECK, AND MCDERMOTT 1980]

18



(18.65) THEOREM. Is E ∈ µExts(S)?, IsE ∈ µQExts(S)?, and IsµQExts(S) = ∅? are in co-NP.

PROOF. We seeE /∈ µExts(S) is in NP by first checkingE ∈ Exts(S) deterministically as above, then
guessing a proper subsetE′ of E, checking if it is inExts(S) as well, and accepting if eitherE /∈ Exts(S) or
E′ ∈ Exts(S). The case ofE ∈ µQExts(S) is the same except for testingE,E′ ∈ QExts(S). For the last
question, we guessE ⊃ S, check ifE ∈ QExts(S), and accepting if so, sinceµQExts(S) will be nonempty iff
QExts(S) is empty.

(18.66) CONJECTURE. The following problems are NP-hard: IsE ∈ µExts(S)?, Is E ∈ µQExts(S)?, Is
µQExts(S) = ∅?, and FindE ∈ µQExts(S)!

The development of efficient algorithms for deciding these questions is still the subject of study. The most studied
question is that of constructing an admissible extension of a set if one exists. This is one of the tasks of RMS
and its relatives. The hard case of course is when no admissible extension exists. The known algorithms typically
discover this by exhaustive failure. If a suitably mechanizable characterization of coherence was known, more
efficient algorithms might be possible.

(18.67) QUESTION. Are there interesting classes of simple reasons agents for which construction of admissible
extensions is tractable?

We now drop the supposition thatD is finite and replace it with the notion of a finite “virtual” domain with respect
to some subset ofD.

(18.68) DEFINITION. The universeU(S) of a setS is the smallest set containingS and containing the mention
sets of each of its elements, that is,S ⊆ U(S) and ifd ∈ U(S) andI(d) = A \\ B ‖− C, thenA,B,C ⊆ U(S).

Note that ifD is finite, then everyS ⊆ D has a finite universe; that ifS has a finite universe, then all reasons inS
are finite; and that two sets with disjoint universes have disjoint mention sets, though the converse need not be true.

(18.69) CONJECTURE. Is U(S) finite? for finiteS is undecidable.

(18.70) LEMMA . If E ∈ FGExts(S), thenE ⊆ U(S).

PROOF. Let E ∈ FGExts(S). ThenE = Λω(S, E), and we proveΛω ⊆ U(S) by induction. SinceΛ0 = S,
Λ0 ⊆ U(S), so supposeΛα ⊆ U(S) and considerΛα+1. Any e ∈ Λα+1 − Λα is supported, and hence mentioned
by a valid reason inΛα, soΛα+1 ⊆ U(S) too. ThusΛω = E ⊆ U(S).

(18.71) THEOREM. If S has a finite universe, then admissible extensions ofS are decidable.

PROOF. ComputeU(S), checkE ⊆ U(S), and checkE ∈ FGExts(S) by the earlier methods for finiteD.

(18.72) COROLLARY. If S ∪ {d} has a finite universe, then both the arguability and inevitability ofd in S are
decidable.

(18.73) THEOREM. If D is recursively enumerable and the set of nontrivial reasons inD has a finite universe,
then the finite admissible states are recursively enumerable.

PROOF. LetU be the universe of the set of all nontrivial reasons. By the previous methods the admissible states
S ⊆ U are enumerable. Also, all finite subsets ofD − U are enumerable, so we can by composition enumerate the
setsS ∪ U , whereS ⊆ U , S ∈ S , andU ⊆ D − U , and so exhaust the finite elements ofS .
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§19. Our second theory of reasoned assumptions modifies the simple reasons theory by interpreting state com-
ponents asdefeasible reasons. To do this, we suppose a functionDefeated: D → D and interpret the element
Defeated(d) to mean the reasond has been defeated and cannot support conclusions. This is achieved by trivializing
the interpretation ofd in the presence ofDefeated(d), specifically, for eachd ∈ D having

I(d) ⊃ {S ⊆ D | Defeated(d) ∈ S}.

In effect, we interpretd in different ways depending on whether the state containing it also containsDefeated(d) or
not.

(19.1) DEFINITION. Defeasible reasons agents are characterized by the following additions to the requirements
on simple reasons agents:

(i) There is a 1-1 function Defeated: D → D,
(ii) For eachd ∈ D if I(d) = A \\ B ‖− C, then Defeated(d) ∈ B.

Thus ifI(d) = A \\ B+ ‖− C, whereB+ = B ∪ {Defeated(d)}, we have by simple rewriting

A ⊆ S ⊆ (B+)c ⊃C ⊆ S iff [A ⊆ S ⊆ Bc ∧ Defeated(d) /∈ S]⊃C ⊆ S

iff Defeated(d) /∈ S ⊃[A ⊆ S ⊆ Bc ⊃C ⊆ S],

which is the desired condition of triviality.

EXAMPLES. We adopt the convention of eliding most mentions ofDefeatedelements in reasons by use of
a superscript+ to refer to the appropriate element. We omit for brevity most previous examples, since they are
basically unchanged by the introduction of defeasible reasons.

(19.2) I∗(S) = {∅ \\ ∅+ ‖− A}, AExts(S) = {S ∪A} (as before)
(19.3) I∗(S) = {∅ \\ ¬A+ ‖− A}, AExts(S) = {S ∪A} (as before)
(19.4) I∗(S) = {∅ \\ ∅+ ‖− A, ∅ \\ ∅+ ‖− ¬A}, AExts(S) = {S ∪A ∪ ¬A} (as before)
(19.5) S = {a, b}, I(a) = ∅ \\ ∅+ ‖− A, I(b) = ∅ \\ ∅+ ‖− {Defeated(a)},

AExts(S) = {S ∪ {Defeated(a)}}
Note how the challenge defeats the otherwise valid reason.

(19.6) S = {a, b, c}, I(a) = ∅ \\ ∅+ ‖− A, I(b) = ∅ \\ ∅+ ‖− {Defeated(a)},
I(c) = ∅ \\ ∅+ ‖− {Defeated(b)}
AExts(S) = {S ∪A ∪ {Defeated(b)}}

Here the first challenge is defeated by the second, so the initial reason’s conclusions are unaffected.

As one might suspect, the innocuous reinterpretation of reasons lets us extend any simple reasons theory
to a defeasible reasons theory without important changes of meaning.

(19.7) THEOREM (DEFEASIBLE EMBEDDING). Suppose thatD andI characterize a simple reasons agent.
Then there is a defeasible reasons agent(D′, I ′) such thatD ⊆ D′ and ifS ⊆ D, the admissible extensions ofS in
(D, I) are exactly the admissible extensions ofS in (D′, I ′).

PROOF. Let (D, I) describe a simple reasons agent. We define the desired defeasible reasons agent(D′, I ′)
as follows. LetD′ = D1 ⊕ D2, whereD = D1 = D2. We always sayd ∈ D to meand ∈ D1, and write the
corresponding element ofD2 asd′. If d ∈ D andI(d) = A \\ B ‖− C, defineI ′(d) = A \\ B ∪ {d′} ‖− C. If
d′ ∈ D′, defineI ′(d′) = ∅ \\ {d} ‖− ∅ (the trivial interpretation). Now supposeS ⊆ D andE ⊆ D′. We claim
E ∈ AExts(S) iff E ∈ AExts ′(S). First, supposeE ∈ AExts(S). ThenE ⊆ D andE ∩ D2 = ∅, so for each
d ∈ E, E ∈ I ′(d), henceE ∈ S . But clearly all grounding arguments inD then translate directly into grounding
arguments inD′, soE ∈ AExts ′(S). Second, suppose instead thatE ∈ AExts ′(S). Clearlyd′ cannot occur inE
unlessd′ ∈ S, which is not the case, soE ∩D2 = ∅. Because of this,I ′(d) = I(d) for eachd ∈ E, soE ∈ S , and
every grounding argument inE translates directly into a grounding argument inD, soE ∈ AExts(S).

(19.8) THEOREM (MONOTONEEMBEDDING). Suppose(D, I) characterizes a simple reasons agent, and that
〈Si〉ni=0 (n ≤ ω) is a sequence of subsets ofD. Then there is a defeasible reasons agent(D′, I ′) and a sequence
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〈S′i〉ni=0 of monotone nondecreasing subsets ofD′ such that for eachi there is a 1-1 correspondencef between the
admissible extensions ofSi andS′i such thatE = f(E) ∩ D wheneverSi C· E.

PROOF. Suppose(D, I) characterizes a simple reasons agent, and that〈Si〉ni=0 (n ≤ ω) is a sequence of subsets
of D. We define the desired defeasible reasons agent(D′, I ′) as follows. LetD′ = D ⊕ (D × (ω + 1)). We use the
elements(d, n) for finite n to encode the addition or removal of the elementd as follows.

For eachd ∈ D, Defeated(d) = (d, ω), Defeated((d, ω)) = d, and for eachk ∈ N, Defeated((d, 2k)) =
(d, 2k + 1), andDefeated((d, 2k + 1)) = (d, 2k).

For eachd ∈ D, if I(d) = A \\ B ‖− C, thenI ′(d) = A \\ B ∪ {(d, ω)} ‖− C. Also,I ′((d, ω)) = ∅ \\
{d} ‖− ∅ (the trivial interpretation),I ′((d, 0)) = ∅ \\ {(d, 1)} ‖− {d}, and for eachk ∈ N, I ′((d, 2k + 1)) = ∅ \\
{(d, 2k)} ‖− ∅ andI ′((d, 2k + 2)) = ∅ \\ {(d, 2k + 3)} ‖− {(d, 2k + 1)}.

Let S′0 = S0 × {0}, and if0 < i ≤ n, let S′i+1 = S′i ∪ {(d, 2k + 2) | d ∈ Si 4 Si+1 ∧ k = max{j |
(d, 2j) ∈ S′i}}. Obviously, the sequence〈S′i〉ni=0 is nondecreasing, and for eachi, S′i ∩D = ∅. We claim for eachi,
0 ≤ i ≤ n, |AExts(Si)| = |AExts ′(S′i)|. Clearly, no elements ofD × {ω} can ever occur in admissible extensions
of S′i since no reasons have them as conclusions. Now the element(d, 0) will be defeated iff the last change with
respect tod was its removal, so ifSi containsd, (d, 0) will be undefeated in every extension ofS′i, and so included.
These elements then reproduce the extensions of the original set. Since the elements ofD mention no elements of
D × (ω + 1), if E ∈ AExts ′(S′i), thenE ∩ D ∈ AExts(Si).

§20. While the ideas of simple and defeasible reasons play important roles in the practice of artificial intelligence,
they have important limitations in the sorts of state specifications they can express. The most obvious of these is the
inability to exclude any state component from admissible states.

(20.1) THEOREM. D is admissible in the simple reasons theory.

PROOF. For alld ∈ D, there are setsA,B,C ⊆ D such thatI(d) = A \\ B ‖− C, and for all setsA,B,C ⊆ D,
C ⊆ D, and henceA ⊆ D ⊆ Bc ⊃C ⊆ D, is always true.

Noting this obvious inexpressiveness, it is natural to ask exactly which state spacesS are expressible in the simple
reasons theory. As we noted before, the empty set cannot be excluded.

(20.2) THEOREM. ∅ is admissible in the simple reasons theory.

Beyond such trivialities, the expressive capabilities of the simple reasons theory are largely unknown. Yet if we
return to the unrestricted theory, we have clearer expressive powers.

(20.3) THEOREM. LetS ⊆ PD. ThenI can be chosen so thatQ = S ∪ {∅}.

PROOF. DefineI so that for eachd ∈ D, I(d) = S .

Since the general theory has unlimited but practically unusable expressive capabilities, while the simple
reasons theory is somewhat inexpressive in spite of its demonstrated practical utility, we look for additions to the
simple reasons theory which increase the expressive capabilities in useful ways. The most obvious candidate addition
is the notion ofdenial.

(20.4) DEFINITION. An agent’s use of simple reasons and denials is characterized exactly as in the simple
reasons theory, except thatD = D+ ⊕D−, where for eachd ∈ D+ there are setsA,B, C ⊆ D such that

I(d) = A \\ B ‖− C = {S ⊆ D | A ⊆ S ⊆ Bc ⊃C ⊆ S},

and for eachd ∈ D− there is some (necessarily unique)e ∈ D such that

I(d) = {S ⊆ D | e /∈ S}.
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Note that this theory is just like the simple reasons theory except that some state components, the denials, can rule
out the presence of specific elements. To make this ability uniform, we need only assume the existence of a 1-1
function¬ : D → D− such that for eachd ∈ D, I(¬d) = {S ⊆ D | d /∈ S}. This augmentation of the theory adds
expressive power, but again we have no characterization of exactly which state spaces are so expressible.

(20.5) THEOREM. If D is infinite, then not every state space can be attained with only finite reasons and denials.

PROOF. If |D| = ω, then the number of possible finite reasons isω, as is the number of possible denials. Hence
the number of possible interpretation functions is(ω + ω)ω = ωω. But the number of possible state spaces is22ω

,
andωω < 22ω

.

One should not confuse the nature or uses of denials with the qualifiers of simple reasons or the defeaters
of defeasible reasons. Their natures differ in that the former sort of element absolutely rules out some conclusion
from appearing in any admissible extension, while the latter sorts of elements permit the reasons’s conclusions to
appear if supported by other reasons. The uses of these notions differ as well. Inclusion of a denial in a set rules
out some element with no recourse, and for “no reason” other than the denial itself. In contrast, the other notions
permit reasoned retraction of assumptions, defeating an assumption for a reason, and possibly later restoring the
assumption if the defeating reason itself is defeated.

One special case to consider is when the agent admitsself-denialsor contradictions. Such are elements
denying themselves, and are necessarily inadmissible, sinceI(d) = {S ⊆ D | d /∈ S}. Such elements are useful in
practice, as we see later.

(20.6) THEOREM. Every agent using simple reasons and denials can be realized within an agent using only
simple reasons and a single self-denial.

PROOF. SupposeD = D+ ⊕ D− andI characterize an agent’s use of simple reasons and denials. Let⊥ be
some object not inD. LetD′ = D ∪ {⊥}. DefineI ′ for eachd ∈ D′ by

(1) I ′(⊥) = ∅,
(2) If d ∈ D+, thenI ′(d) = I(d),
(3) If d ∈ D− andI(d) = {S ⊆ D | e /∈ S}, thenI ′(d) = {e} \\ ∅ ‖− {⊥}.

Let S andS ′ be the respective sets of admissible states. We claimS = S ′. Clearly,⊥ /∈ S for eachS ∈ S ′, so
bothS andS ′ are subsets ofPD. Supposed ∈ D+. Then by definition,I(d) ⊆ I ′(d). Supposed ∈ D− is a denial
of e ∈ D. ThenI ′(d) = {e} \\ ∅ ‖− {⊥} = {S ⊆ D | e ∈ S ⊃⊥ ∈ S} = I(d)∪{S ⊆ D′ | ⊥ ∈ S} ⊃ I(d). Thus
if d ∈ D, I(d) ⊆ I ′(d), and ifS ⊆ D,

⋂
d∈S I(d) ⊆

⋂
d∈S I ′(d), soS ∈ S only if S ∈ S ′. SupposeS ∈ S ′.

Then⊥ /∈ S, so if S ∈ I ′(d), S ∈ I(d), henceS ∈ S .

(20.7) THEOREM. Let S ⊆ PD, ⊥ /∈ D, andD′ = D ∪ {⊥}. ThenS ∪ {∅} is realizable as the set of
admissible states employing simple reasonsD and contradiction⊥ if a distinct representative can be chosen from
each set inPD −S − {∅}.

PROOF. If S ∈ PD−S−{∅}, letR(S) ∈ S be the selected distinct representative. DefineI so thatI(d) = PD
if d is not one of the representatives, andI(d) = S \\ D − S ‖− {⊥} if d = R(S). We claimS ⊆ D is admissible
iff S ∈ S ∪{∅}. NowI(R(S)) = PD′−{S}, sinceS ⊆ X ⊆ (D−S)c ⊃⊥ ∈ X is false only whenX = S. Thus
S is inadmissible, sinceR(S) ∈ S /∈ I(R(S)), soS is inadmissible wheneverS /∈ S ∪ {∅}. Now ∅ is admissible
as usual, so supposed ∈ S ∈ S . If d is not a selected representative of any set,S ∈ I(d) by definition. But if
d = R(S′), thenS 6= S′, soS ∈ I(d). Hence in either case,S ∈ I(d), soS is admissible.

Unfortunately, the complete expressivity of the theory of simple reasons with a contradiction is useless in practice,
since the system of distinct representative of the nontrivial inadmissible states is little more than a list of all the
inadmissible states, and that is about as useful as the list of all admissible states used in the interpretations of
Theorem 20.3.

(20.8) THEOREM. If d is a denial, but not a self-denial, then{d} is admissible.

PROOF. SupposeI(d) = {S ⊆ D | e /∈ S} ande 6= d. Then{d} ∈ I(d), so{d} is admissible.
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Note that ifd is a denial ofe, ande a denial ofd, then any elementc such thatI(c) = ∅ \\ ∅ ‖− C with d, e ∈ C is
effectively a self-denial.
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Logical theories

§21. The theories of simple and defeasible reasons capture the essence of reasoned assumptions, yet are quite ge-
neral since little restriction was placed on the nature of possible state components. Indeed, though it would divert us
too much here, one can develop these theories as theories of reasons invariant under arbitrary bijections of domains.
Since the structure of a logical language need not be preserved under arbitrary automorphisms, we see that the ge-
neral theories are more widely applicable than ones formulated in terms of logical languages. But logical languages
play an important role in artificial intelligence, since most mechanized agents constructed to date are explicitly re-
presentational, so we continue the development of our theories by examining the special case of representational
domains. By representational we mean domains isomorphic with logical languages, that is, systems invariant under
all bijections which preserve the logical structure of state components. Since we allow arbitrary re-representation,
we may choose a particular logical language as ourreference languagefor the purpose of setting out the special
logical theories of reasoned assumptions. This we do shortly, but first we treat an important non-linguistic notion
that also enters into logical systems.

§22. The theory of reasoned assumptions withdeductively closed statesadds to the simple reasons theory the con-
stitutive assumption that all states be closed with respect to a “deducibility” relation and that admissible extensions
allow “deductions” in grounding arguments as well as valid reasons. The notion of deducibility we employ is more
abstract than the familiar one of deducibility in logic.

(22.1) DEFINITION. A deducibility relation inD is a relation` onPD × PD satisfying
(i) A ` A (reflexivity)
(ii) If A ⊆ B andA ` C, thenB ` C (monotonicity)
(iii) If A ` B andA ` C, thenA ` B ∪ C (additivity)
(iv) If A ` B andB ` C, thenA ` C (transitivity)
(v) If A ` {e}, thenC ` {e} for some finiteC ⊆ A. (compactness)

We sayS ⊆ D is deductively closed ifB ⊆ S wheneverA ⊆ S andA ` B.

Agents whose admissible states must be deductively closed can be thought of as agents which regularly perform
some inferences automatically in addition to the inferences involved in making reasoned assumptions, whose pro-
blematic character sometimes demands less automatic, more deliberate consideration. By defining deductive closure
at this level of abstraction, we allow a wide range of deducibility relations which we can use to characterize a variety
of agents with limited automatic inferencing powers. For example, if we take` to be⊃, so thatA ` B iff A ⊃ B,
then all sets are “deductively closed,” and we have again the simple reasons theory. This corresponds to an agent
with no (automatic) inferential resources at all. Even without logical structure forD, the theory of data-types can be
cast in terms of deducibility relations.14 In these theories, sets of components represent partial data-structures, and
deductive closure amounts to filling in missing but implied “fields” to further complete the data-structure. IfD has
the structure of an ordinary logical language, we might defineA ` B to hold whenever for eachb ∈ B, eitherb ∈ A
or b is a ground instance of somea ∈ A. In this case, the deductive closure of a set of wffs is just the wffs plus
all their ground instances. This corresponds to agents who can automatically instantiate formulas but not combine
them. One can go on like this in many ways, for instance capturing agents who can automatically apply Modus
Ponens but not instantiate schema or universal statements.

(22.2) THEOREM. D is deductively closed.

PROOF. SupposeA ⊆ D andA ` B. Then by definitionB ⊆ D, soD is deductively closed.

14[SCOTT 1982]
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(22.3) LEMMA . If everyS ∈ Ŝ is deductively closed, then
⋂

Ŝ is deductively closed.

PROOF. SupposeA ⊆
⋂

Ŝ andA ` B. Then for everyS ∈ Ŝ, A ⊆ S, and sinceS is deductively closed,
B ⊆ S. But thenB ⊆

⋂
Ŝ.

(22.4) DEFINITION. Th(S), the deductive closure ofS ⊆ D, is given by

Th(S) =
⋂
{S′ | S ⊆ S′ andS′ deductively closed}.

The elements ofTh(∅), if any, are called tautologies.

(22.5) COROLLARY. Th(S) is the smallest deductively closed superset ofS.

