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Abstract

We evaluate the success of the qualitative physics enterprise in automating expert
reasoning about physical systems. The field has agreed, in essentials, upon a modeling
language for dynamical systems, a representation for behavior, and an analysis method.
The modeling language consists of generalized ordinary differential equations containing
unspecified constants and monotonic functions; the behavioral representation decomposes
the state space described by the equations into discrete cells; and the analysis method
traces the transitory response using sign arithmetic and calculus. The field has developed
several reasoners based on these choices over some fifteen years. We demonstrate that
these reasoners exhibit severe limitations in comparison with experts and can analyze only
a handful of simple systems. We trace the limitations to inappropriate assumptions about
expert needs and methods. Experts ordinarily seek to determine asymptotic behavior
rather than transient response, and use extensive mathematical knowledge and numerical
analysis to derive this information. Standard mathematics provides complete qualitative
understanding of many systems, including those addressed so far in qualitative physics.
Preliminary evidence suggests that expert knowledge and reasoning methods can be auto-
mated directly, without restriction to the accepted language, representation and algorithm.
We conclude that expert knowledge and methods provide the most promising basis for
automating qualitative reasoning about physical systems.

1 Introduction

To develop mathematics, one must always labor to substitute ideas for cal-
culations. Dirichlet

The qualitative physics enterprise of artificial intelligence seeks to automate reasoning
about the physical world in the manner of scientists, engineers, and other experts, ulti-
mately “constructing what could best be described as an ‘artificial engineer’ or ‘artificial
scientist’” (Weld and de Kleer, 1990, p. 1). Most of this research seeks to capture the ability
of experts to predict the behavior of dynamical systems, such as circuits, fluid flows, and
mechanisms. Experts reason about dynamical systems by formulating and analyzing differ-
ential equations that capture the properties of interest and abstract away irrelevant details.
Qualitative physics hypothesizes that experts mostly use extremely general equations and
analysis tools. The rationale is that general equations are easier to formulate than specific
equations and that general analysis is more rapid and robust than detailed mathematical or

“This paper is a revision and expansion of [12]. Authors listed anti-alphabetically.
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numerical analysis. Researchers have developed several approaches based on this hypoth-
esis. Although each approach has its own special characteristics, they share a modeling
language for physical systems, a representation for behavior, and an analysis method. In
this paper, we assess this shared theory of expert reasoning, which we call SPQR (short for
Simulatio Processus Qualitativo Ratiocinatione or “Simulation of Processes by Qualitative
Reasoning”).

We believe that qualitative physics has not lived up to its initial promise to automate
expert reasoning: not because this task is impossible, but due to fundamental limitations
of SPQR. After fifteen years of research, SPQR can analyze successfully only a handful
of simple systems, such as a falling point mass or a U-shaped tube containing liquid. It
struggles with linear oscillatory systems, such as simple springs, and fails completely on
many nonlinear oscillators. Despite numerous attempts to improve performance to the
level of expert analysis by extending SPQR, the analyses that appear in current research
papers seem, from a mathematical point of view, little better than those of five years ago.
Qualitative physics blames this state of affairs on the unforeseen difficulty of identifying
and automating the general mathematical principles that underlie expert reasoning.! We
propose a different explanation for the weakness of SPQR compared with routine expert
performance: SPQR embodies inappropriate assumptions about the needs and methods of
experts for reasoning about dynamical systems, in that it provides little information about
asymptotic behavior and uses little expert knowledge.

Experts need to know the asymptotic behavior of a dynamical system: the stable steady-
states, the sets of solutions that converge to each steady-state, and the sensitivity of these
properties to perturbations in the equations. This information provides a qualitative un-
derstanding of the system and sets the stage for further analysis, such as calculating the
transient behavior for specific initial conditions. The most important steady-states are con-
stant and periodic behavior, followed by quasi-periodic and chaotic behavior. The SPQR
behavioral representation cannot express any information about steady-states, except for
the existence of constant solutions, and the SPQR analysis algorithm only traces the tran-
sient behavior of a system for a range of initial conditions. SPQR thus fails to answer
experts’ questions about asymptotic behavior.