(22.6) THEOREM. If A ⊆ B ⊆ D, then
(i) Th(A) ⊆ Th(B), and
(ii) Th(Th(A)) = Th(A), and
(iii) A is deductively closed iffA = Th(A).

PROOF. (i) SinceA ⊆ B ⊆ Th(B), Th(B) is a deductively closed superset ofA, so by definition,Th(A) ⊆
Th(B).

(ii) Since every set is its own superset, and sinceTh(A) is deductively closed, by definition we haveTh(Th(A)) ⊆
Th(A). But also by definition we haveTh(A) ⊆ Th(Th(A)), soTh(A) = Th(Th(A)).

(iii) (if) Immediate sinceTh(A) is deductively closed.(only if) SinceA is its own superset,Th(A) ⊆ A. But
A ⊆ Th(A), soA = Th(A).

We also introduce interdeducibility equivalence classes intoD by defining[ ] : D → PD for all d ∈ D so that

[d] = {e ∈ D | {d} ` {e} ∧ {e} ` {d}}.

Here we write[d] instead of[ ](d). WhenD has logical structure, the ranges of[ ] are called Lindenbaum algebras.

(22.7) DEFINITION. E is a (finitely) grounded extension ofS iff S C E and for eache ∈ E there is a (finite)
grounding setG ⊆ E and a well-ordering<G of G such thate ∈ G and wheneverd ∈ G, either (1)d ∈ S or (2)
there is some (finite) reasonf ∈ G and setsA,B, C ⊆ D such thatI(f) = A \\ B ‖− C, A ⊆ G, E ⊆ Bc, d ∈ C,
andA <G f <G d, or (3) there is some (finite) setA ⊆ G such thatA <G d andA ` {d}. For eachS ⊆ D,
GExts(S) is the set of grounded extensions ofS, andFGExts(S) is the set of finitely grounded extensions ofS.

Note that this definition of groundedness differs from the earlier definition only by allowing grounding sets to include
deductive arguments as well as “axioms” and valid reasons. Indeed, the definition is exactly the same as before if
we choosè to mean⊃, so this notion extends the earlier one.

(22.8) DEFINITION. An agent’s use of finitely grounded simple reasons in deductively closed states is charac-
terized by the axioms for simple reasons agents with the following modifications:

(i) ` is a deducibility relation inD
(ii) R = {S ⊆ D | S = Th(S)}
(iii) For eachd ∈ D andS ⊆ D,

J (d, S) = {E | d ∈ S ∨ E − {d} ` {d} ∨ ∃e ∈ E ∃A,B,C ⊆ D
I(e) = A \\ B ‖− C ∧ d ∈ C ∧ A ⊆ E ⊆ Bc}.

Again, this definition extends that of simple reasons agents, for if` is ⊃, thenR = PD andE − {d} 6` {d},
reducingJ to the earlier definition.
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(22.9) THEOREM. GExts ⊆ QExts.

PROOF. SupposeE ∈ GExts(S) ande ∈ E has grounding setG. Then by the definition of finite grounding
sets, eithere ∈ S, or there is anA ⊆ G such thate /∈ A andA ` {e}, henceE − {e} ` {e}, or some valid reason
in E supportse.

(22.10) DEFINITION. Let S, E ⊆ D. Then〈Λα〉 (α an ordinal), the levels fromS in E, are defined for all
ordinals by

Λ0(S, E) = S,

Λα+1(S, E) = Th(Λα) ∪
⋃
{C ⊆ D | ∃e ∈ Λα(S, E) ∃A,B ⊆ D

I(e) = A \\ B ‖− C ∧A ⊆ Λα(S, E) ∧ E ⊆ Bc},

and for limit ordinalsλ,

Λλ(S, E) =
⋃

α<λ

Λα(S, E).

We defineΛ(S, E) =
⋃

α Λα(S, E) to be the sum of all levels.

Note how the levels of a deductively closed agent include the deductive closures of the preceding levels of inference
via valid reasons. Not surprisingly, we can extend the previous results for simple reasons agents to the deductively
closed case. The reader is invited to skip to Corollary 22.29 while we perform this chore.

(22.11) COROLLARY. If α ≤ β, thenS ⊆ Λα(S, E) ⊆ Λβ(S, E) ⊆ Λ(S, E).

(22.12) COROLLARY. If Λα(S, E) = Λα+1(S, E), thenΛα(S, E) = Λ(S, E).

(22.13) THEOREM. If α is the cardinal number|D|+ 1, thenΛ(S, E) = Λα(S, E).

PROOF. SinceD has fewer thanα elements, it must be that for someβ + 1 ≤ α no new element is introduced
in Λβ+1, in other words,Λβ = Λβ+1. But thenΛβ = Λ, and sinceΛβ ⊆ Λα ⊆ Λ, we haveΛ = Λα.

(22.14) DEFINITION. If e ∈ Λ(S, E), the rank ofe in Λ(S, E) is the least ordinalα such thate ∈ Λα(S, E).
If A ⊆ Λ(S, E), the rank ofA in Λ(S, E) is the least ordinal not less than the rank of any element ofA.

(22.15) LEMMA . For everyS, E ⊆ D, Λ(S, E) = Th(Λ(S, E)).

PROOF. SupposeA ⊆ Λ. A has rank, sayα, so if A ` B, thenB ⊆ Λα+1 ⊆ Λ.

(22.16) LEMMA . If S C E, thenΛ(S, E) ⊆ E.

PROOF. Let S C E. ClearlyΛ0 ⊆ E, so assumeΛβ ⊆ E for eachβ < α. If α is a limit ordinal, then by
definitionΛα ⊆ E. If α is a successor ordinal, sayα = β +1, lete ∈ Λα. If e ∈ S, thene ∈ E, so supposee /∈ S. If
e ∈ Th(Λβ), thene ∈ E sinceE is deductively closed. Ife /∈ Th(Λβ) there is ad ∈ Λβ with I(d) = A \\ B ‖− C,
A ⊆ Λβ , E ⊆ Bc, ande ∈ C. SinceE is admissible, this meansC ⊆ E, soe ∈ E. HenceΛα ⊆ E, soΛ ⊆ E.

(22.17) THEOREM (STRATIFICATION). If E ∈ GExts(S) thenΛ(S, E) = E.

PROOF. SinceS CE, by the preceding lemma we haveΛ ⊆ E. To see thatE ⊆ Λ, supposee ∈ E. SinceE is a
grounded extension ofS, there is a grounding setG ⊆ E for e from S in E. We showG ⊆ Λ by <G-induction. Let
f ∈ G have no predecessors in<G. Clearlyf is the minimum ofG, and by definition ofG, we must havef ∈ S,
hencef ∈ Λ. Now suppose thatf ∈ G and for eachd <G f , eitherd ∈ S or there is a grounding subargument
G′ ⊆ G for d. If f ∈ S, thenf ∈ Λ. If {g ∈ G | g <G f} ` {f}, thenf ∈ Λ sinceΛ is deductively closed.
Otherwise there is ad ∈ G such thatI(d) = A \\ B ‖− C, A <G d <G f , E ⊆ Bc, andf ∈ C. By the inductive
hypothesis,A ⊆ Λ andd ∈ Λ, so there is some ordinalα such thatA ⊆ Λα andd ∈ Λα. But then by construction
C ⊆ Λα+1, sof ∈ Λ. HenceE ⊆ Λ, soE = Λ.
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(22.18) COROLLARY. If E ∈ GExts(S) andα = |E|+ 1, thenE = Λα(S, E).

(22.19) COROLLARY. If E ∈ GExts(S) andα is its rank, thenE = Λα(S, E).

(22.20) COROLLARY. If E ∈ FGExts(S), thenE = Λω(S, E).

(22.21) THEOREM (FIXED POINT). If E = Λ(S, E), thenE ∈ GExts(S).

PROOF. SupposeΛ = E. SinceS ⊆ Λ, S ⊆ E. Let e ∈ E with I(e) = A \\ B ‖− C, and suppose
A ⊆ E. Then there is an ordinalα such thate ∈ Λα andA ⊆ Λα, so by construction ifE ⊆ Bc as well, then
C ⊆ Λα+1 ⊆ E. Similarly, if A ` B, A ⊆ Λ, andA has rankα, thenB ⊆ Λα+1 ⊆ Λ. ThusE is admissible.
We proveE is a grounded extension ofS by induction on rank. Specifically, we prove that each element ofE has
a rank-preserving grounding set, a setG ⊆ E such thatrank(a) ≤ rank(b) whenevera ≤G b. Let e ∈ E have
rank α. If α = 0, thene ∈ S and we are done since{e} is a rank-preserving grounding argument fore from S
in E. Now assume thatα > 0 and all elements of rank less thanα have rank-preserving grounding arguments.
Necessarily,α is a successor ordinal, since no elements are introduced at limit ordinals, so supposeα = β + 1.
If e ∈ Th(Λβ), then there is someG ⊆ Λβ such thatG ` {e}, and otherwise there is somed ∈ Λβ such that
I(d) = A \\ B ‖− C, A ⊆ Λβ , E ⊆ Bc, ande ∈ C. Then by inductive hypothesis each element ofG or {d} ∪ A
has a rank-preserving grounding argument, so merge these arguments preserving rank-order, and adde to the end,
so producing a rank-preserving grounding argument fore. ThusE ∈ GExts(S).

(22.22) COROLLARY. E ∈ GExts(S) iff E = Λ(S, E).

(22.23) THEOREM. If every reason inD is finite, thenE ∈ FGExts(S) iff E = Λω(S, E).

PROOF. Suppose every reason inD is finite. By Corollary 22.20, we need only show thatΛω = E implies
E ∈ FGExts(S). SupposeΛω = E. We first showΛω = Λ. Suppose, by way of contradiction, thatΛ 6= Λω. Then
there must be a least ordinalα ≥ ω such that for somee ∈ D, e ∈ Λα+1 − Λα. Sinceα is minimal,Λω = Λα, for
otherwiseΛω = Λω+1 and henceΛω = Λ. If e ∈ Th(Λω) then there is someG ⊆ Λω such thatG ` {e}. Since
` is compact, there is a finiteG′ ⊆ G such thatG′ ` {e}. But then the rank ofG′ is finite, sayβ, soe ∈ Λβ+1, a
contradiction. Ife /∈ Th(Λω), then by construction, there is somef ∈ Λω, I(f) = A \\ B ‖− C, A ⊆ Λω, E ⊆ Bc,
ande ∈ C. SinceA is finite, this means the rank ofA is also finite. Thus there is someβ < ω such thatA ⊆ Λβ and
f ∈ Λβ , soe ∈ Λβ+1 ⊆ Λω, a contradiction. ThusΛ = Λω, and sinceΛω = E, by Theorem 22.21E is a grounded
extension ofS. We see thatE is finitely grounded by induction on rank. Clearly, ife ∈ Λ0, thene ∈ S, hence{e}
is a rank-preserving grounding set. Now suppose the rank ofe is α + 1 < ω. If e ∈ Th(Λα), then there is a finite
G ⊆ Λα such thatG ` {e}. If e /∈ Th(Λα), then by construction there is somef ∈ Λα with I(f) = A \\ B ‖− C,
A ⊆ Λα, E ⊆ Bc, ande ∈ C. By inductive hypothesis, each ofG or f ∪ A have finite rank-preserving grounding
sets, so merge these preserving rank-order, adde to the end, and the result is a finite rank-preserving grounding
order fore.

(22.24) THEOREM (GROUNDED M INIMALITY ). GExts ⊆ µQExts.

PROOF. GExts ⊆ QExts by Theorem 22.9, so supposeE ∈ GExts(S), E′ ∈ QExts(S), andE′ ⊆ E.
We first showΛ(S, E) ⊆ Λ(S, E′) by induction. ClearlyΛ0(S, E) ⊆ Λ0(S, E′) since each equalsS. Assume
Λβ(S, E) ⊆ Λβ(S, E′) for eachβ < α. If α is a limit ordinal, then by definitionΛα(S, E′) ⊆ Λα(S, E). If α
is a successor ordinal, sayα = β + 1, let e ∈ Λα(S, E). If e ∈ S or e ∈ Th(Λβ(S, E)), thene ∈ E′, and
otherwise there is ad ∈ Λβ(S, E) with I(d) = A \\ B ‖− C, A ⊆ Λβ(S, E), E ⊆ Bc, ande ∈ C. But since
E′ ⊆ E ⊆ Bc, this meanse ∈ Λα(S, E′). HenceΛ(S, E) ⊆ Λ(S, E′). But by Theorem 22.17 and Lemma 22.16,
E = Λ(S, E) ⊆ Λ(S, E′) ⊆ E′.

(22.25) COROLLARY. GExts = µGExts andFGExts = µFGExts.

(22.26) COROLLARY. If S C· D, thenAExts(S) = {D}.
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(22.27) COROLLARY. If S C· D, thenA ‖=S B for everyA,B ⊆ D.

(22.28) COROLLARY. If A |∼S B for everyA,B ⊆ D, thenA ‖=S B for everyA,B ⊆ D.

(22.29) COROLLARY. Let d, e ∈ D be such thatTh({d, e}) = D. Then if both are cotenable inS, everything
is arguable, that is∅ |∼S B for everyB ⊆ D, and if both are inevitable inS, then everything is inevitable, in fact
A ‖=S B for everyA,B ⊆ D.

PROOF. If S C· E andd, e ∈ E, thenE = D, so by definition∅ |∼S B for everyB ⊆ D. If S is incoherent,
everything is inevitable by Theorem 14.1, and ifS is coherent and bothd ande are inevitable, they are cotenable,
soAExts(S) = {D} and again Theorem 14.1 applies.

This result holds special interest later when, in logical language domains, we consider state componentsp,¬p such
thatTh({p,¬p}) = D.

(22.30) DEFINITION. The deductive reduction(D′, I ′,`′) of a deductively closed agent(D, I,`) is an agent
such that (1)D′ = D, (2) for eachd ∈ D, if I(d) = A \\ ∅ ‖− C, thenI ′(d) = PD, otherwiseI ′(d) = I(d), and
(3) `′ is the least deductive closure relation onD such that (a)A `′ B wheneverA ` B, and (b) for eachd ∈ D, if
I(d) = A \\ ∅ ‖− C, then{d} ∪A `′ C.

(22.31) THEOREM. If (D, I ′,`′) is the deductive reduction of(D, I,`), then S ′ = S , J ′ = J , and
AExts ′ = AExts.

PROOF. First note by definition thatI ′ ⊃ I andTh′ ⊃ Th, soQ′ ⊃ Q andR′ ⊆ R.

(S ′ = S ) SupposeS ∈ S ′. ThenS ∈ R′, soS ∈ R. Now if d ∈ S is non-monotonic, thenS ∈ I(d)
by definition, and ifI(d) = A \\ ∅ ‖− C andA ⊆ S, thenC ⊆ S by deductive closure, soS ∈ I(d). ThusS ∈ Q,
henceS ∈ S . Now supposeS ∈ S . ThenS ∈ Q, soS ∈ Q′. ClearlyS ⊆ Th′(S), yet if A `′ B andA ⊆ S, then
A `′ B is generated by some deductions in` and some reasons. But sinceS ∈ Q, these reasons must be satisfied,
and produce the necessary conclusions, soB ⊆ S as well. ThusS ∈ R′, soS ∈ S ′.

(J ′ = J ) By the preceding,Exts = Exts ′, so letd ∈ D andS, E ⊆ D. If d ∈ S, thenE satisfies both
J (d, S) andJ ′(d, S), so supposed /∈ S. First, if E ∈ J (d, S), and ifE −{d} ` {d}, thenE −{d} `′ {d}, and if
E − {d} 6`′ {d}, then there is ane ∈ E, I(e) = A \\ B ‖− C, A ⊆ E ⊆ Bc andd ∈ C. If B 6= ∅, thise satisfies
J ′(d, S) too, and ifB = ∅, thenE − {d} `′ {d}. HenceE ∈ J ′(d, S). Second, supposeE ∈ J ′(d, S). If some
valid reason supportsd in E, it also does so forJ (d, S). If no valid reason supportsd in E, thenE − {d} `′ {d}.
In this case, ifE − {d} 6` {d}, there is a monotonic reason which supportsd for J (d, S). HenceE ∈ J (d, S), and
J ′ = J .

(AExts ′ = AExts) By the preceding,QExts ′ = QExts. First supposeE ∈ FGExts(S). Then eachd ∈
E has a grounding argumentG, which is also a grounding argument in the deductive reduction under reinterpretation
of the steps. ThusE ∈ FGExts′(S). Second, supposeE ∈ FGExts ′(S). Then eachd ∈ E has a grounding
argumentG. But the steps ofG can each be reinterpreted as several steps in the unreduced agent, soG is also a
grounding argument there. ThusE ∈ FGExts(S), soAExts ′ = AExts.

(22.32) COROLLARY (NON-MONOTONIC INCONSISTENCY ISSEMI-CLASSICAL (REITER)). If A |∼S B
for everyA,B ⊆ D, thenTh′(S) = D in the deductive reduction of the agent.

PROOF. SupposeA |∼S B for everyA,B ⊆ D. By Theorem 14.2 this meansS C· D, henceAExts(S) = {D}.
By the previous theorem,AExts ′(S) = {D}, soD ∈ FGExts(S). Since no non-monotonic reasons can be valid in
D, by the definition of groundedness and the transitivity of deducibility, this meansS `′ {d} for eachd ∈ D, hence
D = Th′(S).
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§23. Theinvertible reasonstheory is an augmentation of the deductively closed simple reasons theory in which all
state components have negations, and in which contradicted conclusions can be passed backwards through reasons
to contradict antecedents or raise qualifications. Intuitively, this theory recalls a logical structure for reasons in
which A \\ B ‖− C really meansA ∧ ¬B ⊃C, so that when asserting¬C, ¬A ∨ B can be inferred. Of course,
A \\ B ‖− C cannot really beA ∧ ¬B ⊃C, for then the normal default∅ \\ ¬C ‖− C becomes¬C ⊃C. This is
equivalent to simplyC, so that under this rewriting defaults are pure axioms rather than rules which may or may
not introduce reasoned assumptions. We escape this absolute triviality by making the notion of admissible extension
more complex, allowing individual reasons to be used in different ways in different circumstances. Instead of at
most contributing its conclusionsC, a reasonA \\ B ‖− C in this theory can also be used to infer elements of¬A or
B on occasion. Unfortunately, as we shall see soon, even this more involved reading of invertible reasons trivializes
theories of reasoned assumptions, albeit in a different way.

(23.1) DEFINITION. An agent’s use of invertible reasons is characterized by(D, I,R,J ,C· ) together with
relations¬ and` such that

(i) D is a set,
(ii) ¬ : D → D is 1-1,
(iii) ` is a deducibility relation such that for eachd ∈ D, [d] = [¬¬d],
(iv) For eachd ∈ D, there are setsA,B,C ⊆ D such that

I(d) = A \\ B ‖− C = {S ⊆ D | A ⊆ S ⊆ Bc ⊃C ⊆ S}

(v)R = {S ⊆ D | S = Th(S)},
(vi) For eachd ∈ D andS ⊆ D,

J (d, S) = {E | d ∈ S ∨ E − {d} ` {d} ∨ ∃e ∈ E ∃A,B,C ⊆ D
I(e) = A \\ B ‖− C ∧
[(d ∈ C ∧ A ⊆ E ⊆ Bc) ∨
(d ∈ B ∧ A ⊆ E ∧ E ∩B = {d} ∧ E ∩ ¬C 6= ∅) ∨
(d = ¬d′ ∈ ¬A ∧ A− E = {d} ∧ E ⊆ Bc ∧ E ∩ ¬C 6= ∅)]}

(vii) AExts = FGExts, whereE ∈ FGExts(S) iff S C E and for eache ∈ E there is a finite
grounding setG ⊆ E well-ordered by<G such thate ∈ G and wheneverd ∈ G, either (1)d ∈ S, or (2) there is
somef ∈ G andA,B,C ⊆ D such thatf <G d, I(f) = A \\ B ‖− C and either (a)d ∈ C, A ⊆ G, A <G d,
andE ⊆ Bc, or (b) d ∈ B, A ⊆ G, A <G d, E ∩ B = {d}, and for somec ∈ C, both¬c ∈ G and¬c <G d, or
(c) d = ¬d′ ∈ ¬A, A − E = {d′}, (A − E) <G d, E ⊆ Bc, and for somec ∈ C, both¬c ∈ G and¬c <G d, or
(3) there is someA <G d such thatA ` {d}.

The definition of groundedness means that every element in an admissible extension ofS must either be an element
of S itself, follow deductively from other elements of the admissible extension, or contribute to the satisfaction of
some reason in the admissible extension, where the satisfaction of the reason and the circumstances of the other
elements it mentions necessitate introducing the element in order to make the appropriate condition true or false.
Unfortunately, invertibility guts the notion that reasons express preferences about what assumptions to make, leaving
only statements of anti-agnosticism.

(23.2) THEOREM. If I(a) = {∅ \\ {¬b} ‖− {b}} andI(b) = ∅ \\ ∅ ‖− ∅, thenAExts({a}) = {Th({a, b}), Th({a,¬b})}.

PROOF. Each of these sets is clearly an extension of{a}, with Th({a, b}) an admissible extension as usual.
Th({a,¬b}) is also a finitely grounded extension, since¬b has the sequence〈a,¬b〉 which satisfies condition (2)(b)
of the definition.

.

(23.3) CONJECTURE(INVERTIBLE TRIVIALITY ). In the theory of invertible reasons,AExts = µExts.
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§24. We now finally specialize the theory to one involving a logical language in thelinguistic reasonstheory.
Where previously we have not cared how state components express reasons, the idea of the linguistic reasons theory
is to express reasons in logical syntax. Since reasons refer to sets of state components, some of which may be
other reasons, we must choose the language so that formulas may refer to sets of other formulas. The techniques
for accomplishing this are well known, if tedious. It is sufficient for our purposes to restrict all sets of formulas to
explicit presentations, to only finite sets, and no quantification over sets or the arguments of\\ ‖− allowed. (One
can, of course, allow such quantification and thus make the language at least weak second order.) In summary, we
take the languageL to contain the\\ ‖− symbol and to be a metalanguage of itself using the quasi-quote notation
p q for naming formulas and finite sets of formulas. A prime use of these expressions are in stating schematic or
quantified reasons, for example

∀x [p{p(x)}q \\ p{q(x)}q ‖− p{r(x)}q] .

Here an expression likep{p(x)}q represents an open term built up out of the name-constructing functions and the
free variablex. For readability, we omit most explicit uses of quasi-quotes in the following since their use should be
clear.

(24.1) DEFINITION. An agent’s use of linguistic reasons is characterized by the axioms for simple reasons in
deductively closed states, where

(i) D is the set of sentences of a languageL as above,
(ii) ` is ordinary deducibility
(iii) For eachd ∈ D,

I(d) =
{
{S ⊆ D | A ⊆ S ⊆ Bc ⊃C ⊆ S} if d is closed andd = pAq \\ pBq ‖− pCq;
PD otherwise.

Since states are deductively closed sets of sentences and universally quantified formulas imply all their closed
instances, quantified reasons are interpreted as shorthand for all their closed instances. Note that local groundedness
becomes trivial in this theory. Because[d] = [¬¬d], if S is a deductively closed set of sentences,S −{d} ` {d} for
eachd ∈ S, soQExts = Exts.

EXAMPLES. In addition to our earlier conventions, we assume thatP andQ are ordinary closed wffs ofL.
(24.2) S = {∅ \\ {¬P} ‖− {P}}, AExts(S) = {Th(S ∪ {P})}
(24.3) S = {∅ \\ {P} ‖− {P}}, AExts(S) = ∅
(24.4) S = {∅ \\ {¬P} ‖− {P}, ∅ \\ {P} ‖− {¬P}},

AExts(S) = {Th(S ∪ {P}), Th(S ∪ {¬P})}
(24.5) S = {∅ \\ {¬P} ‖− {P}, ∅ \\ {¬Q} ‖− {Q}, ¬(P ∧Q)},

AExts(S) = {Th(S ∪ {P}), Th(S ∪ {Q})}
(24.6) S = {∅ \\ A ‖− {P}, ∅ \\ B ‖− {Q}, ¬(P ∧Q)},

AExts(S) = ∅
(24.7) S = {∀n ∈ N [∅ \\ {¬p(n)} ‖− {p(n)}], ∀n ∈ N p(n + 1)⊃¬p(n)},

AExts(S) = {Th(S ∪ {p(n) | n = 2m}), Th(S ∪ {p(n) | n = 2m + 1})}
(24.8) S = {∀n ∈ N [∅ \\ {¬p(n)} ‖− {p(n)}],

∀n > 0 p(n)⊃ ∃m < n ¬p(m), ∀n > 0 ¬p(n)⊃ ∃m < n p(m)},
This has an uncountable number of admissible extensions, one for each pattern of alternatingp-ness and¬p-ness.
That is, for every sequence of positive integersn1, n2, n3, . . . there is one admissible extension that contains

p(0), . . . , p(n1 − 1),¬p(n1), . . . ,¬p(n1 + n2 − 1), p(n1 + n2), . . .

and another admissible extension that contains the negations of all of these.
(24.9) S = {∃x p(x), ∀x[∅ \\ {p(x)} ‖− {¬p(x)}}

This has a different admissible extension for each equivalence class[p(t)] for closed termst, namely

Th(S ∪ {p(t)} ∪ {¬p(t′) | t′ a closed term and[p(t′)] 6= [p(t)]}),
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as well as an extension
Th(S ∪ {¬p(t) | t a closed term}),

in which thep-object has no name in the language.
(24.10) S = {∃x p(x), ∀x[∅ \\ {p(x)} ‖− {¬p(x)}, ∀x(x = a ∨ x = b)}

AExts(S) = {Th(S ∪ {p(a),¬p(b)}), Th(S ∪ {¬p(a), p(b)})}
(24.11) S = {∀n ∈ N [{lot(n + 1)} \\ {¬lot(n)} ‖− {lot(n)}],

∀n ∈ N [{¬lot(n)} \\ {lot(n + 1)} ‖− {¬lot(n + 1)}],
∀n ∈ N [lot(n)⊃ lot(n + 1)],
¬lot(0), lot(3)}
AExts(S) = {Th(S ∪ {lot(1), lot(2), . . . }),

Th(S ∪ {¬lot(1), lot(2), . . . }),
Th(S ∪ {¬lot(1),¬lot(2), lot(3), . . . })}

The first axiom says that ifn + 1 is a lot, presumably so isn. The second says ifn is few, presumably so isn + 1.
The third says that more than a lot is also a lot. Note that there is a distinct admissible extension for each choice of
the boundary between a few and a lot.

(24.12) COROLLARY (NON-MONOTONIC INCONSISTENCY ISSEMI-CLASSICAL). If S is inconsistent and
contains no nontrivial monotonic reasons,S is classically inconsistent, that is,Th(S) = L.

PROOF. This just restates Corollary 22.32 for the case of a deductively reduced linguistic reasons agent.

(24.13) DEFINITION. A normal reason is an elementd ∈ D such that for someA,C ⊆ D, I(d) = A \\ ¬C ‖−
C.

(24.14) THEOREM (ORTHOGONALITY OF EXTENSIONS (REITER)). If E,F ∈ AExts(S) contain only nor-
mal reasons andE 6= F , thenE ∪ F is inconsistent.

PROOF. SupposeE,F ∈ AExts(S) contain only normal reasons, and thatE 6= F . Now E = Λω(S, E), F =
Λω(S, F ), andΛ0(S, E) = Λ0(S, F ) = S, so there must be a leastα ≥ 0 such thatΛα+1(S, E) 6= Λα+1(S, F )
while Λα(S, E) = Λα(S, F ). Without loss of generality, supposee ∈ Λα+1(S, E) − Λα+1(S, F ). Then there is
a d ∈ Λα such thatI(d) = A \\ ¬C ‖− C, A ⊆ Λα, E ⊆ (¬C)c, ande ∈ C. In fact, C ⊆ E. But since
e /∈ Λα+1(S, F ), there is some¬f ∈ ¬C with ¬f ∈ F . Thusf ∈ E and¬f ∈ F , soE ∪ F is inconsistent.

(24.15) THEOREM (NORMAL REASONS (REITER)). If L is restricted so that all reasons are normal, then
everyS ⊆ L is coherent.

PROOF. Suppose every reason is normal. IfTh(S) = L, thenS C· L, so supposeTh(S) 6= L. We construct
an extensionE. Let E0 = S, and for i ≥ 0, let Ti be a maximal set of closed wffs such that (1)Ei ∪ Ti is
consistent, and (2) ifu ∈ Ti, then for somee ∈ Ei, I(e) = A \\ ¬C ‖− C, u ∈ C, C ⊆ Ti, andA ⊆ Ei. Define
Ei+1 = Th(Ei) ∪ Ti, andE =

⋃∞
i=0 Ei. We prove that for eachi ≥ 0, Ei = Λi(S, E), henceΛω(S, E) = E, and

S C· E.

Clearly,E0 = Λ0 = S, so assumeEi = Λi. We claimEi+1 = Λi+1.

(Ei+1 ⊆ Λi+1) Let e ∈ Ei+1. If e ∈ Th(Ei), thene ∈ Λi+1, and ife /∈ Th(Ei) there is somef ∈ Ei,
I(f) = A \\ ¬C ‖− C, A ⊆ Ei, f ∈ C, andC ⊆ Ti. But sinceEi+1 ⊆ E is consistent,E ⊆ (¬C)c, hence
C ⊆ Λi+1, soe ∈ Ei+1.

(Λi+1 ⊆ Ei+1) Let e ∈ Λi+1. If e ∈ Th(Λi), thene ∈ Ei+1, and ife /∈ Th(Λi) then there is anf ∈ Λi,
I(f) = A \\ ¬C ‖− C, A ⊆ Λi, E ⊆ (¬C)c, C ⊆ Λi+1, ande ∈ C. Now if e /∈ Ei+1, by the maximality ofTi we
knowEi ∪ Ti ∪ {e} is inconsistent, soTh(Ei) ∪ Ti ∪ {e} is inconsistent, soEi+1 ∪ {e} is inconsistent. But since
Ei+1 ⊆ E, this meansE ∪ {e} is inconsistent. Since clearlyE = Th(E), we must have¬e ∈ E, contradicting
E ⊆ (¬C)c. Hencee ∈ Ei+1, soΛi+1 ⊆ Ei+1. ThusΛi+1 = Ei+1 andS C· E.
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Results are also known concerning the decidability of coherence, arguability, and inevitability in the lin-
guistic reasons theory, but they are less satisfying than those of the simple reasons theory. Where previously a finite
universe ensured computability, the connection inherent in this theory between arguability and logical consistency
puts most problems beyond the bounds of recursiveness.

(24.16) THEOREM (REITER).
⋃

AExts(S) is not recursively enumerable inS.

(24.17) COROLLARY. Coherence is not decidable.

(24.18) THEOREM (CHURCH). Consistency is not decidable.

For some special cases, such as finite sentential and monadic sets, arguability and inevitability appear decidable. But
rather than continue this topic here, we refer to the discussions in [REITER 1980], [MCDERMOTT AND DOYLE

1980], and [DAVIS 1980].
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Attitudinal theories

§25. In the previous theories of reasoned assumptions, there was no commitment to what state components signified,
other than reasons. Elements of the domain were not in themselves any familiar psychological organization, but
merely the components from which to build mental states. As building blocks, the statements of logical languages
can be used to encode versions of beliefs, desires, and other common psychological notions, but they are not beliefs
or desires by themselves without further constitutive assumptions. It is tempting, of course, to phrase attitudinal
theories directly in terms of logical theories, for attitudes are often taken to be attitudes towards propositions, and
languages are the usual way of expressing propositions. However, such direct phrasing can hide fundamental ideas
about attitudes among masses of particular linguistic details. To seek clarity, we temporarily retreat from logical
theories, and work back up to logical forms after starting once again with the simple reasons theory.

§26. Pick an attitudinal ontology for a psychology, and we can cast its elements directly in the simple reasons
theory. In the following, we assume for simplicity that the agent’s attitudes divide into three classes: beliefs (Bel),
desires (Des), and intentions (Int ). We also assume each particular attitude among these classes is a possible state
component, that is,Bel, Des, Int ⊆ D. This leaves open the possibility thatD may contain non-attitudinal com-
ponents. For example, we can take the set of reasons (Rsn) to be outside the sets of attitudes. In such a formulation,
we make explicit in reasons the connections between the agent’s attitudes, but we need not assign special import to
the attitudes themselves. That is, we might assume thatI(a) = PD for eacha ∈ Bel∪ Des∪ Int . Of course, in an
ecological theory of the agent we would wish to interpret these attitudes substantively, so that beliefs, say, indicate
sets of possible worlds in which they are true. But here our concern is with narrow theories of the agent, and we can
ignore all substantive interpretations except those of reasons.

§27. Rather than resting content with the simple attitudinal theory, we can define further theories of reasoned
assumptions by stipulating that states are composed exclusively of attitudes. In terms of the sets we introduced
earlier, we assumeD = Bel ⊕ Des⊕ Int . But since reasons are state components, that is,Rsn ⊆ D, we must
also say how reasons appear among the attitudes. Our initial motivations and formulations of reasons suggest two
possibilities, namelyRsn ⊆ Int and Rsn ⊆ Des. (The possibilityRsn ⊆ Bel is not considered because our
theories take reasons to be prescriptive, rather than merely descriptive.) Reasons act as specifications to be satisfied
by states containing them, and such definite specifications might be thought of as intentions of the agent about
its own construction. TakingRsn ⊆ Int produces what we can call theratiocinative intentiontheory of reasoned
assumptions. In this theory, we assume that if the agent has a state at all, it has satisfied all the intentions concerning
that state expressed in that state, although we do not require that in achieving that state it satisfied earlier intentions
about what to do. We produce yet another theory, that ofratiocinative desires, by assumingRsn ⊆ Des. In this
theory, we interpret reasons not as definite specifications for mental states, but as preferences for states satisfying
certain conditions over states not satisfying those conditions. Here we take preferences to be desires to attain one
alternative in every situation presenting a specified set of alternatives. How do we take such desires to be satisfied?
Consider states in which as many ratiocinative desires are satisfied as possible, that is, states in which changes that
would satisfy some unsatisfied desire would result in failures to satisfy some currently satisfied desire. (Notions
much like this are familiar in economics as Pareto optimality, but pursuit of this connection here would digress too
far.) It turns out that these states of maximal utility are exactly the admissible states as we have defined them. We
see this formally as follows.

(27.1) DEFINITION. A setS ⊆ D is satisfaction optimal iff for eachd ∈ S, if S /∈ I(d) then for eachS′ ∈ I(d)
there is somed′ ∈ S with S ∈ I(d′) butS′ /∈ I(d′).

(27.2) THEOREM. If S is admissible,S is satisfaction optimal.

PROOF. Trivially, since ifS is admissible, there are no elementsd ∈ S such thatS /∈ I(d).
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(27.3) THEOREM. There is an inadmissible satisfaction optimal set.

PROOF. LetD = {d, e}, S = {d}, I(d) = {S}, andI(e) = {D}. ThenD is inadmissible becaused ∈ D /∈
I(d). ButD is satisfaction optimal sinced is the only unsatisfied element inD, S is the only set inI(d), ande ∈ D,
D ∈ I(e), andS /∈ I(e).

(27.4) THEOREM. In the simple reasons theory, ifS is satisfaction optimal,S is admissible.

PROOF. We prove the contrapositive. SupposeS ⊆ D is inadmissible, that is, for somed ∈ D, d ∈ S /∈ I(d).
Now by Theorem 20.1,D ∈ I(d), but for alle ∈ S,D ∈ I(e) as well, soS is not satisfaction optimal.

(27.5) COROLLARY. In the simple reasons theory, sets are admissible iff they are satisfaction optimal.

(27.6) QUESTION. Can interesting parts of the general theory be developed in terms of satisfaction optimality
rather than admissibility as we have defined it? Or is the simple reasons theory the weakest theory of any interest?

Another notion within the simple reasons theory similar to satisfaction optimality is validity optimality.
This stems from a focus on ratiocinative desires which manage to make their objective inferences instead of on the
mere satisfaction of specifications by either success or disqualification. We first recall the definition of validity.

(27.7) DEFINITION. An elementd ∈ S is valid in S iff I(d) = A \\ B ‖− C andA ⊆ S ⊆ Bc. Otherwise,d
is invalid inS. We writeV (d) to mean the set of allS ⊆ D such thatd is valid inS. We writeV(S) to mean the set
of all d ∈ S such thatd is valid inS, andV̄(S) to meanS − V(S), the set of alld invalid in S.

Note that even invalid elements can be satisfied.

(27.8) DEFINITION. A setS is validity optimal inŜ ⊆ PD iff for eachd ∈ D, if S′ ∈ Ŝ validatesd butS does
not, then there is somee valid in S but not valid inS′. Alternatively,S is validity optimal inŜ iff for eachd ∈ S, if
S /∈ V (d) then for eachS′ ∈ V (d) ∩ Ŝ there is somed′ ∈ S with S ∈ V (d) butS′ /∈ V (d′).

(27.9) COROLLARY. If Ŝ1 ⊃ Ŝ2 andS is validity optimal inŜ1, thenS is validity optimal inŜ2.

(27.10) THEOREM. There are admissible sets not validity optimal inS .

PROOF. LetD = {d}, andI(d) = PD. Then both∅ andD are admissible,D validatesd, but ∅ validates no
element not inD, so∅ is not validity optimal inS .

(27.11) THEOREM. There are inadmissible sets validity optimal inPD.

PROOF. LetD = {d, e}, I(d) = ∅ \\ {d} ‖− {e}, andI(e) = ∅ \\ {e} ‖− {d}. ThenS = {∅,D} 6= PD, but
every set inPD is validity optimal, since no set validates any element.

Our intuition is that validity optimality captures the fundamentals of the orthogonality of admissible extensions of a
set, of what appears in the linguistic reasons theory as inconsistency of alternative admissible extensions of sets of
normal defaults. That is, this notion shows we can sensibly speak of psychological incompatibility without requiring
notions of logical inconsistency.

(27.12) THEOREM. In the simple reasons theory, ifS C· E, thenE is validity optimal inAExts(S).

PROOF. Suppose, by way of contradiction, thatE ∈ AExts(S) and that there isE′ ∈ AExts(S) such thatd
is valid in E′ but not valid inE, yet noe valid in E is not valid inE′. That is, there is ad ∈ E′, d valid in E and
eitherd /∈ E or d invalid in E′, andV(E) ⊆ V(E′). The elementd showsE 6= E′, so by the minimality ofE and
E′ amongQExts(S), E −E′ 6= ∅. Let e ∈ E −E′. SinceS ⊆ E′, e /∈ S. But sinceE ∈ QExts(S), there must be
somef ∈ E, f valid in E, ande a consequence off . But thenf is valid in E′ as well, soe ∈ E′, a contradiction.
ThusE must be validity optimal inAExts(S).
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(27.13) QUESTION. If E is validity optimal inAExts(S), is E ∈ AExts(S)?

(27.14) DEFINITION. A setS is strongly validity optimal inŜ ⊆ PD iff for eachd ∈ D, if S′ ∈ Ŝ validatesd
while S invalidatesd, then there is somee valid in S but invalid inS′; in other words, ifV(S′) ∩ V̄(S) 6= ∅, then
V̄(S′) ∩ V(S) 6= ∅.

(27.15) COROLLARY. If S is strongly validity optimal in̂S, thenS is validity optimal inŜ.

(27.16) THEOREM. If S C· E in a finite simple reasons agent, thenE is strongly validity optimal inAExts(S).

PROOF. SupposeS C· E in a finite simple reasons agent andE is not strongly validity optimal. Then there is
E′ ∈ AExts(S) andd ∈ E such thatd is valid in E′ but invalid inE, and if e is valid in E, then eithere /∈ E′

or e is valid in E′ as well. The differing properties ofd showE 6= E′, so by the minimality ofE andE′ in
QExts(S), E − E′ 6= ∅. Now E = Λω(S, E), E′ = Λω(S, E′), andS = Λ0(S, E) = Λ0(S, E′), so there is a
leastα ≥ 0 such thatΛα+1(S, E) 6= Λα+1(S, E′) butΛα(S, E) = Λα(S, E′). Without loss of generality, suppose
e ∈ Λα+1(S, E) − Λα+1(S, E′). Then there is somef ∈ Λα with I(f) = A \\ B ‖− C, A ⊆ Λα, E ⊆ Bc, and
e ∈ C. Sincee /∈ Λα+1(S, E′), there must be someg ∈ E′ ∩B, sof is invalid inE′. This contradicts the previous
conclusion that sincef is valid in E, eitherf /∈ E′ or f is valid in E′. HenceE must be strongly validity optimal
in AExts(S).

§28. As promised, we now consider propositional attitude theories of reasoned assumptions. To do this, we simply
take the linguistic reasons theory and assume among the unary predicates of its language are symbolsBel, Des, and
Int . Thus the classesBel, Des, andInt are the ground wffs of the form, respectively,Bel(·), Des(·), andInt (·). The
content of these attitudes is expressed by naming formulas of the language, for instanceBel(p2 + 2 = 4q). The
theories of ratiocinative intentions and desires can then be had by only allowing reasons to occur as intentions or
desires, respectively, asInt (pA \\ B ‖− Cq) or Des(pA \\ B ‖− Cq). That is, we now count expressions of the
form A \\ B ‖− C as terms rather than as formulas, so that no sentence has the formA \\ B ‖− C. To make up for
this we interpret these particular sorts of intentions and desires specially, respectively by

I(Int (pA \\ B ‖− Cq)) = {S ⊆ D | A ⊆ S ⊆ Bc ⊃C ⊆ S}

I(Des(pA \\ B ‖− Cq)) = {S ⊆ D | A ⊆ S ⊆ Bc ⊃C ⊆ S}.