Experts reason about dynamical systems with advanced mathematics, physics, and other
knowledge. They formulate, analyze, and revise specific equations until predictions derived
from these equations become accurate enough for their needs. They eschew reasoning
about general equations because these support few useful inferences. In many cases, they
analyze equations by linearizing them over the range of interest and applying the well-
developed theory of linear systems. When nonlinearity cannot be ignored, they resort to
the mathematical theory of dynamical systems, which provides qualitative descriptions of
the possible steady-states, and to numerical software for analyzing specific equations. They
use the theory to guide the numerical analysis and to verify the results. SPQR, which
embodies little knowledge about linearity, dynamical systems theory, or numerical analysis,
cannot reproduce expert understanding.

!For example, according to Weld and de Kleer (1990, p. 7), “codifying qualitative knowledge about the
physical world has proven to be surprisingly difficult. Just getting the qualitative version of the calculus
(used to express qualitative knowledge) right took many years of work by a large number of people.”
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Concerns with producing causal explanations and with explaining commonsense reason-
ing may underlie the differences between SPQR and expert knowledge and methods, in that
some qualitative physics researchers claim that SPQR constructs causal explanations of the
workings of physical devices, and some intend qualitative physics to cover commonsense
reasoning as well as expert reasoning. But both these positions are controversial.> We
will not address either of these issues here in order to focus more clearly on the accepted
aims and methods of SPQR. Whatever one’s position on causality, the limitations of SPQR
reduce its utility for producing causal explanations, since it cannot explain systems that it
cannot analyze. Using expert methods might thus aid in producing causal explanations if
it proves easier to produce causal paraphrases of possibly noncausal explanations than to
enhance SPQR. And whether or not the man on the street infers that “what goes up must
come down” by reasoning with a general model, the aeronautical engineer analyzes exact
aircraft models by advanced mathematics and by extensive numerics. Indeed, a great part
of his or her education involves learning how to augment, replace, or refine commonsense
concepts and methods (whatever they may be) with more informed techniques.

The plan of discussion is as follows. In Section 2, we describe SPQR and examine its
successes, failures, and recent extensions. We demonstrate that most of the successes are
syntactic variants of three simple equations. Despite the extensions, SPQR fails on other
simple problems. Moreover, we prove that many generalized differential equations convey
no useful information. We conclude that SPQR is far from attaining expert performance.
In Section 3, we trace the problem to a mismatch between expert reasoning and SPQR’s
equations, behavioral representation, and algorithms. In Section 4, we explain why advanced
mathematics provides the best available basis for automating expert reasoning about the
physical world. We argue that qualitative physics research should focus on modeling and
on automating existing mathematics, rather than on inventing analysis tools. In the final
section, we summarize our arguments and recommendations.

2 The SPQR methodology

The principal qualitative physics approaches to automating the analysis of dynamical sys-
tems include de Kleer and Brown’s (1984) confluences, Forbus’s (1984) QP theory, and
Kuipers’s (1986) QSIM. Each of these approaches models dynamical systems with time-
varying state variables governed by generalized ordinary differential equations. Some ap-
plications of these approaches obtain the equations as input, while others derive them by
parsing an input domain model, such as a circuit schematic or a systems dynamics compo-
nent model. Each approach provides a representation for the equations and algorithms for

20n the subject of causality, Weld and de Kleer (1990, p. 611) write, “Causality is by far the most fractious
topic in qualitative physics.” For example, Iwasaki and Simon (1986a; 1986b) deny that SPQR, provides any
causal information beyond that provided by the standard causal ordering method of econometrics, and de
Kleer and Brown (1986) dispute their conclusions. On the subject of commonsense reasoning, Weld (1990,
p. 4) writes “The goal of qualitative physics is to make explicit the unspoken intuitions of experts in the
physical sciences. I distinguish qualitative physics from the field of naive physics. Qualitative physics is
interested in expert reasoning, not in duplicating the common mistakes of novices.” Apparently in contrast,
Forbus (1990, p. 11) writes “The goal of qualitative physics is to capture both the commonsense knowledge
of the person on the street and the tacit knowledge underlying the quantitative knowledge used by engineers
and scientists.”
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inferring properties of the solutions. We abstract the approaches into a single framework,
called SPQR, that captures the essential features of the equations, behavioral representa-
tion, and analysis algorithm. Although the superficial details of SPQR most closely resemble
QSIM, which we find especially clear and precise, our discussion applies equally to the other
approaches. Crawford et al. (1990) prove the dynamics module of QP theory equivalent to
QSIM by implementing a translator from QP theory to QSIM. We prove the applicability of
our arguments to confluences in Section 2.3. Every other approach in the literature closely
resembles one of these three.

2.1 SPQR equations, behaviors, and algorithms

SPQR state values are ordered (or partially ordered) sets of numbers and intervals. The
most common set of values is the set of sign values (—o0,0), 0, and (0,00), which we
abbreviate as [—], [0], and [+]. SPQR state variables map temporal values, which are points
or intervals, to SPQR state values. SPQR equations relate state variables via arithmetic
operators, differentiation, and functional relations. The arithmetic operators and functions
map SPQR state values to SPQR state values. The functions are specified as strictly
monotonic increasing (M ™) or decreasing (M ) and possibly by a few stipulated values. In
particular, the symbols M ,:r and M,  denote monotonic functions that take the value 0 at
k. Differentiation maps a state variable to its derivative state variable.

SPQR defines the state of a system as the SPQR values of its state variables and of
their derivatives. It characterizes the behavior of the system by the sequences of states that
it can go through, ordinarily seeking to identify behavioral properties that hold in every
state sequence compatible with the equations. It represents state sequences as a transition
graph whose nodes and links denote states and possible transitions.

SPQR derives the graph by repeatedly identifying the current state and finding all
immediate successor states. It identifies the current state by applying interval arithmetic
rules for combining SPQR values, such as [—] 4+ [0] = [—], and propagating these results
through the equations. It finds the immediate successors with calculus rules, such as the
intermediate value and mean value theorems. For example, the state © = [0] and & = [+]
may immediately follow x = [—] and & = [+], but the state = [+] and & = [—] may not.
Full descriptions of typical SPQR algorithms appear in (Kuipers, 1986) and in (Williams,
1984).

2.2 Example: tubular fluid flow

We illustrate the concepts of SPQR with an example popular in qualitative physics: the
inertia-free flow of liquid in a U-shaped tube, displayed in Figure 1. We follow the discussion
in Kuipers (1986), but rewrite his equations in standard notation. The SPQR description
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equilibrium level

Figure 1: Fluid flow through a U-shaped tube.

of this system consists of the equations

le = g(ve)
Pz = e(laz)
ly = hlvy)
36, fagah € M[;i— py = e(ly (1)
r o= f(px - py)
Uy = —T
vy = T

with state variables l;, psz, Ve, ly, Dy, vy, and r. The variables [, p, and v measure the levels,
pressures, and volumes in the chambers x and y. They take on sign values because they are
measured relative to their equilibria.® Their values are

lx:p:czvx ['I']
ly =py =vy =[]

(2)

in the state shown in the figure. The variable r measures the flow rate from x to y, and
also takes on sign values. Dotted quantities (9, and ©,) indicate derivatives with respect to
time.

SPQR constructs a transition graph for the U-shaped tube as follows. Starting from the
initial sign values listed in Equation (2), the analysis algorithm derives that r» = [+] from
the fifth equation in system (1), since p, —py = [+] — [-] = [+] and f([+]) = [+]. It then
derives that 0, = [—] and v, = [+] from the last two equations. It infers from the properties
of derivatives that v, decreases and that v, increases. It infers that [, and p, decrease
and that [, and p, increase by applying the chain rule of differentiation to the first four
equations. It infers that r decreases analogously. SPQR has now found the entire initial
state of the system. It finds a single successor state in which all variables and derivatives
equal [0], using the intermediate value theorem and the known relations among variables.
It infers that the system cannot leave the [0] state. The transition graph consists solely of
these two states (Fig. 2). In physical terms, the fluid moves directly to the equilibrium level
and stays there. (It does not oscillate because it has no inertia.)