With these encodings, we can consider three new theories. The first is thedeductively closed beliefstheory,
in which we require the set of believed formulas to be closed under the deducibility relation`. That is, we take

R = {S ⊆ D | S = Th(S) ∧ ∃S′ ⊆ D [S′ = Th(S′) ∧ ∀d ∈ D [d ∈ S′ ≡ Bel(pdq) ∈ S]]}.

The second theory involving propositional attitudes is theself-omniscienttheory, in which we assume the
agent has complete and correct beliefs about its own attitudes. That is, we take

R = {S ⊆ D | S = Th(S) ∧ ∀d ∈ D [d ∈ S ≡ Bel(pdq) ∈ S ∧ d /∈ S ≡ ¬Bel(pdq) ∈ S]}.

Naturally, if S ∈ R is nonempty, it is infinite, containing reflection upon reflection of its own contents.

The third theory involving propositional attitudes combines these two into thedeductively self-omniscient
theory. Unfortunately, if̀ is the ordinary deducibility relation of logic, the theory is inconsistent, that is, there are no
agents whose states satisfy all these requirements. Proving this here would digress too far from our main concerns.
MONTAGUE proves it in some generality, and THOMASON discusses its significance for attempts to define notions
of “semantic competence” of agents, notions corresponding to those of “grammatical competence” common in
linguistics.15

15[M ONTAGUE 1963], [THOMASON 1979]
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Evolutionary theories

§29. Our initial discussion of problems of acting with incomplete information focussed on adopting and abandoning
assumptions, but the preceding sections made little mention of such activities. Rather, the task was to set out the
admissible states of the agent, so that actions in which the agent changes its state may be better understood. With a
wide assortment of structures for states now available, we return to the question of state changes and actions.

The notion of reasoned assumptions was developed to treat reasoned adoption and reasoned abandonment
of assumptions. In reasoned adoption of assumptions, the agent acts to adopt a new assumption by adding a reason
to its state whose conclusion is the new assumption and whose antecedents and qualifiers may indicate the consi-
derations involved in the decision to adopt the assumption. But just adding a reason to an admissible state will not
in general yield another admissible state, so we must find some other way of effecting the change. To do this, we
interpret the new reason as the agent’s partial specification of its next state. We may not wish to accept just any
new state satisfying the reason, for such might abandon all of the previous state. If not, we can employ the idea of
conservation and require that the new state should be an admissible state satisfying the new specification, one as
“close” as possible to the previous state. Similarly, in reasoned abandonment of assumptions, the agent acts to rid
itself of some unwanted assumption. This can be done either by removing from the state the reason supporting the
assumption, or by adding to the state a new reason which defeats the assumption. But as before, the removal of a
reason from an admissible state may not yield another admissible state, so we again may employ conservation in
moving to a new admissible state which satisfies the new reason.

However useful might be reasoned adoption and abandonment of assumptions, one cannot always escape
the need for forced or unreasoned adoption and abandonment of state components. The notion of forced adoption of
state components might be used as a very crude way of viewing some effects of non-mental parts of a human on its
state of mind, for example changes made by the perceptual and motor systems. Other effects, such as physiological
changes in the body which affect the nervous system, seem ill-suited to this view, and require some other means
of formulation, conceivably that of state-dependent interpretations, although I suspect other ideas are necessary as
well. We do not explicitly treat forced adoption or abandonment of assumptions in this paper. On the other hand,
forced changes of assumptions have a long history in artificial intelligence as the technique of backtracking, and we
give a straightforward treatment of them later.

§30. Let (D, I,S ,J ,C· ) describe an agent and letE be a set of “environments.” We suppose the basis for the
agent’s state changes to be described by a “kernel” transition function∂ : S ×E → PD which for each admissible
state and environment yields the (partial) specifications for the next state. The role of this kernel as specifications
for the next state is ensured by requiring the next state to be an extension of the kernel, since extensions of a set
satisfy all the specifications represented by that set. In fact, we require∆(S, e), theadmissible transitions fromS
in e, to lie among the admissible extensions of the kernel, that is,∆(S, e) ⊆ AExts(∂(S, e)). As with the notions
of admissible states and admissible extensions, we capture different agents by stipulating∆ as different restrictions
of AExts ◦ ∂. However, while the earlier sorts of restrictions separated into local and global restrictions, here we
only treat global restrictions on transitions, as formalization of interesting local restrictions involves other notions
beyond the scope of this paper.

§31. Of possible sorts of global restrictions on admissible transitions, three occupy our attention in the following:
those of strictness, of conservatism, and of their combination, strict conservatism. In spite of such labels, these
notions have nothing to do with New Englanders.

Strictnesswe have seen previously in the form of strict arguability. In a strict agent,∆ = µAExts ◦ ∂. As
usual, this is justAExts ◦ ∂ if the previous theories are used to supplyAExts, since in thoseµAExts = AExts.
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Strictness requires that successor states stay as close as possible to the specifications of the kernel, giving up any
part of the previous state not derivable from the kernel alone. This sort of agent captures the operation of RMS
quite well, as explained in§46, in which the agent maintains a set of fundamental or kernel reasons, and regularly
reconstructs the complete state when this kernel is modified by additions or emendations.

Where strictness requires successor states to be as close as possible to the kernel specifications,conserva-
tism requires successor states to approximate their predecessors as closely as possible. Of course, different notions
of approximation are of interest in different circumstances, so we require only certain abstract properties of approxi-
mation comparisons to define conservatism. We express approximation comparisons in terms of a relation� on tran-
sitions, a quasi-order whose minimal elements include the null transitions. That is, we read(S1, S2) � (S3, S4) as
saying that the transition fromS1 toS2 is not larger than the transition fromS3 toS4, and insist� be reflexive, transi-
tive, and order no transition properly smaller than a null transition. Formally,� is a relation on(S ×S )×(S ×S )
such that for all admissible states,

(i) (S, S′) � (S, S′),
(ii) If (S1, S

′
1) � (S2, S

′
2) and(S2, S

′
2) � (S3, S

′
3), then(S1, S

′
1) � (S3, S

′
3),

(iii) (S, S) � (S, S′),
(iv) (S′, S′) � (S, S′).

We define the admissible transitions of conservative agents in terms of�-minimal transitions. In analogy withµ,
we use the operatorν (“nearest”) to indicate transition minimization. IfS ∈ S andX ⊆ S , we define

ν(S, X) = {x ∈ X | ∀y ∈ X (S, y) � (S, x)⊃(S, x) � (S, y)},

and abuse the notation by writingνf as shorthand forλS.ν(S, f(S)), so that∆ = νAExts ◦∂ means that∆(S, e) =
ν(S,AExts(∂(S, e))) for eachS ∈ S ande ∈ E . As with µ, ν(S, X) = ∅ if X = ∅, soν(S,AExts(∂(S, e))) = ∅
if AExts(∂(S, e)) = ∅.

Several comments on this definition are in order. First, we only require� to be a quasi-order rather than
a partial order. That is, we do not stipulate antisymmetry, so thatx � y and y � x need not implyx = y.
This is made clear in the examples to follow. Second, as in partial orders, it can happen that bothx 6� y and
y 6� x. In our usage, ifAExts(∂(S, e)) contains two incomparable states but no common smaller state, then∆(S, e)
will contain both states, and the system(S , E ,∆) will be nondeterministic. This too is illustrated below. Third,
minimal mutilation has been formalized in the philosophical study of counterfactual conditionals using the notion
of comparative similarity relations on states.16 Here we note only that every order� on transitions induces a (not
necessarily interesting) comparative similarity relation onS , andvice versa. ReadX ≺

Z Y as “X is as close toZ
as isY .” The connection between these relations then obtains by defining

(S1, S2) � (S3, S4) iff S1 = S3 andS2
≺
S1

S4 or S2 = S4 andS1
≺
S2

S3.

Conservative agents need not pass along sets of fundamental reasons in∂, but can instead simply specify
changes and let the�-minimization conserve as much of the previous state as possible. In agents whose admissible
extensions are not strict, for example locally grounded agents (AExts = QExts), this can lead to retention of
mutually supportive but ungrounded complexes of elements in the successor state. Indeed, many discussions of belief
revision in the philosophical literature propose versions of conservative agents, as do proponents of the deductivist
approach to artificial intelligence. In this approach,D is the set of sentences of a first-order logical language,S
is the set of all deductively closed and consistent sets of sentences, and admissible extensions are just minimal
extensions (and so just deductive closures if consistent), that is,AExts = µExts. Here∂ produces “inputs” to
or observations by the agent, new sentences possibly contradicting current beliefs, and∆ moves the agent to some
extension of∂(S, e) as close as possible (by some measure) toS, for example, toTh(A∪∂(S, e)) for some maximal
subsetA of S consistent with∂(S, e).

Finally, one can combine the notions of strictness and conservatism intostrict conservatism. Here we
define the admissible transitions by∆ = νµAExts ◦ ∂. This sort of agent moves to admissible extensions of the
kernel which first are closest to the kernel, and second are closest to the preceding state.

16See [LEWIS 1973], [TURNER 1981].
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Each of these sorts of agents calls for study, as they may be appropriate for different applications. Systems
doing more or less thorough analysis of domains small in comparison to the whole world (such as electronic circuit
analysis and other expert tasks) might always require strictness, or better yet, strict conservatism. Systems whose
focus ranges over the whole world (general agents and natural language users) probably have too many uncertain
interrelated assumptions to think of any subset as “the axioms,” and so must settle for simple conservatism in spite
of the logicalfaux pasthis sometimes entails in those special cases in which the axioms are distinguished. These
restrictions might be combined in other ways as well. Artificial intelligence systems often divide into many small
subsystems. One might organize the agent so that each small subsystem is strictly conservative, while the large
collection as a whole is merely conservative.

§32. Let us look at an example of a strictly conservative agent. For simplicity, we assumeE = {e} and omit
all mention of this constant environment. We begin with an agent described by the simple reasons theory, and
want some notion of relative size of transitions. Since states are sets of state components, perhaps the simplest
indication of the amount of change involved in going from stateS1 to stateS2 is the symmetric differenceS14S2 =
(S1−S2)∪(S2−S1) = (S1∪S2)−(S1∩S2). The setS1−S2 reveals how much of the initial state is lost in the new
state, and the setS2−S1, shows how much of the new state is gained relative to the old. Together these sets indicate
the degree of conservation (or lack of it) involved in the change. Thus one way of comparing two transitions is to
define(S1, S2) � (S3, S4) iff S1 4 S2 ⊆ S3 4 S4. Since the symmetric difference of any set with itself is empty,
and since⊆ is a quasi-order on sets with∅ as its minimum element, this definition yields the required properties of
�.

Now suppose the agent starts in the empty stateS0 = ∅ and∂(S0) = {∅ \\ A ‖− B, ∅ \\ C ‖− D}.
Properly speaking, of course, this isI∗(∂(S0)), but we drop the interpretation notation without confusion here.
∂(S0) has a single admissible extension, soS1 = ∂(S0) ∪ B ∪ D, the conservation condition being satisfied
trivially. Suppose next that∂(S1) = ∂(S0) ∪ {∅ \\ B ‖− A, ∅ \\ D ‖− C}. By itself, this kernel is very
ambiguous, with the four admissible extensions∂(S1)+A∪C, A∪D, B ∪C, B ∪D. But of these, one is closest
to S1, namelyS2 = ∂(S1) ∪ B ∪ D. Next, suppose∂(S2) = ∂(S1) ∪ {∅ \\ E ‖− C}. Now the kernel has only
two admissible extensions, namely∂(S2) + A ∪ C, B ∪ C. But of these, again one is closer toS2 than the other,
soS3 = ∂(S2) ∪ B ∪ C. Finally, suppose∂(S3) = ∂(S2) ∪ {∅ \\ F ‖− G, ∅ \\ G ‖− F}. There are now again
four admissible extensions of the kernel,∂(S3) + A ∪ C ∪ F, A ∪ C ∪G, B ∪ C ∪ F, B ∪ C ∪G, and of these,
two are incomparable nearest neighbors ofS3, namely∂(S3) ∪ B ∪ C ∪ F and∂(S3) ∪ B ∪ C ∪ G. Thus∆(S3)
contains both of these states.

If this agent were merely strict, rather than strictly conservative, the admissible transitions would be dif-
ferent. For instance,S1 would remain the same, since it is the only admissible extension of∂(S0), butS2 could be
any of the four admissible extensions of∂(S1), since the transition is not required to be�-minimal.

To exhibit the difference between conservative and strictly conservative agents, suppose thatS = {a, b, c, d, e},
whereI(a) = {c} \\ ∅ ‖− {d}, I(b) = {d} \\ ∅ ‖− {c}, I(c) = I(d) = ∅ \\ ∅ ‖− ∅, andI(e) = ∅ \\ ∅ ‖− {c}.
According to the simple reasons theory,S is admissible, and is an admissible extension of its subset{a, b, e}. Now
suppose∂(S) = {a, b}. This has two component-admissible extensions inS, namely{a, b} and{a, b, c, d}. Since
the former is grounded, it is the only admissible extension of∂(S) in the strict simple reasons theory. However, the
latter extension is closer toS, and so would be chosen by the symmetric difference relation if admissible extensions
were not required to be grounded.

Besides this notion of closeness based on symmetric difference, there are many others that are more appro-
priate in other circumstances. For example, one might define one transition smaller than another if the components
conserved in the first include those conserved in the second, that is(S1, S2) � (S3, S4) iff S1 ∩ S2 ⊃ S3 ∩ S4. Or
instead of considering sets, one might use their cardinalities, as in(S1, S2) � (S3, S4) iff |S1 4 S2| ≤ |S3 4 S4|.
There are many other possibilities for closeness relations based on tolerances, topologies, metrics, and measures,
but we cannot treat these here.17

17See [QUINE 1953], [RESCHER1964], and [G̈ARDENFORS1980].
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§33. Let us summarize the discussion.

(33.1) DEFINITION. Plain, strict, conservative, and strictly conservative agents are characterized by(D, I,S ,J ,C· )
as before, together with a set of environmentsE , a kernel transition function∂ : S × E → PD, and an admissible
transition table∆ : S × E → PS such that for eachS ∈ S ande ∈ E , ∆(S, e) ⊆ AExts(∂(S, e)). In a plain
agent,∆ = AExts ◦ ∂; in a strict agent,∆ = µAExts ◦ ∂; in a conservative agent,∆ = νAExts ◦ ∂, whereν
is minimization with respect to a quasi-order� on transitions whose minima include the null transitions; and in a
strictly conservative agent,∆ = νµAExts ◦ ∂.

(33.2) COROLLARY. If AExts = µAExts, plain agents are strict, and conservative agents are strictly conser-
vative.

(33.3) QUESTION. Are there interesting cases in which strictness and conservation interact, for example (1)
S ⊆ S′, S′′ and (S, S′) � (S, S′′) impliesS′ ⊆ S′′, or (2) S ⊆ S′, S′′ andS′ ⊆ S′′ implies(S, S′) � (S, S′′)?
What can be concluded about monotone kernel agents, that is, agents in which∂(St, et) ⊆ ∂(St+1, et+1) at every
successive step (as suggested in the monotone embedding theorem)?

The question of computational complexity is particularly vexing, for while much work has been done
on practical systems that seem to revise simple reasons states in acceptable times, the precise actions and costs of
these algorithms are not yet known.18 The principal practical difficulty to be investigated is whether the two sorts of
minimization can be efficiently mechanized separately and in combination. RMS and its relatives operate as finitely
grounded, hence strict, agents, and they attempt to approximate conservation. On the other hand, the strictness of
RMS was in part a reaction to earlier, more purely conservative systems which did not observe the prudence of strict
inference needed in some axiomatic systems, so it may be that conservative agents are efficiently mechanizable
as well. I suspect that some strictly conservative agents have acceptably efficient mechanizations, but I have no
algorithms or proofs to offer.

In general, however, it appears that strict conservatism may be more difficult to realize than either strict-
ness or conservatism separately. Let us again suppose the agent finite, that(S1, S2) � (S3, S4) is deterministically
computable in time polynomial in the sizes of the states involved, as is the case for the symmetric difference compa-
rison. We again assume and ignore a constant environment, and suppose that∂(S) is deterministically computable
in time polynomial in the size ofS.

(33.4) THEOREM. If (S ,∆) is a plain simple reasons agent, then IsE ∈ ∆(S)? is in P.

PROOF. First compute∂(S), and check, as before,E ∈ QExts(∂(S)) or E ∈ FGExts(∂(S)), depending on
whether the agent is locally grounded or finitely grounded. Each of these steps is in P, so their combinations are also.

(33.5) THEOREM. If (S ,∆) is a strict finitely grounded simple reasons agent, then IsE ∈ ∆(S)? is in P.

PROOF. SinceµFGExts = FGExts, the previous theorem applies.

(33.6) THEOREM. If (S ,∆) is a strict locally grounded simple reasons agent, then IsE ∈ ∆(S)? is in co-NP.

PROOF. This is just the question IsE ∈ µQExts(∂(S))? Since∂ is in P, by Theorem 18.65 these strict extensi-
ons are in co-NP.

(33.7) THEOREM. If (S ,∆) is a conservative simple reasons agent, then IsE ∈ ∆(S)? is in co-NP.

PROOF. We see IsE /∈ ∆(S)? is in NP for locally (resp. finitely) grounded agents as follows. First com-
pute ∂(S), and accept ifE /∈ QExts(∂(S)) (resp.E /∈ FGExts(∂(S))). If E ∈ QExts(∂(S)) (resp.E ∈
FGExts(∂(S))), pick E′ ∈ QExts(∂(S)) (resp.E′ ∈ FGExts(∂(S))) and accept if(S, E′) � (S, E) but
(S, E) 6� (S, E′).

18See [DOYLE 1979], [STALLMAN AND SUSSMAN 1977], [LONDON 1978], [MCALLESTER 1980], [CHARNIAK , RIESBECK, AND MC-
DERMOTT 1980], [THOMPSON1979], [MARTINS 1983], [GOODWIN 1982], and [MCDERMOTT 1982B].
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(33.8) THEOREM. If (S ,∆) is a strictly conservative finitely grounded simple reason agent, then IsE ∈
∆(S)? is in co-NP.

PROOF. SinceµFGExts = FGExts, the previous theorem applies.

(33.9) THEOREM. If (S ,∆) is a strictly conservative locally grounded simple reasons agent, then IsE ∈
∆(S)? is inΠp

2.

PROOF. By putting the previous proofs together, we see thatE /∈ ν(S, µQExts(∂(S))) is in NP given verifica-
tions, each co-NP, ofE ∈ µQExts(∂(S)).

(33.10) CONJECTURE. If (S ,∆) is a conservative simple reasons agent, then IsE ∈ ∆(S)? is NP-hard.

(33.11) QUESTION. Are there interesting conservation notions which are efficiently and incrementally com-
putable? That is, if symmetric difference conservation means intractability, are there less stringent notions which
admit good algorithms? Is the “standard reason enumeration” technique employed in RMS a good approximation
to symmetric difference?

Also deserving attention are special cases of these agents and approximate algorithms. Most practical
systems, for example, base their claims of efficiency by requiring that only coherent sets are manipulated. I have
grown increasingly suspicious of such restrictions of attention, but the question deserves proper treatment. Even if
the complexity of strictly conservative agents is demonstrably intractable, there may still be approximate algorithms
of reasonable efficiency. Since the whole practice of reasoned assumption-making is based on correcting errors, we
can afford in practice to be tolerant of occasional imprudences in jumping to conclusions. Unfortunately, one cannot
hope to measure degrees of approximate correctness in terms of the number of poor assumptions in a state, since just
one mistakenly included assumption can have arbitrarily many uncontroversial but mistaken consequences. Instead,
one must look to the relative frequencies of correctly to incorrectly computed extensions among the entire set of
such computations, that is, one must treat the question of approximation as a question about probabilistic algorithms.

Not only have complexity questions remained unstudied, but even the appropriate complexity measures
still require proper formulation. The usual measures of time and space on a RASP are of course important, but so
are some specific natural measures. One can ask how many state components are reconsidered or examined in the
transition process. This is simply expressed in terms of the sum of the sizes of the mention sets of all elements
against which the state is checked. When reasons are represented as graph structures, as in existing mechanizations,
this measure corresponds to the number of edges traversed by the algorithm. In addition to average and worst-case
measures, the complexity relative to the number of elements changed also holds interest. Folklore has it that any
algorithm must be arbitrarily bad with respect to this measure, in that one can choose transitions requiring unbounded
numbers of element reappraisals, but which lead to only a bounded number of changes.

§34. We now turn from individual transitions to the global perspective of trajectory spaces. Thetrajectoriesof
an agent are finite or infinite sequences of admissible states that observe the transition table; formally, sequences
〈Si〉ni=0 (n ≤ ω) such thatSi ∈ S if 0 ≤ i ≤ n, and if i + 1 ≤ n, thenSi+1 ∈ ∆(Si, e) for somee ∈ E . The
trajectory spaceT (S , E ,∆) is the set of all trajectories of the agent(S , E ,∆). This for simplicity assumes the
world obeys no laws other than the agent’s transition table. In the general case, we must consider the agent as part of
an isolated system, with the world having admissible statesSW ⊆ S×E , and a given trajectory spaceTW ⊆ (S ∗

W ).
In this case, the agent’s trajectory space will be the projection ofTW ontoS ∗, onto a subset ofT (S , E ,∆). We
employ the notationT ;T ′ to mean concatenation of two trajectories, so that ifT = 〈S0, . . . , Sm〉 and T ′ =
〈S′0, . . . , S′n〉, thenT ;T ′ = 〈S0, . . . , Sm, S′0, . . . , S′n〉. Of course,T need not be closed under concatenation. If
S ∈ S , we writeS;T andT ;S to mean, respectively,〈S〉;T andT ; 〈S〉.