2.3 SPQR equations versus confluences

De Kleer and Brown (1984) model dynamical systems with sign equations, called conflu-
ences, such as

[#] = [=] + [v], (3)

*Kuipers (1986) uses the true values rather than sign values.
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e [+ [-] lm [0] [0]
P ['I'] [_] Pz [0] [O]
ve [+] [-] vy [0] [0]
State 1 ly [=] [+] l, [0] [0] State 2
py [=] [+] py [0] [0]
vy [=] [+] vy (0] [0]
ro [+ [+ r - [0] [0]

Figure 2: The transition graph of the U-shaped tube. Each variable is listed with its sign
and the sign of its time derivative.

rather than with SPQR equations. They interpret confluences as constraints on the signs of
the state variable. In equation (3), & is positive when one variable is positive and the other
is nonnegative; & equals zero when both variables equal zero; & is negative when one variable
is negative and the other is nonpositive; and & is unconstrained when one variable is positive
and the other is negative. Confluences are more general than SPQR equations because sign
expressions represent more functions than do M functions. The sign expression [z — k] with
constant k represents every function in M ,:“ () along with all other functions f satisfying
(x — k) f(x — k) > 0. For example, the function f(z) = 23 4+ 922 + 242 is a nonmonotonic
instance of [z]; it increases from —oo to a local maximum f(—4) = —16, decreases to a local
minimum f(—2) = —20, increases to f(0) = 0, and continues increasing forever. The sign
expression [k — x] generalizes M, (x) analogously. Hence, a given confluence subsumes the
SPQR equation in which M operators replace sign operators. For example, equation (3)
subsumes & = Mg (z) + Mg (y).

We confine attention to generalized equations in the following. The weaknesses of SPQR
relevant to SPQR equations arise because these equations are overly general, and so apply
all the more to the even more general confluences.

2.4 Extensions to SPQR

Researchers have extended SPQR in many ways. Lee and Kuipers (1988) and Struss (1988)
eliminate spurious behaviors that violate the uniqueness of solutions of ordinary differential
equations (under the SPQR assumptions). For example, they prove that a block attached
to a spring cannot oscillate erratically. Their methods apply only to second-order equa-
tions in which time does not appear explicitly. Kuipers and Chiu (1987) and de Kleer
and Bobrow (1984) eliminate spurious behaviors based on smoothness assumptions about
the higher-order derivatives of state variables. Sacks (1990b) reformulates transition graph
construction as proving of algebraic inequalities and develops a less ambiguous algorithm
based on an inequality prover and on sign-stability tests. Williams (1988) reduces the am-
biguity of analysis algorithms by augmenting SPQR arithmetic with algebraic techniques.
For example, he simplifies + — = to 0, whereas sign arithmetic yields the ambiguous ex-
pression [+] — [+]. Raiman (1986) and Mavrovouniotis and Stephanopoulos (1987) add
assertions of the form “variable x is negligible in relation to variable y” and extend the
SPQR algorithms to ignore negligible terms. For example, they infer that the sun attracts
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the earth by neglecting the attraction of the moon. Weld (1990) and Davis (1987) extend
SPQR to encompass infinite and infinitesimal values. Kuipers (1987a) forms hierarchies of
SPQR equations separated by time-scale. Each level of the hierarchy treats faster levels as
instantaneous and treats slower levels as constant. Doyle and Sacks (1991) extend SPQR to
predict the relative likelihoods of possible behaviors by viewing the dynamics of a system
as a Markov chain over its transition graph. Kuipers and Berleant (1988) derive numer-
ical bounds on the solutions from numerical bounds on the state variables and bounding
envelopes around the M functions.

2.5 The state of the art

The qualitative physics literature contains several successful analyses of SPQR equational
models of physical systems. The most common examples are fluid flow in a U-shaped tube
(Kuipers, 1986), heat flow from a flame to a container of liquid (Forbus, 1990), motion of
point masses subject to gravitation and friction (de Kleer, 1977; Kuipers, 1986), and current
flow in circuits (Williams, 1984). Kuipers (1985; 1987h) analyzes several homeostatic phys-
iological mechanisms, including the Starling equilibrium that governs the concentration of
protein in the body. Molle (1989) analyzes chemical engineering models, such as continuous
stirred tank reactors. Falkenhainer and Forbus (1988) analyze a steam plant.

The literature also describes simple physical systems, most commonly a block attached
to a spring, whose SPQR analyses are incomplete. The block and spring are modeled by
the SPQR equations

=0

g € M { b= (o) - g(a) @

with x the displacement of the block from its equilibrium position, v the velocity of the
block, f the frictional force, and ¢ the elastic force. SPQR constructs the transition graph
shown in Fig. 3. We infer that, after an initial displacement, the block either oscillates
around the equilibrium forever or oscillates some number of times and then approaches
the equilibrium directly. The transition graph does not specify whether the oscillations die
out, remain constant, grow, or vary erratically (Kuipers, 1986). The responsibility for this
incompleteness rests with SPQR, since the equations imply that the oscillations die out.
We draw this inference by introducing the concept of energy (formalized as a Lyapunov
function) and proving that energy decreases to zero along all solutions.

(LD = (OLH) = (L)
RN !
(1. [on) ([o]. [oD) ([+]. [o)
0 S
(LD« (OLED < (L)

Figure 3: Transition graph for the block and spring with (z,v) states.



SAacks & DOYLE

The seeming diversity of successful and partially successful SPQR. analyses diminishes
upon closer examination. Many elaborate SPQR. equations are just syntactic variants of a
few simple equations. The simple equations yield the same inferences as the originals with
much less work. We find the simple equations by collapsing redundant M functions with
the rewrite rules shown in Table 1. The proof that the rules preserve the SPQR semantics
is straightforward. Kuipers (1984, App. D) presents an equivalent set of rules.

expression rewrite expression rewrite
1. M*+M* M™* 8. 1/M~ M+
2. M—+M~- M~ 9. MtoM™T M+
3. —MT M~ 10, M~ oM~ M+
4. —M~ M 11. MToM~ M~
5 k+M* M+ 12. M—oM* M~
6. K+ M~ M~ 13. kM™ M+ (k> 0)
7. 1/MT M~ 14. kM~ M~ (k>0)

Table 1: Rewrite rules for monotonic functions.

To illustrate the use of these rules, we reduce Equation (1), which contains seven equa-
tions in four M functions, to one equation in one M function. We obtain v, + v, = k by
adding the last two equations and integrating. We substitute k — v, for v, and combine the
remaining equations into

by = [(A(vy))
with
Alvy) = e(g(k —vy)) — e(h(vy))
by elementary algebra. We rewrite —v, as M~ (v,) by rule 3, k — v, as M~ (v,) by rule 6,
e(g(k —vy)) as M~ (vy) by rules 9 and 11, —e(h(vy)) as M~ (vy) by rules 3 and 9, A(vy) as
M~ (vy) by rule 2, and f(A(vy)) as M~ (vy) by rule 11. The final result is

Uy = M~ (vy).
The SPQR analysis of this equation is very easy. In the initial state, 0, = [—] because
vy = [+]. The only possible successor is v, = v, = [0]. Hence, the volume in arm y

increases toward equilibrium. We can recover the values of the other variables from the
original equations.

We estimate the number of successful SPQR analyses by surveying the 55 papers in the
collection (Weld and de Kleer, 1990), which presents the state of the art through 1989. (We
found no new analyses in the proceedings of AAAI-90.) We exclude examples presented
without equations, such as the steam plant (Falkenhainer and Forbus, 1988). Table 2
summarizes the results; the full list appears in Appendix A. Out of 37 examples, 30 reduce
to three simple equations and 5 are purely algebraic, hence have no dynamics. The U-tube,
heat flow, motion of a point mass, and physiological mechanisms are of type 1; the block
on a spring and the pressure regulator are of type 2; and the coupled tanks are of type
3. Only two examples are more complicated: an n-Mosfet (Williams, 1984) and a voltage
follower (Dague et al., 1987). Although SPQR can analyze types 1, 3, and 4, it cannot
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fully analyze types 2 and 5. Mathematicians fully analyzed all these equations before the
advent of artificial intelligence (Brauer and Nohel, 1969). Hence, only five SPQR equations
support useful inferences about dynamical systems and none support new inferences.

type # analysis
1. #=M (x) 16 full

2. &=M"(&)+M () 11 partial

3. coupled pair of type 1 3 full

4. algebraic 5 full

5. other 2 partial

Table 2: Number of occurrences of SPQR equations analyzed in Weld and de Kleer (1990).

3 SPQR versus expert reasoning

The methods of SPQR have provided successful analyses of a number of simple systems.
But there are other simple and common systems that SPQR. still cannot comprehend after
15 years of investigation. From the point of view of classical mathematics, the problems
attacked with SPQR today are not in essentials harder, or even different, from those worked
on five years ago. Does this simply reflect the preliminary state of research in the field? We
believe there is a more fundamental explanation: SPQR embodies inappropriate assump-
tions about the needs and methods of experts for reasoning about dynamical systems. To
support this explanation, we compare the SPQR method of reasoning with the knowledge
and methods taught to experts-to-be in standard texts from dynamics (Guckenheimer and
Holmes, 1986; Hirsch and Smale, 1974), science (Abraham and Marsden, 1978; Arnold, 1984;
Benson, 1982; Clark, 1976; Prigogine, 1980; Thompson and Stewart, 1986), and engineer-
ing (Chua et al., 1987; Etkin, 1972; Marsden and Hughes, 1983; Parker and Chua, 1989;
White, 1986). We demonstrate that the methods differ profoundly and that the differences
explain why experts far outperform SPQR.