Many standard questions about dynamical systems arise here, such as reachability, the existence of trajec-
tories connecting two states; the existence of limit sets or attractors to which all trajectories from some neighborhood
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eventually lead; the existence of cycles (closed trajectories); the existence of limit cycles; stability of limits; the com-
plexity of computations; and more. At the moment, results are lacking concerning most of these questions, so we
cannot treat them further here. But these questions call out for study, since some of them are intimately tied up with
familiar psychological questions. For example, if one’s trajectories are defined by some sort of learning or searching
procedure, then the existence and reachability of limit sets corresponds to the learnability of certain concepts or
skills, or to the solvability of certain goals. This is all familiar from popular treatments of hill-climbing, where the
learning or searching procedure is a gradient vector field on the state space. Furthermore, the complexity or length of
trajectories to these limits might shed light on power laws or laws of diminishing returns, since diminishing returns
indicate the existence of limit states unreachable by finite trajectories, and power laws are just particular shapes
for curves of diminishing returns. The structure of trajectory spaceT (S , E ,∆) is also closely connected with the
structure of the state spaceS , since many of the questions previously addressed about assumability and realizabili-
ty can be cast directly as questions about reachability by monotone kernel trajectories. Trajectory space also serves
as a model for various modal or temporal logics concerned with the evolution of properties of elements or states
(arguability, coherence, etc.). We must forgo discussion of most of these topics. In the following, we treat only two
of the topics connected with the global viewpoint: the connections between catastrophes and backtracking, and the
construction of “subjective probabilities” from trajectory space.

§35. The preceding development has focussed on reasoned changes of state, in which the agent decides what
shape its next state should take, specifies those qualities via∂, and then solves the specifications in one way or
other to move to a new state in∆. But unless we ensure that all transition specifications have admissible solutions,
it can happen that there are no potential successors in∆. The incoherence of∂(S, e) may be accidental, or it may
be deliberate. For example, if∂ includes a contradiction in the specifications for the next state afterS, it ensures
∆(S, e) = ∅. In this use, the contradiction acts as an admission that “I can’t go on like this!” But how should we
take such accidents and admissions? As natural death and suicide? While those are possibilities, another is to take
these incompetences of∆ as occasions for other sorts of state changes. We treat the former possibilities elsewhere,
and pursue the latter here. We add to our store of constitutive assumptions for characterizing agents by introducing
the extended transition tableE : T (S , E ,∆) × E → PS , which we require to agree with∆ whenever∆ is
nonsingular, that is, for every trajectoryT ∈ T (S , E ,∆), if T = T ′;S and∆(S, e) 6= ∅, thenE(T, e) = ∆(S, e) .
With this new constitutive assumption, agents are characterized by choices of(D, I,S ,J ,C· , E , ∂,∆, E).

The most trivial choices forE areE(T ;S, e) = ∆(S, e), in which caseT (S , E , E) = T (S , E ,∆) and
there is not much to say, andE(T ;S, e) = S if ∆(S, e) = ∅, in which case the agent executes a random walk
through trajectory space when it is not following∆. Some more interesting choices forE involve the traditional
notion of backtracking. Backtracking originated as a means for outwitting pursuers. One travelled leaving an obvious
trail until a stream or other natural trail-obscuring obstacle was reached. One then carefully walked backwards over
the path just travelled, placing feet in the footsteps just left, until one reached a point at which one could take
off in a new direction, leaving the actual trail chosen to be unobvious when compared with the false trail. This
technique was adopted in artificial intelligence to elude the hounds of failure, by keeping track of the choice points
encountered during a search of a space, and upon failure of one search path, resuming the search with one of the
alternate paths indicated in the choice points. We reproduce this idea formally as follows, where we for simplicity
assume an isolated agent. LetT = 〈Si〉ni=0 (n ≤ ω) represent the trajectory of the agent, whereSi is the state
at instanti. We defineAlt(T, i + 1), thealternativesin T at instanti + 1, by Alt(T, i + 1) = ∆(Si) − {Si+1}
if ∆(Si) 6= ∅. These then are the states that could have been pursued but were not. We get two backtracking
regimes by assuming the agent falls back to any or the closest alternative state when necessary, that is, by defining
E(T ;S) to be∆(S) whenever∆(S) 6= ∅, and to beAlt(T, k) or νAlt(T, k) otherwise, wherek = max{j < i |
Alt(T, j) 6= ∅}. Call thesechronological backtrackingandconservative chronological backtracking. Conservative
non-chronological backtracking (also known as “dependency directed” backtracking) arises by takingE(T ;S) at
singular points to beν

⋃
j<i Alt(T, j). These definitions are simpler than those commonly employed since they do

not remove explored paths from the set of alternatives.

To return to the example of§32, supposeS4 = ∂(S3) ∪ B ∪ C ∪ F . We then haveAlt(〈S0, S1〉) =
Alt(〈S0, S1, S2〉) = Alt(〈S0, S1, S2, S3〉) = ∅ andAlt(〈S0, S1, S2, S3, S4〉) = ∂(S3) ∪B ∪ C ∪G.
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§36. One way of understanding the nature of backtracking is in terms of the notion of catastrophe. (The follo-
wing remarks are more suggesive than substantive at present. I hope to justify them rigorously elsewhere.) For our
purposes here, a catastrophe is a “discontinuous” jump in a trajectory. Each time∆ is multi-valued, we have the
possibility of trajectory space branching into two “sheets.” Actually, not all multi-valued occurrences of∆ need
produce bifurcations in trajectory space if the alternatives are all reachable from each other by ordinary trajectories.
But a “true” bifurcation is introduced if the resulting states are mutually unreachable inT (S , E ,∆). If an ordinary
trajectory comes up to the edge of one of these sheets, the only way to proceed is by means of a jump to a state on
another sheet, a “discontinous” change in the sense that the ordinary transition table provides no direction, which
one might interpret as lack of a “derivative” with which the agent might predict its possible actions. There are many
ways of embedding the ordinary trajectory space in larger spaces that have no discontinuities, and we have seen a
few of these in the extended transition tableE. If the agent is conservative, it might jump to one of the closest points
on the other sheets. Alternatively, it might jump to a point corresponding to an alternative future, a point at the same
time but on a different sheet among those bypassed along the actual trajectory. One might call this “sidetracking”
instead of “backtracking.” In any event, rules for continuing all trajectories beyond singularities have the effect of
pasting all the edges in trajectory space back into the space. This results in a complex shape for the enlarged trajec-
tory space, just as pasting all the edges of a sheet of paper together in the right way produces a sphere, a torus, or a
Klein bottle, surfaces with no edges.

The most important quality of a catastrophe in a psychology is that, from the agent’s point of view, it
“just happens.” While we may design agents to suffer catastrophes in certain ways, the actions involving the agent’s
own deliberation and choice are all captured by∂ and∆, and changes not involving those are beyond its powers.
Of course, an agent may deliberately place itself in a position where, it knows, a catastrophe is inevitable, so as to
chance some action not normally doable, just as one might lead one’s self into the depths of despair, thinking that
either death or a jump to some redeeming faith are the only possible paths, in spite of calm inability to believe. This
difference in the quality of these sorts of actions has never admitted clear articulation in artificial intelligence before.
In my own work on RMS, I always thought that the two processes of reason maintenance and backtracking were
different, but could not say why. MCALLESTER developed ways of mechanizing them with a uniform procedure,
and I thought that wrong. Instead, I was wrong, in that however one best mechanizes the two processes, by two
mechanisms or by one, the processes still are different as far as the agent is concerned. Before, I had no clear way
of distinguishing the agent and its actions from its realization and the changes that happen to it. The distinction
between these processes lies in the former realm, MCALLESTER’ S unification in the latter.
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Probabilistic theories

§37. With exact characterizations of theories of reasoned assumptions and their revision, we can connect artificial
intelligence treatments of uncertainty with standard probabilistic treatments. These connections divide into two
parts, one static, one dynamic. Just as theories of reasoned assumptions divide into characterizations of the set of
admissible states and characterization of the temporal evolution of the agent’s state, probabilistic theories divide into
characterizations of particular states as probability distributions and characterization of the effects of actions as the
evolution of the agent’s probability distribution. We treat both parts below.

Drawing theoretical connections between these two approaches to uncertainty is not simply an abstract
mathematical exercise. Instead, these connections yield two valuable benefits. The first benefit is the possibility of
justifying the claimed methodological superiority of the artificial intelligence treatment over standard probabilistic
treatments. Several authors in artificial intelligence have explained their abandoning probability theory in terms of
the unpleasantly large amounts of information and computation required to apply the probabilistic theories.19 With
exact connections between the formal theories, we can begin to justify (or refute) these intuitions rigorously with
the methods of computational complexity. The second benefit is that probability theory, whatever its computational
disadvantages, offers certain sorts of information often useful but not present in the preceding theories of reasoned
assumptions. In particular, probability theory allows one to summarize one’s uncertainty about some question with
a simple description, a number, and to compare degrees of uncertainty by comparing these numbers. The exact
connection between the two theories permits us to recover degrees of certainty when desired even if we base the
structure and action of systems on reasoned assumptions.

§38. The basic idea underlying the connection between reasoned assumptions and degrees of certainty is to make
the degree of certainty of some state componente with respect to a setS of reasons depend on howe appears
in admissible extensions ofS. There is no distinguished way of defining this dependence, but instead a variety of
possible measures. For example, one might ask how likely ise to occur in a randomly selected admissible extension,
or how many arguments there are fore, or how many assumptionse depends on, etc. Each of these captures different
intuitions about the meaning of “degree of certainty,” and may be preferred in different circumstances.

These measures may be motivated in two ways. In the first, we view the nondeterministic theories of
reasoned assumptions presented earlier as incomplete specifications of deterministic agents, whose indeterminism
we interpret probabilistically in terms of how likely our incomplete specifications are to predict the actual behavior
among the predicted possible behaviors. Alternatively, we can treat these measures as specifications for probabilistic
algorithms.20 The problem of acting prudently is too difficult or even impossible to solve exactly, so the agent makes
a series of random choices (of admissible assumptions rather than numbers) and then decides what to do by exact
means. These random choices may lead to error, so the task of the agent is to constrain the range of possible sets of
choices (by using ratiocinative rules of thumb) so that the expected probability of success is high. This latter view
seems well-suited to the mechanization of artificial agents.

§39. Perhaps the simplest way of measuring how the agent holds some state component is to assign a weight to
each state the agent might be in, a weight representing how likely the agent is to be in that state, and then to sum
the weights of all states containing the element. That is, ifw(S) is the weight of stateS, then the measure of howe
occurs inŜ ⊆ S is just ∑

S∈Ŝ

w(S).

19See [SZOLOVITS 1978], [DOYLE 1983B], and the discussion below.
20[RABIN 1976]
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Weight functions like this are ordinarily expressed asmeasure functionson sets of states, as non-negative, additive
functionsm : PS → R, wherew(S) = m({S}). Nonnegative, as usual means thatm(Ŝ) ≥ 0 for everyŜ ⊆ S ,
and additive means that for everŷS, Ŝ′ ⊆ S , we havem(Ŝ ∪ Ŝ′) = m(Ŝ) + m(Ŝ′) − m(Ŝ ∩ Ŝ′). Actually,
technical complications make this definition adequate only for the case of finiteS , but that is enough for most of
our purposes. Later we comment on interesting cases of infiniteS .

For example, one natural measure function is thecountingmeasurem† that gives every state equal weight,
i.e. m†(Ŝ) = |Ŝ|. This measure corresponds to making LAPLACE’ S assumption, that every possible state of the
agent is equally likely to occur. With this measure, the degree of certainty of a state component in a set of admissible
extensions is just the percentage of them in which it appears.

Another natural measure function is thespecificitymeasurem∗ that weights states by how “specific” they
are, namelym∗({S}) = 2−|S|. One way of looking at this measure is to think of states as partial descriptions of all
the sets of components extending them, and to weight states proportionally to the number of possible supersets. From
this point of view, we would definem∗′({S}) = 2|D|−|S|. This, of course, simply multiplies all of the specificity
weights by the constant2|D|, and so changes none of the comparative relations between weights of states.

Yet another measure function is theselectionmeasurem! that weights states as selections of elements

from the domain, namelym!({S}) =
(|D|
|S|

)−1
. We make no important use of this measure in the following.

§40. For each theory of reasoned assumptions and measure functionm, we define the “degree of certainty.”

(40.1) DEFINITION. Let Ŝ \ A = {S ∈ Ŝ | A ⊆ S} for Ŝ ⊆ S . Then the extentE(A,S) of a setA ⊆ D
relative to a setS ⊆ D is given by

E(A,S) = m(AExts(S) \A)/m(AExts(S)),

whereE(A,S) = 1 wheneverAExts(S) = 0.

Thus the extent of a state componente is just the relative measureE({e}, S) of those admissible extensions contai-
ninge.

(40.2) COROLLARY. If A ⊆ D is not arguable inS, thenE(A,S) = 0, and if A is inevitable inS, then
E(A,S) = 1.

(40.3) DEFINITION. If S is coherent,d, e ∈ D, andE({d}, S) > 0, thenCE(e | d, S), the conditional extent of
e givend in S, is

CE(e | d, S) = E({d, e}, S)/E({d}, S)
= m(AExts(S) \ {d, e})/m(AExts(S) \ {d}).

I am not sure what approach to take for incoherentS. If S is coherent butE({d}, S) = 0, the situation here
has analogies to the situation in Bayesian probability theory that motivates so-calledPopper functions, but I leave
treatment of that case to future studies as well.

(40.4) THEOREM (BAYES). If {di}ni=0 is a subset ofD such that exactly onedi occurs in every admissible
extension ofS, then

CE(di | e, S) =
CE(e | di, S) · E({di}, S)∑n

j=0 CE(e | dj , S) · E({dj}, S)
.
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(40.5) COROLLARY. If at most onedi occurs in every admissible extension ofS, then

CE(di | e, S) ≤ CE(e | di, S) · E({di}, S)∑n
j=0 CE(e | dj , S) · E({dj}, S)

.

Linguistic reasons agents are of special interest here, for their formulation involves many of the same
assumptions as does subjective Bayesian decision theory. Because state components have logical form in this theory,
we can examine the relations between extents of components with related forms.

(40.6) THEOREM. LetS ⊆ D. Then
(i) If S is not inevitably consistent, then for eachx ∈ D, E(x, S) = 1,
(ii) S is inevitably consistent iff for eachx ∈ D, E(x, S) + E(¬x, S) ≤ 1,
(iii) For eachx, y ∈ D, E(x ∧ y, S) ≤ E(x, S) + E(y, S),
(iv) For eachx, y ∈ D, if x⊃ y is inevitable, thenE(x, S) ≤ E(y, S), and
(v) If S 6= {D}, then for eachx, y ∈ D, E(x, S) ≥ E(x ∧ y, S) + E(x ∧ ¬y, S).

PROOF. Let S ⊆ D and Ŝ = AExts(S). (i) If S is incoherent, thenE(x, S) = 1 by definition, and ifS is
inevitably inconsistent,̂S = {D}, so againE(x, S) = 1 for everyx ∈ D. (ii) follows immediately from this last
observation. (iii) Since{x ∧ y} is interdeducible with{x, y}, Ŝ \ {x ∧ y} ⊆ Ŝ \ {x} ∪ Ŝ \ {y}. (iv) If Ŝ = ∅, the
claim follows trivially. If Ŝ 6= ∅, thenŜ \{x} ⊆ Ŝ \{y} since{x, x⊃ y} ` {y}. (v) If Ŝ 6= {D} then eachS ∈ Ŝ is
consistent. Since{x, z} and{x ∧ z} are interdeducible, we must havêS \ {x, y} ∩ Ŝ \ {x,¬y} = ∅. SinceŜ 6= ∅,
the claim follows.

Since arguability is different from assumability, we introduce a parallel notion to conditional extents,
namelya posteriori extents.

(40.7) DEFINITION. Letd, e ∈ D andS ⊆ D. If S ∪ {e} is coherent, thenAE(d | e, S), the a posteriori extent
of d givene in Ŝ, is

AE(d | e, S) = E({d}, S ∪ {e}).

Unfortunately, I do not know how to treat the case of incoherentS ∪ {e}. There also seems to be no general way
to relate conditional anda posterioriextents. This weakness of the theory is to be expected from the complexity of
the ways in which the sets of admissible extensions may change under the addition of new information. Stronger
theories may be possible for restricted sorts of agents, but by and large these are unexplored.

§41. Let us examine some examples to see how these measures differ. We work within a simple reasons agent
with D = {c1,¬c1, c2,¬c2, r1, r2, r3, r4, r5, r6}, whereI(c1) = I(¬c1) = I(c2) = I(¬c2) = PD, and where
I(r1) = ∅ \\ {¬c1} ‖− {c1}, I(r2) = ∅ \\ {c1} ‖− {¬c1}, I(r3) = {c1} \\ {¬c2} ‖− {c2}, I(r4) = {c1} \\
{c2} ‖− {¬c2}, I(r5) = ∅ \\ {¬c2} ‖− {c2}, andI(r6) = ∅ \\ {c2} ‖− {¬c2}.
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Let S = {r1, r2, r3, r4} andS′ = {r1, r2, r5, r6}. ThenS has three admissible extensions

E1 = S ∪ {¬c1},
E2 = S ∪ {c1, c2},
E3 = S ∪ {c1,¬c2},

andS′ has four admissible extensions

F1 = S′ ∪ {c1, c2},
F2 = S′ ∪ {c1,¬c2},
F3 = S′ ∪ {¬c1, c2},
F4 = S′ ∪ {¬c1,¬c2}.

We then have the following extents and conditional extents.

E(x, S) m† m∗ m!

c1 2/3 1/2 .70+
¬c1 1/3 1/2 .29+
c2 1/3 1/4 .35+
¬c2 1/3 1/4 .35+
r1 1 1 1
r5 0 0 0

E(x, S′) m† m∗ m!

c1 1/2 1/2 1/2
¬c1 1/2 1/2 1/2
c2 1/2 1/2 1/2
¬c2 1/2 1/2 1/2
r1 0 0 0
r5 1 1 1

In the following, entries represent(m†,m∗).

CE(x | y, S) =

x\y c1 ¬c1 c2 ¬c2 r1

c1 (1, 1) (0, 0) (1, 1) (1, 1) (2/3, 1/2)
¬c1 (0, 0) (1, 1) (0, 0) (0, 0) (1/3, 1/2)
c2 (1/2, 1/2) (0, 0) (1, 1) (0, 0) (1/3, 1/4)
¬c2 (1/2, 1/2) (1, 1) (0, 0) (1, 1) (1/3, 1/4)
r1 (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
r5 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Constructions similar to the above were first proposed by CARNAP in his theory of probability as “degrees
of entailment.”21 While the ideas are similar, there are important differences between the two approaches. LetD =
{a,¬a, b¬b, r,¬r}, S = {a, r}, and defineI(a) = I(¬a) = I(b) = I(¬b) = PD, I(r) = {a} \\ {¬r} ‖− {b},
andI(¬r) = ∅ \\ {b} ‖− {¬b}. In this case,S has the sole admissible extension{a, r, b}, so all extents and
conditional extents are either 1 or 0, no matter which measure function is chosen. But let us consider a posteriori

21[CARNAP 1950], [KYBURG 1970]
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extents. Here we have the table, again independent of choice of measure function,

x E(x, S) AE(x | y, S) : a ¬a b ¬b r ¬r
a 1 1 1 1 1 1 1
¬a 0 0 1 0 0 0 0
b 1 1 1 1 1 1 0
¬b 0 0 0 0 1 0 1
r 1 1 1 1 1 1 1
¬r 0 0 0 0 0 0 1

Note here that whileE(b, S) = 1 andE(¬b, S) = 0, we haveAE(b | ¬r, S) = 0 andAE(¬b | ¬r, S) = 1, so
accepting¬r involves “learning”¬b and “unlearning”b, no matter which of the measure functions we use. This
ability to learn and unlearn things is quite different from the standard sorts of learning theories studied by CARNAP,
and even in common cases, the differences in what objects are measured permits “inductive learning” with any of
our measure functions, something not true of CARNAP’ S theories. Unfortunately, we cannot pursue this topic here.

§42. One extension to the above constructions is to allow measures of how a state component appears in the
admissible extensions of a set of reasons to depend on the element as well as on the admissible extensions. For
example, if we want to weight components by how many arguments warrant their presence in a state, we cannot use
a pure measure on states, for that would treat every element in the same way. To permit the wider class of measures
of “certainty,” we allow measure functionsmA dependent on subsetsA of D, subject to the additivity requirement
that if A,B ⊆ D andŜ ⊆ S , then

mA∪B(Ŝ) = mA(Ŝ) + mB(Ŝ)−mA∩B(Ŝ).