3.1 Experts focus on asymptotic behavior

Scientists and engineers normally focus on the asymptotic behavior of dynamical systems.
The asymptotic analysis gives a qualitative understanding of the system behavior and sets
the stage for further analysis, such as determining the transient behavior and settling time
for specific initial conditions. The primary asymptotic concept, called an attractor, is a
steady-state toward which nearby initial conditions converge. The most important attrac-
tors are constant solutions, called fizxed points, and periodic solutions, called limit cycles,
followed by quasi-periodic solutions that contain two incommensurate periodic components
and chaotic solutions that wander erratically through state space. Each attractor has an
associated basin of attraction consisting of the initial conditions that converge to it. The
basins of attraction of a system partition its state space into regions of equivalent asymptotic
behavior.
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Experts reason about asymptotic behavior geometrically and topologically, following the
strategy pioneered by Poincaré a century ago. They put differential equations in the normal
form

a':izfi(acl,...,xn); i=1,...,n

by algebraic manipulation and by introducing new variables as synonyms for higher-order
derivatives. For example, the normal form for & 4+ f(&) + g(z) = 0is & = v and © =
—f(v) — g(x). They represent the solutions as curves in the Cartesian product of the
domains of the state variables, called trajectories in the phase space of the system. They
characterize the (uncountably infinite) solution set of a system by a sketch of its attractors
and attractor basins, called a phase diagram, thus abstracting away transient behavior
and settling times. The qualitative properties of solutions translate into geometric and
topological properties of their trajectories.

The block and spring example has a single attractor, the fixed point x = v = 0, whose
basin is the entire phase space. The phase diagrams of more complicated systems contain
other attractors. The trajectories of these attractors are also closed, invariant subsets
of phase space. Periodic, quasi-periodic, and chaotic solutions yield simple loops, tori,
and fractals. For example, Fig. 4 shows a phase diagram with two attracting limit cycles
whose basins are separated by a repelling limit cycle. The corresponding equations model
aeroelastic galloping of a square prism in a steady wind (Thompson and Stewart, 1986). The
diagram shows that the prism oscillates up and down and that the magnitude of oscillation
jumps when the initial condition crosses the unstable limit cycle. Table 3 summarizes these
phase space concepts.

Figure 4: Phase diagram of the aeroelastic galloping model.
In many cases, experts derive asymptotic behavior by assuming that the governing equa-

tions are linear over the range of interest and applying the well-developed theory of linear
systems. When nonlinearity cannot be ignored, they resort to the mathematical theory of

10
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concept | definition
phase space | geometric representation of state space
trajectory | solution curve in phase space
fixed point | constant solution; a point trajectory
limit cycle | periodic solution; a simple loop trajectory
invariant set | trapping region in phase space
attractor | invariant set to which nearby trajectories converge
attractor basin | invariant set of all trajectories that converge to the attractor

Table 3: Key concepts of phase space analysis.

dynamical systems, which provides qualitative descriptions of the possible attractors, and
to numerical software for finding specific attractors and basins.

The SPQR representation does not support asymptotic analysis. Although SPQR can
represent fixed points as states whose derivatives all equal 0, it cannot represent the other
steady-states. The most important missing case is a limit cycle, such as the waveform of
a driven oscillator or the path of a swing pushed by a diligent parent. Transition graphs
cannot express the difference between a limit cycle (which yields a happy child), a solution
that approaches a fixed point via damped oscillations (an unhappy child), and a solution
that moves away from a fixed point via growing oscillations (an endangered child); all three
appear as cycles in the graph. For example, all three behaviors in Fig. 5 are consistent with
the transition graph of the block and spring (Fig. 3), as discussed in Section 2.5. SPQR lacks
any means for representing quasi-periodic and chaotic steady-states, stability, or attractor
basins.