In effect, we replace measure functions onPS by measure functions onPD × PS . Thus we might define a
simplistic argument counting measure bym{e}({S}) = |{d ∈ S | d is a valid reason fore in S}|.

§43. With probabilistic constructions on sets of reasons, we can recast the description of the agent’s evolution
in time in terms of these constructions. To make the new constructions easier to grasp, we first treat the ahistorical,
isolated system(S ,∆) and then extend the construction to history-dependent, non-isolated systems(S , E , E).

The basic idea of the probabilistic treatment of an agent’s state-evolution is to view the “nondeterministic”
transition table∆ instead as an incomplete specification of a probabilistic transition table. For example, under a
Laplacian assumption, we could take each transitionS′ ∈ ∆(S) to be equally likely among the possible transitions
from S. Alternatively, we could assume transitions to simple states are more likely than transitions to more complex
states. In fact, each measure functionm on PS such thatm(S ) > 0 gives rise to a probabilistic interpretation of
∆ by defining the probability of moving fromS ∈ S to S′ ∈ ∆(S) to bem({S′})/m(∆(S)). (For the time being,
we assume that∆(S) is nonempty for everyS ∈ S .) This interpretation recalls the relation between the standard
and many-worlds interpretations of quantum mechanics, but we cannot pursue that here.22

With assumptions about transition probabilities captured in measure functions, we can describe the tem-
poral evolution of an agent(S ,∆) in terms of the probability that the agent will be in stateS at timet. We assume
initial probabilities of being in a state for timet = 0, and then apply the transition probabilities to determine the
probabilities for timest > 0. The instantaneous functions assigning probabilities to states are calleddensity functi-
ons, and are simply measure functionsf onPS such thatf(S ) = 1, that is, functions that say that the agent must
be insomestate. As above, every nontrivial measure functionm such thatm(S ) > 0 induces a density function by
definingf(X) = m(X)/m(S ). Thus beginning with an “initial state function,” for example

f0(X) =
{

0 S0 /∈ X
1 S0 ∈ X

,

22[DE WITT AND GRAHAM 1973], [VAN FRASSEN1980]
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we look to calculate the sequence of density functions〈f0, f1, f2, . . . 〉 describing the evolution of the system
(S ,∆) with respect tom.

Note first that the set of all density functions onS is a convex set. That is, iff1 andf2 are density
functions, and ifw1 + w2 = 1, thenw1f1 + w2f2 is a density function as well.

Successive density functions for a system are computed by combining the probability that the system is in
a particular state with the probability of moving from that state to specific other states. We add up the probabilities
of reaching a state, and we have the new density function. Formally, we defineft+1 for eachS ∈ S by

ft+1({S}) =
∑
x∈S

ft({x}) ·
m(∆(x) ∩ {S})

m(∆(x))
.

The resulting functionft+1 is a density function since by induction
∑

x∈S ft({x}) = 1 andft+1 is the convex
combination of density functionsgx({S}) = m(∆(x) ∩ {S})/m(∆(x)).

As in the instantaneous case considered previously, we can extract “degrees of belief” from the successive
density functions by defining, forA ⊆ D, ct(A) = ft(S \ A) as the probability that the system is in a state
containing the componentsA. As before, these projections of state probabilities onto components need not be
unitary, since in a linguistic reasons agent we might havect({d}) + ct({¬d}) < 1.

We extend this construction to the case of nonisolated, possibly singular, extended transition tables as fol-
lows. Let(S , E , E) describe the agent. In the general case, transition probabilities may depend upon the full history
of the agent, and we represent some of these with a measure functionF onT ×E×T , interpretingF ({T}, {e}, {T ′})
as the probability of moving to trajectoryT ′ given the previous trajectoryT and environmente. Ideally, we would
getF by projecting probability measures on the world’s transitions in(SW )∗ × (SW )∗, but we do not treat that
most general case here. We assumeF is normalized so that∑

S∈E(T,e)

F ({T}, {e}, T ;S) = 1

for everyT ∈ T ande ∈ E , thus making the probabilistic interpretation possible. We construct a sequence of
density functionsft on E∗ × T from the transition probabilities so thatft(ê, T ) represents the probability of the
agent having traversed trajectoryT in response to the sequence of environmentsê ∈ E∗. The initial density function
f0 is given, and we defineft+1 so that

ft+1(ê; e, T ) =
∑

T ′∈T
ft(ê, T ′) · F (T ′, e, T ).

These density functions onT can be projected ontoS to give the probabilities of the agent being in specific states
by definingφt(ê, S) for everyt, ê, S to be

φt(ê, S) =
∑

T ;S∈T
ft(ê, T ;S)

.

§44. Many researchers in artificial intelligence have abandoned the direct use of probabilistic representations
on the basis of several intuitions. Briefly, they are (1) One usually has only fragments of information about a few
questions. Coming up with a complete matrix of conditional probabilities for all questions is not feasible, while
incrementally formulating rules of thumb for generalities, exceptions, etc., is quite feasible. Much of the work
in “knowledge acquisition” focusses on elicting and subsequently editing rules of thumb, though sometimes with
“certainty factors” whose close values are recognized to be meaningless. (2) One usually has only a few known
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goals or desires, augmented occasionally by problem-oriented reasoning, rather than a complete utility function. (3)
It is easier to work by adding and removing individual statements from a database or subdatabase than to continually
recompute probability distributions. (4) When errors of information are revealed, or when new sorts of events are
formulated, one must completely revise one’s system of conditional probabilities. But these revisions must be based
on some qualitative considerations, to which the numerical probabilities are merely fit. (See [DOYLE 1983B] for
another discussion of these.) These intuitions can be summarized by saying that the usual Bayesian approach, while
a fine system for formulations of decisionspost hoc, or for mechanization of thoroughly explored, stable, narrow
decisions, is both informationally and computationally infeasible in broad, changing systems. Bayesianism simply
says nothing about the problems of incrementally formulating systems of probabilities, which are the main practical
difficulties facilitated by the artificial intelligence approach. If these prejudices are justified, then the constructions
presented previously offer the consolation that even if one abandons probabilities in direct use, one can always
recover them when necessary, that artificial intelligence practice is not contradicting the Bayesians so much as being
forced to work with less.

These intuitions would likely profit from formal exploration. For instance, Bayesians are familiar with
the notion of qualitative probabilities. Indeed, the foundations of statistics develops axioms for these qualitative
probabilities, and one shows that any consistent set of qualitative probabilities can be fit with a compatible system
of numerical probabilities. One proves this fit unique given assumptions about the fineness and topological comple-
teness of the qualitiative probabilities. The artificial intelligence approach in effect concentrates on these qualitative
probabilities, abandoninga priori fineness and topological completeness assumptions.

More concretely, if we consider linguistic reason agents, we see the primary difference between the theory
of subjective probability and the theory of extents turns on the question of completeness. For Bayesians, subjective
probabilities are unitary, that is, the subjective probabilities ofx and¬x sum to1 for eachx. In contrast, in the
present theory some admissible extensions ofS may contain neitherx nor ¬x, so thatE(x, S) + E(¬x, S) < 1.
The theories could be brought into agreement if we required completeness of extensions, that is, added toR the
requirement that for eachd ∈ D andS ∈ S , eitherd ∈ S or ¬d ∈ S. But this is a very peculiar requirement,
for two reasons. First, the whole point of reasoned assumptions is to be able to complete one’s set of beliefs with
respect to some question when necessary, taking lack of information and incompleteness as normal. Requiring
completeness of extensions is not in direct conflict with this motivation, but it does mean replacing every ordinary
extension with the set of all possible completions of the extension. Second, it seems unwise to attempt to rule out
paradoxical sentences at the outset. We can think about and phrase the Liar paradox, and some reasonable artificial
agents should share our ability. But the character of paradoxical sentences is that neither they nor their negations
may be part of a consistent theory, so if we want interesting languages of thought, we cannot accept the Bayesian
requirement of completeness.

Bayesianism stems from important motivations, but overidealizes. While the above constructions indicate
the naturalness and importance of the idea of strength of beliefs and other attitudes, it also casts doubts upon the
Bayesian identification of degree of belief with subjective probability. The measure of degree of belief via extents
is a perfectly good probability measure, but the projection of this measure onto the logical structure of states is not
in general a probability measure without the specious axiom of completeness. As in quantum theory, the projected
measure represents a lattice of possible events, and only represents a boolean lattice in the special case of complete
states.23

Of course, the Bayesian might respond that our constructions do not capture subjective probabilities, but
simply lower boundson subjective probabilities, as in the DEMPSTER/SHAFER theory of evidence.24 While this
reply does not address the difficulties posed by paradoxical sentences, it may offer a way of reconciling the views,
but we cannot pursue that here.25 Instead, we observe that whatever the attractions of the stronger Bayesian theory
for more competent agents, in computationally realized agents, the “lower bounds” offered by our construction may
be the only reasonable choices for “degrees of belief.” We see this in two ways. The first is that extents arise natu-
rally as the end result of the operation of probabilistic algorithms, and in this way are not so much computational
approximations to ideal quantities as objective events observed by the agent (even though the events are part of the

23[B IRKHOFF 1967], [BELTRAMETTI AND CASSINELLI 1981]
24[SHAFER 1976]
25See [LEWIS 1980].
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agent itself). The second point is that the dynamical form of extents, densities, arise naturally in consideration of
revision of state, for example in backtracking. At singularities in a trajectory continued by means of plain chro-
nological backtracking, the possible successors are just the successors of the previous state not taken. That is, if
T = T ′;S and∆(S) = ∅, thenE(T ) = E(T ′) − {S}. In this case, densities inE(T ) are approximately extents in
the kernel ofE(T ′), and correspond to the resilience of state components, to the relative ease with which they may
be avoided in successor states. If some density is large, most successors will contain the component in question, so
it is difficult to avoid. Indeed, we can adopt this view at every point of a trajectory, singular or not, by considering
imaginary discontinuities, by asking how the agent would have to view things were the current view forbidden. In
this way, densities inE(T ) can always be taken as the resilience of state components. This interpretation of densities
is particularly appealing since it applies to all components of mental states uniformly. For example, in attitudinal
theories it provides measures not only of degrees of belief but of strength of desire and firmness of intent. Pursuit of
this interpretation leads to an interesting non-Bayesian decision theory, but that is beyond the scope of this paper.

If consideration of extents in trajectories provides motivations for some of the concerns of subjective
Bayesian probability theory, it also helps understand ZADEH’ S notion of fuzzy sets and concepts.26 Statements like
“Sue is tall” are considered vague because “tall” is not a well-defined concept; there are many heights Sue could
reach and be thought tall. ZADEH formalizes this notion by introducing a spectrum of truth-values for the sentence, a
spectrum derived from a spectrum of tallness-values. One might instead develop a theory of fuzzy concepts in terms
of extents. Rather than simplyassumingtallness spectra, one could formulate exact theories of tallness and simply
look to see what distribution these entail for particular statements. For example, one might require exact theories
of tallness to specify exact intervals of height, and given this restriction look to the admissible extensions of the
statement “Sue is tall.” If there are many intervals saying one height is tall and fewer intervals saying another height
is tall, then the first height will be “more tall” than the second. Example 24.11 can be read as a formal example of
this idea in terms of the concept “is a lot.” In that example, 0 is definitely not a lot (lot to degree 0), eachn ≥ 3 is
definitely a lot (lot to degree 1), while 1 and 2 have intermediate values: 2 is twice as much a lot as is 1 (lot to degree
2
3 versus degree13 ).

If one approach is to have advantages over the other in practice, the advantages may depend far more on
practical utility than on theoretical elegance. The two most important questions are how difficult it is to obtain the
information required by each approach, and how costly are the computations involved. As [DOYLE 1983B] menti-
ons, the Bayesian informational requirements are severe because one needs vast amounts of information, few bits of
which are easily had from experts. The needed information may be had much more easily in the form of ratiocinative
rules of thumb. But complementing this, the probabilistic constructions facilitate the use of information acquired as
rules of thumb, since they permit comparison of relative strengths or certainties of state components. Since these
measures reflect the overall structure of the set of admissible extensions of some kernel, they may be useful in
summarizing that structure in lieu of analytical characterization of its branchings, alternatives, etc. Unfortunately,
practical exploitation of these possibilities demands efficient algorithms for computing admissible extensions ac-
cording to specified measure functions. At present, algorithms for this purpose are completely unstudied. Systems
like RMS make arbitrary choices in constructing admissible extensions, and while several authors have suggested
making these choices depend on properties of the forseen resulting extensions, there is no known way of deriving
the resulting measure on states from these intra-algorithmic choices, nor any known recipe for finding an appropriate
algorithm when the final measure is specified. The mix of techniques used in practice will depend on the relative fa-
cilities and computabilities of the Bayesian and reasoned assumptions approaches. Reasoned assumptions facilitate
some important operations, and Bayesianism facilitates others. Can one relate the total cost of working within one
approach to the total cost of the other?

26[ZADEH 1975]
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IV. Related Theories of Reasoned Assumptions

§45. The previous chapter included both development of a theoretical framework for describing theories of
reasoned assumptions as well as some first steps toward a mathematical development of the framework itself. The
value of such a framework, if any, must begin with the power to clearly describe specific theories, rather than with the
possibility of a mathematical theory based on the framework, although once the grounds of the theory are secured,
mathematical analysis can reveal hidden structure. We have seen how the framework eased the introduction of the
several constitutive ideas presented previously. In the following sections we further exercise these concepts by using
them to analyze and summarize a variety of systems in artificial intelligence touching on notions related to reasoned
assumptions. Unfortunately, since several of these systems have never been exactly formulated or described in the
literature, or have been described only in terms of the behavior of a set of complex procedures, we cannot always
rigorously justify our analyses. Instead, one of the benefits of the current approach is that it may allow authors to
precisely specify the intended structure and behavior of their artificial intelligence systems, whether before, during,
or after development of the systems.

§46. The first analysis concerns RMS, a program developed by the present author, but standing among several
related programs in historical order.27 The purpose of RMS (“reason maintenance system;” originally in the literature
as TMS, “truth maintenance system”) is to record and revise a set of database entries, carrying out these activities at
the behest of a substantive program. RMS performs these duties by recording and analyzing reasons or justifications
for database entries in terms of other entries.

As a good first approximation, we can characterize RMS in terms of finitely grounded simple reasons and
contradictions, strict transitions, an approximation to symmetric difference conservatism, and non-chronological
backtracking. We justify these in turn as best we can. See [DOYLE 1983C] for a short, self-contained characteriza-
tion of RMS.

The reasons or justifications of RMS are exactly of the form of finite simple reasons with singleton conclu-
sions, that is,A \\ B ‖− {c}. In RMS, the first set of elements is called theinlist, the second theoutlist, and the sole
element of the third theconclusion. In RMS, as in the simple reasons theory, the nature of the domain from which
state components are drawn is left unspecified. RMS assigns a name to each domain component as it is presented to
the system, and subsequently operates solely in terms of the internal name. Usually, these internal names are state
components with trivial interpretations, but some of these may instead be designated contradictions with the empty
interpretation. The only other state components are the reasons proper, which have the usual interpretation.

RMS constructs database states to be finitely grounded extensions of the current set of reasons exactly as
in the simple reasons theory.

RMS revises the current state to assimilate new reasons added to the current set of reasons. It does this by
temporarily removing from the state all components which might be affected by the new reasons, and by then adding
back in as many as possible when valid reasons can be found among those left for components in limbo. Unfortu-
nately, I know not how to exactly characterize the actual performance of RMS. It clearly realizes strict transitions
because of the finite groundedness ensured by the remove-and-restore algorithm. The intent of the program also
appears to be to construct a minimal perturbation with respect to symmetric difference conservatism. The principal
predecessor of RMS would completely rederive the entire state following every subtractive kernel modification.28

To avoid this, its successors employed “incremental” recomputation of just that state subset directly affected by the
changes. Unfortunately, this does not mean RMS actually realizes symmetric difference conservatism, since its aim
was never mathematically formulated, and its procedure makes on-the-fly choices that were hoped to approximate
the above relations. Its approximations may in fact be good, since it always examines reasons for a particular con-
clusion in the same order, and so may reconstruct a previous extension subset if it had not really been affected by

27[DOYLE 1979], [DOYLE 1980]
28[STALLMAN AND SUSSMAN 1977]
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the perturbation, but the procedures are complex enough to make this difficult to verify, and I bet there are counter-
examples. It may be possible to correctly minimize the symmetric difference by recording the previous statuses of
state components and attempting to reproduce them whenever choosing some partial revision, but that remains to be
explored. RMS is an excellent example of a program suffering from ill-articulated and possibly ill-realized aims, in
spite of conscientious care and labor in its design.

RMS employs non-chronological backtracking to avoid pursuing any state containing a contradiction.
RMS backtracks by finding an alternative extension of its current state; precisely, by finding a likely perturbation
and letting the ordinary revision procedures assimilate the perturbation. Unfortunately, here too I have no simple
exact characterization of the process actually realized by RMS. Moreover, contradictions are not absolute, in that if
RMS cannot find any alternative extension without the contradiction element (specifically, if it cannot be removed
by additions to the current set of reasons), RMS simply proceeds in a state still containing the contradiction. Another
difference is that while RMS recognizes and treats incoherence due to contradictions, RMS blindly fails to operate
when the set of reasons is otherwise incoherent.

RMS also interprets some of its records as “conditional-proof justifications.” These are counterfactual ju-
stifications, as in “I believeP because I would derive a contradiction were I to believe¬P .” These justifications can
be formalized in terms of comparative similarity relations on states. We interpret a conditional-proof justification
(A \\ B ‖− C) ‖− D by saying thatD must be inS if C ⊆ S′ for everyS′ ∈ S such thatA ⊆ S′ ⊆ Bc andS′ is
as similar as possible toS under the chosen notion of similarity of states. Formalized in this way, conditional-proof
justifications are “oracles,” involving difficult computational problems that RMS avoided by means of a complex
half-measure. In any event, there are very interesting connections to be explored between the comparative similarity
relations one might use in interpreting conditional-proof justifications and the comparative similarity relations deri-
ved from conservation relations. Understanding these connections might aid the correct and efficient mechanization
of conditional-proof justifications.

§47. While our characterization of RMS suffered in accuracy due to the program’s inarticulate development, our
next application is much clearer. This is the logic of default reasoning as proposed by REITER, which turns out to
be related to the linguistic reasons theory.29 In the logic of default reasoning, states are composed of two sorts of
elements: logical formulas, and defaults. Formally,D = D1⊕D2, whereD1 is the set of closed wffs of a first-order
logical languageL,D2 is another set, and̀ is the ordinary deducibility relation onL. The elements ofD1 are called
statements, the elements ofD2 defaults. All statements are trivially interpreted, and all defaults are interpreted as
special sorts of simple reasons involving only statements, specifically, ifd ∈ D1, I(d) = PD, and ifd ∈ D2, there
are (possibly open) wffsa, c ∈ L, B ⊆ L, such that

I(d) = {a} \\ ¬B ‖− {c} =
⋂

σ∈Σ

{S ⊆ D | σa ∈ S ⊆ (¬σB)c ⊃σc ∈ S},

whereσ ranges over the setΣ of all substitutions of closed terms for free variables. We write1S and2S to mean
S ∩D1 andS ∩D2 respectively. The only general restriction on states is that their statements be deductively closed,
that is,

R = {S ⊆ D | 1S = Th(1S)}.

As before,AExts = FGExts where for everyd ∈ D andS ⊆ D,

J (d, S) = {E | d ∈ E ⊃ [d ∈ S ∨ E − {d} ` {d} ∨
∃e ∈ 2E∃σ ∈ Σ I(e) = {a} \\ ¬B ‖− {c}

∧ σa ∈ E ⊆ (¬σB)c ∧ d = σc]}.

29[REITER 1980], [REITER AND CRISCUOLO1981]
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(47.1) DEFINITION. The Reiter-extensions ofS ⊆ D are setsE ⊆ D1 such thatΓS(E) = E, where for each
X ⊆ D1, ΓS(X) is the smallest set satisfying

(1) 1S ⊆ ΓS(X)
(2) Th(ΓS(X)) = ΓS(X)
(3) For eachd ∈ 2S andσ ∈ Σ, if I(d) = {a} \\ B ‖− {c}, σa ∈ ΓS(X), and¬σB ∩X = ∅,

thenσc ∈ ΓS(X).

This definition rephrases in our language the definition of “extensions” given by REITER. The equivalence of this
notion with our notion of admissible extension is seen as follows.

(47.2) THEOREM. S C· E iff 2S = 2E and1E = ΓS(1E).

PROOF. (only if) Let S C· E. Clearly, if e ∈ 2E, thene ∈ S, since there are no reasons inD which support any
elements ofD2. SinceS ⊆ E, this means2S = 2E. Now note thatE satisfies conditions (1)-(3) of the definition of
ΓS , soΓS(1E) ⊆ E, henceΓS(1E) ⊆ 1E. Next, since each element inD1 is trivially interpreted,2E ∪ ΓS(1E) ∈
QExts(S). But by the minimality ofE amongQExts(S), E ⊆ 2E ∪ ΓS(1E), hence1E = ΓS(1E). (if) Suppose
2S = 2E and 1E = ΓS(1E). Since each element ofD is trivially interpreted, this meansE ∈ QExts(S), so
Λω(S, E) ⊆ E. Now Λω(S, E) satisfies (1)-(3) of the definition ofΓS , soE ⊆ Λω(S, E), henceE = Λω(S, E)
andS C· E.

Note that in the logic of defaults, statements of the object language may not refer to defaults, while no
such restriction is present in the theory of linguistic reasons.

§48. The next example is the logic of propositional deduction as cast by MCALLESTER in his TMS.30 The
principal motivation for this logic is the view that a reasonA \\ B ‖− C really meansA ∧ ¬B ⊃C, and that all
sources for reasoned assumptions lie outside the ordinary logical system. This motivation is captured as follows as
a special case of our formalization of REITER’ S logic of defaults. As before, letL be a first-order logical language,
andD = D1 ⊕ D2, whereD1 = D2 is the set of closed wffs ofL. If d ∈ L, we write 1d for its occurrence in
D1 and2d for its occurrence inD2, and as before, we write1S and2S to meanS ∩ D1 andS ∩ D2 respectively.
The elements ofD1 are called statements, the elements ofD2 defaults. If1d ∈ D1, I(1d) = PD, and if 2d ∈ D2,
I(2d) = ∅ \\ {¬1d} ‖− {1d} = {S ⊆ D | ¬1d /∈ S ⊃ 1d ∈ S}. In this special case of the logic of defaults, we have
for eachd ∈ D andS ⊆ D,

J (d, S) = {E | d ∈ E ⊃[d ∈ S ∨ E − {d} ` {d} ∨ d ∈ D1 ∧ [2d ∈ 2E ∧ ¬d /∈ E]}.

This logic weakens the logic for default reasoning by removing all power of discussing assumptions and their
motivations from the states themselves.

While this simple logical system may reflect MCALLESTER’ S intent for the logic of propositional deduc-
tion, he actually proposes a specific deductively weaker system, a modal logic of sorts. In that system,D1 is the
set of ground formulas of a first-order language extended with a modalityTrue andD2 is the set of all formulas
of the formTrue(p) or ¬True(p), wherep is a ground formula of the non-modal first-order language. The idea is
that reasonsA \\ B ‖− C are translated asTrue(A) ∧ ¬True(B)⊃True(C), and this is carried out as follows.
In contrast to the preceding, we now define admissible states to be sets of formulas closed under a complex set
of inference rules, rules which together combine to produce something less than ordinary deducibility. Everything
except deducibility is defined as before, and we define` to be the deducibility relation generated by the following
abbreviations (explained immediately below).

1.	True(p ∨ q) � True(p) � True(q)
2.	True(p) � True(p ∨ q)
3.	True(q) � True(p ∨ q)

30[M CALLESTER 1980]
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4. True(p ∧ q) � 	True(p) � 	True(q)
5.	True(p ∧ q) � True(p)
6.	True(p ∧ q) � True(q)
7.	True(p⊃ q) � 	True(p) � True(q)
8. True(p⊃ q) � True(p)
9. True(p⊃ q) � 	True(q)
10.True(¬p) � True(p)
11.	True(¬p) � 	True(p)

Here	 and� are “meta-negation’ and “meta-disjunction.” Each of the above statements abbreviates several infe-
rence rules corresponding to the logical structure of the meta-formula. For example,#7 above actually stands for
the three rules

7.aTrue(p⊃ q), True(p) ` True(q)
7.bTrue(p),¬True(q) ` ¬True(p⊃ q)
7.cTrue(p⊃ q),¬True(q) ` ¬True(p)

Note the weakness of this̀compared with ordinary deducibility, in thatTrue(p⊃ q), True(¬p⊃ q) 6` True(p). As
with RMS, the exact conservation relation realized by MCALLESTER’ S TMS is not clear, but seems related to the
symmetric difference relation defined previously. Otherwise, the accuracy of this characterization of the weak logic
of propositional deduction is easy to verify, as the above formulas merely paraphrase the definitions and explanations
given by MCALLESTER, where we writeTrue(p) and¬True(p) for his (p.true) and(p.false).

§49. Our next example restates non-monotonic logic, one of the first formal treatments of reasoned assumptions.
Non-monotonic logic is based on the idea of phrasing rules for making assumptions in terms of logical consistency of
assumptions with other beliefs. This idea traces back to MCCARTHY and HAYES, who introduce but never develop
modalitiesNormally , Consistent, andProbably for use in the ruleNormally(p), Consistent(p) ` Probably(p).31

Later, MCDERMOTT and the present author developed the idea by providing a formal theory involving statements
of the formp ∧Mq⊃ r, whereM here is a modality intuitively interpreted as logical consistency with other beliefs,
that is,Mp means¬p is not a consequence of current beliefs.32 Since then there have been other developments by
MCDERMOTT, STALLMAN , GABBAY , and MOORE. We discuss these below as well.

We cast the initial non-monotonic logic as follows. LetD be the set of sentences in a first-order language
extended by the unary modalityM . We let` stand for ordinary deducibility, and define

R = {S ⊆ D | S = Th(S) ∧ ∀d ∈ D [¬d ∈ S ∨ Md ∈ S]}.

We make no nontrivial interpretations of elements ofD, soS = R. For eachd ∈ D andS ⊆ D we define

J (d, S) = {E | d ∈ E ⊃[d ∈ S ∨ E − {d} ` {d} ∨ ∃e ∈ D¬e /∈ E ∧ d = Me]}.

Finally, we letAExts = FGExts, whereE ∈ FGExts(S) iff for each e ∈ E there is a finite setG ⊆ E and a
well-ordering<G of G such thate ∈ G and wheneverd ∈ G, eitherd ∈ S or there is a setA <G d with A ` {d}
or d = Mf for somef ∈ Ec.

(49.1) THEOREM. S C· E iff E = Th(S ∪ {Md | ¬d /∈ E}).

PROOF. (only if) AssumeS C· E. By the admissibility ofE, {Md | ¬d /∈ E} ⊆ E, sinceS C E, S ⊆ E, and
sinceE = Th(E), Th(S ∪ {Md | ¬d /∈ E}) ⊆ E. But if e ∈ E, then every grounding setG for e contains a proof
of e from S ∪ {Md | ¬d /∈ E}, soE ⊆ Th(S ∪ {Md | ¬d /∈ E}, henceE = Th(S ∪ {Md | ¬d /∈ E}). (if)
SupposeE = Th(S ∪ {Md | ¬d /∈ E}). ClearlyE ∈ QExts(S). Furthermore, ife ∈ E, every proof ofe from
S ∪ {Md | ¬d /∈ E} is a grounding set fore in E, henceE ∈ FGExts(S).

31[M CCARTHY AND HAYES 1969]
32[M CDERMOTT AND DOYLE 1980]

54



Thus a simpler characterization of the admissible extensions ofS is as the fixed points of deductively closingS
together with all the “assumptions” of consistency not ruled out in the admissible extension. This characterization
also shows the equivalence of our definition with that of MCDERMOTT and DOYLE, since this fixed-point formula
is exactly their definition.

(49.2) COROLLARY. AExts = µAExts.

PROOF. SupposeS C· E, S C· E′, andE ⊆ E′. Let A = {Md | ¬d /∈ E} andA′ = {Md | ¬d /∈ E′}. Since
E ⊆ E′, A ⊃ A′, so by the monotonicity ofTh, E′ = Th(S ∪A′) ⊆ Th(S ∪A) = E. HenceE = E′.

Unfortunately, this logic is too weak, in that it does not enforce the intuitive interpretation ofM as con-
sistency. For example, the set of axioms{¬P, MP} is perfectly consistent in this logic, and its sole admissible
extension contains no pair of contrary sentences. We can strengthen the theory to capture the intent by adding inter-
pretations for eachd ∈ D of I(Md) = {S ⊆ D | ¬d /∈ S ≡ S = D}. With this added requirement, we remove
from S all elements ofR presenting an incoherent but not inconsistent notion of consistency forM , but lose the
simple characterization of admissible extensions given in Theorem 49.1.

EXAMPLES. Here we use the strengthened logic.
(49.3) S = {MP ⊃P}, AExts(S) = {Th({MP ⊃P, P} ∪ {MP, . . . })}
(49.4) S = {MP,¬P}, AExts(S) = ∅
(49.5) S = {¬P, M(P ∧Q)}, AExts(S) = ∅
(49.6) S = {MP ⊃Q,¬Q}, AExts(S) = ∅

(49.7) DEFINITION. A setS ⊆ D has default form if every formula inS is either non-modal or has only
non-iterated occurrences ofM in the formp∧Mq1 ∧ . . . ∧Mqn ⊃ r, for some non-modal formulasp, q1, . . . qn, r.

(49.8) THEOREM. If S has default form andS C· E, then for eachd ∈ D, Md ∈ E iff ¬d /∈ E.

PROOF. SupposeS has default form andS C· E. By the admissibility ofE, Md ∈ E if ¬d /∈ E, so suppose
Md ∈ E. ThenMd must have a proof fromS ∪ {Me | ¬e /∈ E}. But sinceMd is not in default form,Md /∈ S, and
similarly, Md cannot appear as a conclusion of Modus Ponens in such a grounding argument, henceMd must be an
assumption, that is,¬d /∈ E.

Unfortunately, a default form setS can be incoherent even if its natural translationS′ in the linguistic reasons theory
is coherent. REITER’ S example is the setS containing just

p1 ∧Mq1 ⊃ q1 p2 ∧Mq2 ⊃ q2 p3 ∧Mq3 ⊃ q3

q1 ⊃ p2 q2 ⊃ p3 q3 ⊃ p1

q1 ⊃¬q2 q2 ⊃¬q3 q3 ⊃¬q1.

The translation of this,S′, is a set of normal defaults, and so is coherent by Theorem 24.15 with extensionTh(S′).
But S itself is incoherent. To see this, supposeS C· E. If Mq1, Mq2, Mq3 /∈ E, then¬q1,¬q2,¬q3 ∈ E, but
these must be ungrounded, hence at least one assumption must be inE. E cannot contain two or more of these
assumptions, since each rules out the previous one: for instance, if¬q1 /∈ E, thenMq1 ∈ E, hencep1 ⊃ q1 ∈ E,
hence¬q3 ⊃ q1 ∈ E, hence¬q3 ∈ E. But E cannot contain just one of these assumptions either, since one does not
rule out both of the other two, thus allowing a second. ThereforeS cannot be coherent.

While the unwanted admissible states can be removed from the original non-monotonic logic by the sur-
gical addition of nontrivial interpretations for modal statements, the surgery leaves an ugly scar, in that we no longer
have a simple characterization of the resulting states. Fortunately, MOOREhas discovered a better solution, which,
simply stated, defines admissible extensions ofS as setsE such that

E = Th(S ∪ {Md | ¬d /∈ E} ∪ {¬M¬d | d ∈ E}).
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(See [MOORE1983].) This definition remedies the weaknesses of the original non-monotonic logic while retaining
a simple characterization of admissible extensions. We reproduce this idea by redefining the general restrictionR
so that

R = {S ⊆ D | S = Th(S) ∧ ∀d ∈ D[d ∈ S ≡ ¬M¬d ∈ S ∧ d /∈ S ≡ M¬d ∈ S]}

and by redefiningJ so that for eachd ∈ D andS ⊆ D,

J (d, S) = {E | d ∈ E ⊃[d ∈ S ∨ E − {d} ` {d}
∨ ∃e ∈ D d = Me ∧ ¬e /∈ E

∨ ∃e ∈ E d = ¬M¬e]},

with the corresponding redefinition ofFGExts. If we read¬M¬ as “in” andM¬ as “out,” we see that MOORE’ S

requirement is to make admissible states omniscient about their contents, in that every admissible stateS completely
encodes the “in” and “out” sets, sinceS = {e | ¬M¬e ∈ S} andSc = {e | M¬e ∈ S}. MOOREsuggests renaming
non-monotonic logic as “autoepistemic logic” to recognize this sort of self-omniscience.

Other approaches were taken towards remedying the weaknesses of the initial non-monotonic logic, but
they introduced other problems and so are less attractive than MOORE’ S solution. MCDERMOTT tried strengthening
the weak logic by adding axiom schema and inference rules forM similar to those seen in classical modal logic.33

He considered systems corresponding to the modal logicsK , T, S4, andS5, which employ the inference rules
MP : p, p⊃ q ` q
Nec : p ` Lp

(hereL abbreviates¬M¬) and the axiom schema

Taut : L (t) for all tautologiest
K : L (p⊃ q)⊃(Lp⊃ Lq)
T : L p⊃ p
S4 : Lp⊃ LL p
S5 : Mp⊃ LM p

The resulting system includingNec, Taut, andK allows inference ofMP from M(P ∧Q), something not possible in
the weak logic, and these additions makeMP and¬P inconsistent. But the incoherence of{MP,¬P} in the weak
logic is seen as a lack of self-omniscience, soT, S4, andS5are added in one at a time to give the logic a description
of its own sense of provability. No convenient characterization of the power of the systems of non-monotonicT and
S4are known, and unfortunately in the extreme case, these additions trivialize the logic by making all reasons in-
vertible in non-monotonicS5. That is, in the system withNec, Taut, K , T, S4, andS5we can conduct the following
proof:

1. MP ⊃P hypothesis
2. L(MP ⊃P ) Nec, 1
3. LM P ⊃ LP K , 2,MP
4. L¬P ⊃¬P T
5. P ⊃MP 4, tautologies
6. P ⊃ LM P 5, S5, MP
7. P ⊃ LP 6, 3,MP
8. P ⊃¬M¬P 7, rewriting
9. M¬P ⊃¬P 8, tautologies

Because of this, we cannot use the axiomMP ⊃P to express a preference thatP should be adopted before¬P ,
since from this statement we can inferM¬P ⊃¬P , the opposite “preference.” In fact, the motivations for the addi-
tional axioms seems to be to allow the logic to invert all of its reasoning by allowing the discussion of proof steps
within the language, and as we saw earlier, theories of invertible reasons are bound to be trivial (an observation only
made following MCDERMOTT’ S work).

33[M CDERMOTT 1982A ]
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Yet another approach toward strengthening the weak logic was explored by GABBAY .34 Rather than add
in axioms specifically to remedy weaknesses, as in the modal logic extensions, GABBAY began with models for
intuitionistic predicate calculus. In these models, the set of beliefs is viewed as a set of theorems monotone nonde-
creasing in number with the passing of time. At each temporal instant in such models,MP is interpreted to mean “it
is consistent at this instant to assume thatP is true.” While these models permit a motivated development of natural
axioms and inference rules, they unfortunately trivialize the logic, forMP ⊃P is semantically equivalent with in-
tuitionistic¬P ∨ P . Because of this equivalence, stating a “reason” likeMP ⊃P does not express any preference,
but only requires that every model of the axioms begin with one ofP or ¬P being held true, without saying which
one.

Realizing the inadequacies of the modal logic extensions of the weak non-monotonic logic, and discerning
the need for non-invertible reasons that express preferences, STALLMAN proposed an extension of non-monotonic
S5 which employs a unary modality,S, interpreted as “should be a theorem” in contrast toL ’s reading as “is a
theorem.”35 All of the inference rules and axiom schema of non-monotonicS5are assumed, as is the new inference
ruleSp ` p. This allows expression of defaults as statements of the formMp⊃Sp.

It is unfortunate that STALLMAN ’ S thoughts have remained unpublished, for they are very insightful. The
present author developed his ideas about ratiocinative desires as expressed in the attitudinal theories of reasoned
assumptions above by the fortuitous simultaneity of his attempts to express the logic of reasoned deliberation in
non-monotonic logic and his attempts to understand the varieties and possible improvements of non-monotonic
logics, during which he realized the possibility of identifying the “should” modality of STALLMAN ’ S logic with the
notions of ratiocinative intentions or desires. This identification led naturally to the idea that the formal constructions
of non-monotonic logic might be plausibly motivated in decision-theoretic terms.

§50. To back away from this preoccupation with logically structured agents, we consider some elements of
M INSKY ’ S K-line theory of memory.36 Unfortunately, his theory involves many ideas beyond those we formalize,
so our presentation is meager compared with his. One does not do justice to MINSKY ’ S conceptions to suppose the
following representative of more than the simplest elements of his theory.

For MINSKY, the mind is composed of a set of “mental agents.” Each mental agent can be either active or
inactive, and states of mind are simply sets of active mental agents. We can identify the set of mental agents with
the domainD of the agent, and consider setsS ∈ S to be the admissible sets of active mental agents.

The two specific sorts of mental agents we formalize here are K-lines and cross-exclusion networks. K-
lines are mental agents that, when activated, cause the activation of some set of other mental agents. We formalize
this by interpreting K-line agents as monotonic simple reasons. Specifically, for each K-lineKL there is some set
A ⊆ D such thatI(KL) = ∅ \\ ∅ ‖− A.

A purely monotonic agent is not terribly interesting, and one source of non-monotonicity in this theory
is that of cross-exclusion networks. These are sets of mental agents which are mutually inhibitory. Further, cross-
exclusion networks facilitate “conflict resolution” by disabling or ignoring all members if two or more manage
to become active despite their mutual inhibitions. This disabling allows activation of “higher-level” mental agents
which can consider and resolve the conflict. We might formalize this by lettingCXNbe the mental agent representing
a cross-exclusion network,D = {di}ni=1 the set of mutually inhibiting members,E = {ei}ni=1 the indicators of
which competitor wins out, and¬CXNa mental agent representing the existence of an externally forced conflict. To
get the desired behavior, we defineI(CXN) = ∅ \\ {¬CXN} ‖− D, I(di) = ∅ \\ E − {ei} ‖− {ei} for eachi, and
assume the existence of a “watchdog”WD such thatI(WD) = {S ⊆ D | [∃i 6= j ≤ n ei, ej ∈ S]⊃¬CXN∈ S}.
This interpretation ofWD cannot be expressed as a single simple reason, although it can be expressed as a set of
n(n− 1) simple reasons.

34[GABBAY 1982]
35[STALLMAN 1981]
36[M INSKY 1980]
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Finally, states of mind persist until changes are forced by inputs. It is impossible to treat persistence in
detail without first formalizing many parts of the theory too involved to discuss here, but we point out that persistence
is closely related to conservation, and its formal treatment may well take the form of transition comparison relations
for use by a conservative agent.

§51. Our final subject among theories related to reasoned assumptions is MCCARTHY ’ S notion of circums-
cription.37 Circumscription has figured prominently in discussions of non-monotonic reasoning, for like theories
of reasoned assumptions, it formalizes certain patterns of unsound inferences important in artificial intelligence.
Unfortunately, previous discussions have never proved successful at satisfactorily relating the two notions, in spite
of their common motivations and superficially similar formal treatments. This section attempts an explanation of
this failure of understanding. We first present a description of circumscription in its own terms, as formulated by
MCCARTHY. This is prelude to our main conclusion, that when closely examined, the notions of circumscription
and reasoned assumption are almost entirely unrelated, both conceptually and formally. This need not be an unhappy
conclusion, if one enjoys richness in one’s subjects of study. We conclude the section by sketching some practical
and theoretical aspects of agents in which the two notions are combined.

The idea of circumscription is that for each predicate occurring in a set of sentences in a logical language,
one can construct an axiom schema which states that the only truths involving that predicate are those which follow
from the original set of sentences alone. Put another way, the circumscription of some predicate states those conclu-
sions which hold in allminimal modelsof the original set of sentences. For example, if the set of sentences states
solely that red and blue are colors, circumscribing the sentences with respect to the predicate “color” produces a
theory in which yellow is not a color. Since the sentences do not mention yellow, there are models of those sentences
in which yellow is not a color. Some of those are models in which red and blue are the only colors, so one of the
conclusions in the circumscription of the sentences is that yellow is not a color, indeed, that red and blue are the only
colors. This sort of inference is non-monotonic because if the original sentences are augmented with the statement
that yellow too is a color, the color-circumscription of the augmented set no longer contains the conclusion that
yellow is not a color.

(51.1) DEFINITION. Let A be a sentence (or conjunction of sentences) in a first-order language containing a
predicate symbolP (x) = P (x1, . . . , xn). WriteA(Φ) for the result of replacing all occurrences ofP in A by the
predicate expressionΦ. Then Circ(P,A), the circumscription ofP in A(P ), is the sentence schema

A(Φ) ∧ ∀x.(Φ(x)⊃P (x))⊃ ∀x.(P (x)⊃Φ(x)).

We writeA µ`P q iff q ∈ Th({Circ(P,A)}).

MCCARTHY observes that this definition can be extended to circumscriptions on two or more predicates simulta-
neously.

To illustrate this formalization, suppose we know only one red-haired person, our friend Jane. If we see
someone looking like Jane in the crude sense of merely being red-haired, we might, via circumscription, assume
that that person is Jane, she being the only person we know fitting that description. This inference is non-monotonic,
of course, since if we now learn that Jane has an identical twin sister Joan, we can no longer conclude that anyone
who looks like Jane is Jane. Expressed formally in terms of McCarthy’s circumscription, this example might be
translated as follows. We start with the set of axiomsA = {red-haired(Jane)} and circumscribe on the predicate
“ red-haired.” The circumscription of this predicate inA is the axiom schema

Φ(Jane) ∧ ∀x(Φ(x)⊃ red-haired(x))⊃ ∀x(red-haired(x)⊃Φ(x)).

If we now substitute our only known instance of a red-haired person into this schema, that is, if we substitute the
formulax = Janefor Φ(x), we get

Jane= Jane∧ ∀x(x = Jane⊃ red-haired(x))⊃ ∀x(red-haired(x)⊃x = Jane).
37[M CCARTHY 1980], [DAVIS 1980]
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The first two parts of this formula are true, and simplifying it leaves the resulting assumption or “default”∀x(red-haired(x)⊃x =
Jane) which we can apply to any new person that looks like Jane (is red-haired). Yet this inference is non-monotonic,
in that if we add the new axiomred-haired(Joan) to A, we can no longer draw any such identifying conclusion. At
best, we can infer via another application of circumscription the less specific conclusion∀x(red-haired(x)⊃[x =
Jane ∨ x = Joan]).

(51.2) DEFINITION. Let M(A) and N(A) be models of the sentenceA. We say thatM is a submodel ofN in
P , writing M ≤P N , if M andN have the same domain, all other predicate symbols inA besidesP have the same
extensions inM andN , and the extension ofP in M is included in its extension inN . The modelM is minimal in
P iff N ≤P M only if N = M . The sentenceA minimally entailsq with respect toP , written A µ|=P q, iff q is
true in all models ofA that are minimal inP .

(51.3) THEOREM (MCCARTHY-DAVIS). If A µ`P q, thenA µ|=P q.

PROOF. LetM be a model ofA minimal inP . LetP ′ be a predicate satisfying the left side ofCirc(P,A) when
substituted forΦ. By the second conjunct of the left side,P is an extension ofP ′. If the right side of the instantiated
circumscription schema were not satisfied,P would be a proper extension ofP ′. In that case, we could get a proper
submodelM ′ of M by lettingM ′ agree withM on all predicates exceptP and agree withP ′ on P . This would
contradict the assumed minimality ofM .

(51.4) THEOREM (DAVIS). There are satisfiable sentences with no minimal models.

PROOF. Let A be the conjuction of the following four sentences.
(1) ∀x∃y Succ(x, y)
(2) ∃y∀x ¬Succ(x, y)
(3) ∀x, y, z [Succ(x, y) ∧ Succ(x, z)⊃ y = z]
(4) ∀x, y, z [Succ(y, x) ∧ Succ(z, x)⊃ y = z]

Every model ofA contains a submodel isomorphic to the natural numbers. But this submodel contains an infinite
chain of sub-submodels corresponding to the sets of natural numbers exceedingk for each natural numberk. Hence
A has no minimal model.

(51.5) THEOREM (DAVIS). There areA andP such thatA µ|=P q but notA µ`P q.

PROOF. Let A be the conjunction of the following set of sentences.
(1) ∃x Zero(x)
(2) ∀x, y [Zero(x) ∧ Zero(y)⊃x = y]
(3) ∀x∃y Succ(x, y)
(4) ∀x, y [Succ(x, y)⊃¬Zero(y)]
(5) ∀x, y [Zero(x)⊃Plus(x, y, x)]
(6) ∀x, y, z, u, v [Plus(x, y, z) ∧ Succ(y, u) ∧ Succ(z, v)⊃Plus(x, u, v)]
(7) ∀x, y [Zero(y)⊃Times(x, y, y)]
(8) ∀x, y, z, u, v [Times(x, y, z) ∧ Succ(y, u) ∧ Plus(z, x, v)⊃Times(x, u, v)]
(9) ∀x, y, z [(Zero(x) ∨ Succ(y, x) ∨ Plus(y, z, x) ∨ Times(y, z, x))⊃Number(x)]

It is easily seen that there is a unique minimal model ofA, namely the standard model of arithmetic. Hence
A µ|=Number q iff q is a true sentence of arithmetic. But the elements ofCirc(Number,A) are recursively enu-
merable, while the truths of arithmetic are not, hence there are circumscriptively true but underivable sentences.

I have repeated these definitions and theorems virtually verbatim from their sources, both because they
are worth knowing, and to emphasize the intimate connection they illustrate between the circumscriptive rule of
inference and the notion of entailment in minimal models. This is important, for in my view circumscription is
a natural and proper topic within the main tradition of mathematical logic. The heart of standard mathematical
logic is the study of the entailment relation: When do the models of one set of sentences include the models of
some other set of sentences? Analyzing these relations between sets of models leads naturally to analyzing the

59



structure of the class of all models, and as in most mathematical fields, there are natural orders relating the objects
of study. In model theory, the model-submodel relation is one such order, so circumscription arises naturally when
one studies entailment from the viewpoint of the model-inclusion order. Circumscription would arise naturally in
mathematical logic even if no one cared about psychology, even if no one cared to mechanize intelligence. The
notion of circumscription is logical, not psychological.

On the other hand, the notion of reasoned assumption is psychological, not logical, at least as far as
standard mathematical logic is concerned. Consider the theory of simple reasons. This theory captures essentially
all the principal motivations and characteristics of reasoned assumptions, but few logical notions are in evidence.
Instead, the important notions are the psychological concepts of intention or desire, and of economic or decision-
theoretic tradeoffs between simultaneously unsatisfiable ratiocinative desires and intentions. Questions of entailment
and deducibility are not prominent; questions of utility and feasibility are. One can, of course, view state components
as axioms and admissible extensions as sets of theorems, but the existence of interesting finite agents realizing these
theories belies the identification, for no familiar logic has only a finite language, or has as little structure among its
sentences as do some perfectly rigorous simple reasons agents.38

These disparate notions have been confused because of the circumstances in which they were developed.
Theories of reasoned assumptions can take logical form, as seen in the linguistic reasons theory, and their first formal
treatment was in non-monotonic logic, which as we observed previously, attempted to phrase reasoned assumptions
in terms of logical consistency with sets of axioms. Since only logical terms appeared in that development, non-
monotonic logic claimed logical status. Thus on one side, the properly psychological notions masqueraded as logical
notions. But on the other side, the properly logical notion of circumscription found billing as a psychological notion,
at least in artificial agents. Circumscription, of course, has application in certain psychologies, but that no more
makes it a principally psychological notion than does the prevalence of carbon-based chemistry in human brains fit
carbon for psychological prominence. It is instructive to compare the case of Modus Ponens. From a psychological
point of view, circumscription and Modus Ponens are equally relevant, and equally foreign. Both are concepts
from mathematical logic whose mechanizations find application in implementing certain psychological functions
in certain agents. In this respect, circumscription is at a disadvantage because it is less mechanizable than Modus
Ponens, and because much less is known about how and when to fruitfully apply it. But discretionary use of these
techniques in implementing psychological functions does not make them crucial for psychological problems or
make them psychological notions per se. There is really no more (and no less) need to “explain” the connection
between circumscription and theories of reasoned assumptions than there is to “explain” the connection between
Modus Ponens and theories of reasoned assumptions.

The issue is further complicated by the deductivists in psychology and the psychologists in logic. De-
ductivists are those who, in carciature at least, view all psychological problems as questions of formulating the
appropriate logical axioms so that all mental activity can be phrased in terms of deductions from these axioms. As a
claim about interesting psychologies, this view is either preposterous or trivial, depending on how one interprets it.
As a methodology for how to conduct research in artificial intelligence, it is much less preposterous or trivial, but not
without its problems. Psychologists in logic are those who, again in carciature, view logic as the study of the “laws
of thought,” a more general view than that taken in standard mathematical logic, and one which leads to all sorts
of extensions of logic to incorporate psychological concepts. As a methodology, emphasizing logical investigation
of psychological concepts, this view too has its merits, however distasteful the abuse of the term “logic” is to those
with classical views. But as a thesis that there are laws including and beyond those of logic that must be common to
the psychologies of all rational agents, the claim is unsubstantiated and very suspect, not only due to the diversity of
imaginable psychologies, but also because the notion of a natural, universal standard of rationality is itself suspect.

It is important not to misconstrue this discussion of the psychological or logical centrality of certain
notions as an attempt to mark boundaries between these fields, or to require labelling of all notions in terms of
recognized disciplines. Topics in one field metamorphose into topics in the other quite frequently. But psychology’s
main aim is to study agents, their minds and their actions, and standard logic’s main aim is to study truth itself. The
two should not be identified lightly.

38Indeed, from the viewpoint of psychology, even the formal notion of axiom acquires nonlogical force, since the word word “axiom” derives
from the Greekaxiomaandaxios, words for worth or value and things thought worthy or valued.
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Let us turn from distinctions to connections. On the practical side, almost nothing is known about when
to circumscribe (in advance? when stuck?), what to circumscribe (all of the agent’s beliefs? just a few?), how to
circumscribe (mechanize mathematical induction?!), and when and how to retreat from circumscriptively obtained
conclusions. The ideas extant (but mostly untried) run as follows. The preferred way of organizing logically-based
agents these days is in terms of multiple, mutually referential theories; in the extreme, separate theories for each
component for each concept, purpose, and activity of the agent.39 In these contexts, circumscription seems suited to
the formulation of defaults, which are then treated by the methods of reasoned assumptions. For example, one con-
structs a logical theory axiomatizing some concept, say rowboats. This “definitional” theory is usually incomplete,
say by stating that the boat either can be rowed or lacks oars. One might employ circumscription to complete the
theory, computing all the main conclusions that follow in which the boat lacks any problems.40 These conclusions,
such as the presence of oars, the soundness of the hull, etc., can then be added to the definitional theory in the form of
default rules, making the assumptions whenever not specifically ruled out. Similarly, one might use circumscription
“on demand” in problem-solving situations by routinely taking the statement of the problem and using circums-
cription to compute all the basic facts, for example definite lists of all objects and all predicate extensions, making
those not already believed to be reasoned assumptions whose qualification is that nothing new is learnt about the
problem formulation (new in the sense of not entailed by the initial formulation and hence in contradiction to the
assumptions).

On the theoretical side, one can attempt to connect circumscription and reasoned assumptions in several
ways. First, one can formulate the definition of something like inevitability in terms of circumscription. Here one
has axioms stating the presence or absence of some state components, and other axioms giving the interpretations
of state components and general restrictions (in other words, embedding the theory of reasoned assumptions in the
agent’s own language). Circumscribing these with respect to the “present” predicate on state components yields
conclusions about what must hold in all minimal models of the axioms, about what components are inevitable given
the initial components. Unfortunately, I do not know whether one can make this suggestion precise in any interesting
way.

(51.6) QUESTION. Assume a linguistic reasons agent is axiomatized in the suggested way, and supposeS ⊆
L has admissible extensions{E1, . . . , En}. Is it the case that circumscribing the axiomatization with respect to
“present in the state” implies (or even is equivalent with)

∧
E1 ∨ . . . ∨

∧
En?

Another possible connection is to consider circumscribing a set of linguistic reasons with respect to all
predicates at once. One expects this to contain more conclusions than the intersection of all admissible extensions,
simply because the circumscription will try to complete all predicates, while the reasons in the state will only
complete certain predicates with respect to certain instances.

(51.7) QUESTION. SupposeS ⊆ L in a linguistic reasons agent is coherent. Does the circumscription ofS
with respect to all predicates properly include all sentences in

⋂
AExts(S)?

More generally, we can ask for characterization of those psychologies in which important psychological
notions match interesting logical notions “in the limit.” The obvious candidate is minimal psychological entailment,
even though it is not terribly important in the preceding development.

(51.8) QUESTION. In what sorts of logically based psychologies is minimal psychological entailment the same
as minimal entailment?

Note that these questions are still problems for correct formulation rather than simply resolvable conjectures.

39See, for example, [WEYHRAUCH 1980], [KONOLIGE AND NILSSON 1980], [DOYLE 1980].
40There are sometimes computationally tractable ways of doing this, see for example [REITER 1982].
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V. Conclusions

§52. We have come to the end of this story, even though there is still much to tell. In the preceding we explored the
principal approach taken in artificial intelligence to the problem of acting with only incomplete information, that of
employing rules of thumb for making and revising assumptions. We interpreted these rules of thumb as ratiocinative
desires about when to be or not to be agnostic, how to resolve ambiguities, and when to abandon previous assump-
tions. We presented a mathematical framework in which each of the constituent ideas underlying applications of the
approach could be individually introduced and analyzed. Within this framework we provided mathematical seman-
tics for ratiocinative rules of thumb, which one might call “admissible state semantics” since the meaning of each
reason is a set of sanctioned “admissible” states. The formal basis allows mathematical formulation and proof of
many conceptions previously known only to folklore, and we stated and proved a number of these results. However,
compared to the probabilistic approaches common in other fields, theories of reasoned assumptions are still near the
beginnings of their development. I am acutely aware of the essential triviality of some of the results presented, but
allow that a new field must begin somewhere. Nevertheless, some of the results are conceptually important, whate-
ver their mathematical depth, for instance Theorem 27.16, the strong validity-optimality of admissible extensions.
Hopefully the formal basis will permit deeper understanding of the issues involved, since now many questions of
formulation can be treated technically rather than merely debated philosophically, and perhaps permit attack on the
important practical questions about efficient mechanizations of conservative agents.

Many topics have been left for treatment elsewhere, either receiving no mention or only passing mention
in the preceding. Among these come a development of the evolutionary theory in terms of the global structure of
trajectory space; treatments of the abstract notions of reflection and conservatism used here concretely; relations
of ideas discussed to CARNAP’ S theory of probability, DACEY’ S theory of conclusions, LEVI ’ S epistemic actions,
SHAFER’ S theory of evidence, and LEWIS’ S theory of counterfactuals;41 and development of practical revision
systems satisfying attractive conservation specifications.

§53. While I have tried to draw connections between the methodologies of artificial intelligence and other
fields, I have tried to avoid methodological debate within artificial intelligence itself, and hope a very few words
of explanation will be tolerated. It is easy to misunderstand the work presented in the preceding, for its aims are
somewhat different than those usual in artificial intelligence. The preceding does not attempt to solve a problem
in the usual sense. It offers no new algorithms for realizing mental functions. Instead, its aim is to understand
the problems and approaches already known. This involves the mathematician’s methodological suspicion that the
original formulation of a notion may not be the best one, and that better formulations may permit deep analysis
where only complexity reigned before. I call this enterpriserational psychology, the investigation of psychology by
reason alone, choosing this name after the example of rational mechanics. I say no more here, as details may be
found elsewhere.42

41[CARNAP 1950], [DACEY 1978], [LEVI 1967], [SHAFER 1976], [LEWIS 1973]
42[DOYLE 1982], [DOYLE 1983A ]
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Pascal, B., 1662.Penśees sur la religion et sur quelques autres sujets(tr. M Turnell), London: Harvill, 1962.

Quine, W. V., 1953. Two dogmas of empiricism,From a Logical Point of View, Cambridge: Harvard University
Press.

Quine, W. V., 1970.Philosophy of Logic, Englewood Cliffs: Prentice-Hall.

Quine, W. V., and Ullian, J. S., 1978.The Web of Belief, second edition, New York: Random House.

Rabin, M. O., 1974. Theoretical impediments to artificial intelligence,Information Processing 74, Amsterdam:
North-Holland, 615-619.

Rabin, M. O., 1976. Probabilistic algorithms,Algorithms and Complexity: New directions and recent trends(J. F.
Traub, ed.), New York: Academic Press, 22-39.

Reiter, R., 1978. On reasoning by default,Proc. Second Conf. on Theoretical Issues in Natural Language Processing,
210-218.

65



Reiter, R., 1980. A logic for default reasoning,Artifical Intelligence13, 81-132.

Reiter, R., 1982. Circumscription implies predicate completion (sometimes),AAAI-82, 418-420.

Reiter, R., and Criscuolo G., 1981. On interacting defaults,Proc. Seventh International Joint Conference on Artificial
Intelligence, 270-276.

Rescher, N., 1964.Hypothetical Reasoning, Amsterdam: North Holland.

Savage, L. J., 1972.The Foundations of Statistics, 2nd rev. ed., New York: Dover.

Scott, D. S., 1982. A theory of domains and computability, lecture notes, Pittsburgh: Department of Computer
Science, Carnegie-Mellon University.

Shafer, R., 1976.A Mathematical Theory of Evidence, Princeton: Princeton University Press.

Smith, B. C., 1982. Reflection and semantics in a procedural language, Cambridge: Laboratory for Computer
Science, Massachusetts Institute of Technology, TR-272.

Stallman, R. M., 1981. A new way of representing defaults, unpublished manuscript, Cambridge: Massachusetts
Institute of Technology.

Stallman, R. M., and Sussman, G. J., 1977. Forward reasoning and dependency-directed backtracking in a system
for computer-aided circuit analysis,Artificial Intelligence9, 135-196.

Szolovits, P., 1978. The lure of numbers: how to live with and without them in medical diagnosis,Proc. Coll.
Computer-Assisted Decision Making using Clinical and Paraclinical (Laboratory) Data(B. E. Statland
and S. Bauer, eds.), Tarrytown: Technicon, 65-76.

Thomason, R. H., 1979. Some limitations to the psychological orientation in semantic theory, mimeo, Pittsburgh:
University of Pittsburgh.

Thompson, A., 1979. Network truth maintenance for deduction and modelling,Proc. Fifth International Joint Con-
ference on Artificial Intelligence, 877-879.

Tukey, J. W., 1960. Conclusions vs. decisions,Technometrics2, 423-433.

Turner, R., 1981. Counterfactuals without possible worlds,J. Philosophical Logic10, 453-493.

Van Frassen, B. C., 1980. A temporal framework for conditionals and chance,Ifs (W. L. Harper, R. Stalnaker, and
G. Pearce, eds.), Dordrecht: Reidel, 323-340.

Weyhrauch, R. W., 1980. Prolegomena to a theory of mechanized formal reasoning,Artificial Intelligence13, 133-
170.

66



Zadeh, L., 1975. Fuzzy logic and approximate reasoning,Synthese30, 407-428.

67



Table of Symbols

Symbols appearing in the text are listed below in three groups. First are ones in the roman alphabet
(alphabetically), second are ones in the greek alphabet (alphabetically), and third are other symbols. Some symbols
appear more than once to avoid confusions about ambiguities of classification. The text also standardly uses the
lettersa, b, c, d, e, f, g to mean elements ofD, the lettersA,B,C, D, E, F,G, S to mean subsets ofD, andÊ, Ŝ to
mean sets of subsets ofD.

AE A posterioriextent
AExts Set of admissible extensions
Alt Set of alternative states in backtracking
Bc Complement ofB in D, i.e.D −B
CE Conditional extent
D Domain of an agent’s states
E Relative frequency of element in distribution
Exts Set of extensions of a set
E Extended transition function (Epsilon)
FGExts Set of finitely grounded extensions
GExts Set of grounded extensions
I State admissibility interpretation function
J Extension admissibility interpretation function
L “Provable” modality
L A logical language
M “Consistent” modality
m Measure function
N Natural numbers
NP Class of non-deterministic polynomial time computable functions
O Complexity order class
P Power set
P Class of deterministic polynomial time computable functions
#P Class of non-deterministic polynomial time countable functions
Pr Probability
Prh Probability of coming to hold a component
Q Set of component-admissible states
QExts Set of component-admissible extensions
R Real numbers
R Global restriction on admissible states
S STALLMAN ’ S “Should” modality
S Set of admissible states
T Trajectory space of a system
Th Closure of a set with respect tò
U Universe of a set
V Set of valid reasons

∂ Kernel transition function
∆ Full transition function
4 Symmetric set difference
E Extended transition function
Λ Elements generated by all ranks
Λα Elements generated by rankα
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µ Minimization operator
µ` Circumscriptive deducibility relation
µ|= Minimal entailment relation
µ‖=S Minimal psychological entailment
µ|∼S Minimal psychological derivability
ν Transition minimization operator (“nearest”)
Σ Set of closed term substitutions

<G Well-ordering ofG
� Comparison of transition sizes
≺
S Comparative similarity relation aboutS

4 Symmetric set difference
C Extensions of sets
C· Admissible extensions
p q Quasi-quotes
A \\ B ‖− C Reason interpretation
` Deducibility relation
µ` Circumscriptive deducibility relation
|= Entailment relation
µ|= Minimal entailment relation
|∼ Psychological arguability relation
‖=S Psychological entailment relation inS
|∼S Psychological derivability relation
µ‖=S Minimal psychological entailment
µ|∼S Minimal psychological derivability
⊕ Direct (disjoint) sum
× Direct (Cartesian) product
	 “Meta-negation,” see§48
� “Meta-disjunction,” see§48
#P Class of non-deterministic polynomial time countable functions
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