Vv Vv Vv

Figure 5: State space depictions of three behaviors consistent with the transition graph of

the block and spring: an attracting fixed point (damped oscillation) a limit cycle (periodic
oscillation), and a repelling fixed point (growing oscillation).

The SPQR algorithm exacerbates the limitations of the behavioral representation by
downplaying linear systems theory, dynamical systems theory, and numerical analysis and
by tracing the transient behavior of a system, perhaps forever, rather than directly exploring
its asymptotic behavior. It can derive the asymptotic behavior only when every path
through the transition graph leads to a fixed point (cf. (Iwasaki and Simon, 1986b)). It
cannot handle systems whose graphs contain cycles, such as the block and spring. Some of

11
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the SPQR extensions can distinguish limit cycles from spiral fixed points, but only in a few
special cases.

We can view SPQR as a limited form of phase space analysis, following Sacks (1990b).
The SPQR states of a system translate to rectangular regions (including degenerate rect-
angles, such as points and lines) in phase space (Fig. 6). The transition graph specifies
the realizable transitions between regions. Sacks recasts the SPQR transition test as two
algebraic conditions on the equations at the region boundaries. The conditions produce
no ambiguous transitions, apply to regions of all shapes, and are testable by an inequality
prover.

L0 L) ()
e (LD (ORI e (0D v

(== ([0]75[—]> (=D

Figure 6: Phase space regions for the SPQR. states of the block and spring.

Many of the limitations of SPQR in comparison with expert analysis stem directly from
the use of transition graphs over rectangular regions instead of phase diagrams. Rectangular
regions cannot represent curved attractors and basins, which are the norm. SPQR could
approximate the curved shapes with large numbers of rectangles, but at a high cost in
conceptual clarity and in computation. For example, capturing the three limit cycles of
the aeroelastic galloping model (Fig. 4) requires hundreds of rectangles. SPQR makes no
attempt to approximate attractors, however, and simply partitions phase space according
to the signs of the state variables. The resulting transition graphs tend to reflect irrelevant
distinctions in the equations, while omitting key distinctions in the solutions. For example,
the transition graph of the block and spring (Fig. 3) contains an infinity of paths even
though the system has a single asymptotic behavior, since x and v can change signs any
number of times as they approach ([0], [0]). Yet the transition graph fails to distinguish the
true asymptotic behavior from growing, stable, or erratic oscillations.

3.2 Experts hypothesize and revise specific equations

Experts model physical systems with specific differential equations that capture the fea-
tures of interest. Qualitative physics offers two arguments that specific equations cannot
adequately model physical systems whose exact workings are unknown or extremely com-
plex: specific equations must incorporate unwarranted assumptions about the system, hence
may yield incorrect inferences; and specific equations may yield no inferences due to limi-
tations on the reasoning or computational abilities of the analyst. Although both problems

12
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can occur, the qualitative physics literature contains only anecdotal evidence that they oc-
cur in practice. More to the point, it lacks any examples where experts draw incorrect
or incomplete conclusions from a specific equation while SPQR does better on a general-
ized version. On the contrary, SPQR often draws incorrect conclusions or bogs down on
problems that experts solve quickly.

The objection to specific equations contradicts a hard-learned lesson of artificial intel-
ligence research: the best way to solve complex, ambiguous problems is often to search
through more concrete problems by making and refining reasonable assumptions. This is
just what experts do when faced with a system for which they lack precise equations. They
iteratively formulate and analyze equations that embody reasonable assumptions (even
when they know these assumptions to be false, strictly speaking), compare the solutions
with observations, and revise the equations until the discrepancies become insignificant for
the problem at hand. Experts start with linear equations because these describe many
real-world problems adequately (even if the behavior is not linear at some larger or smaller
level of detail), and because one can analyze linear systems quickly and completely. They
progress to nonlinear equations when linear equations prove inadequate. Simple equations,
such as low-order rational functions, cover essentially everything.

Moreover, unwillingness to risk incorrect conclusions also prevents SPQR from drawing
conclusions about reasonable, as opposed to possible, behavior. To ensure the soundness
of its conclusions, SPQR must take into account every wild behavior compatible with its
general equations. These wild behaviors differ in every way from the normal behaviors, and
so preclude sound inference of any normal properties of behaviors.

All this is not to say that experts formulate completely specific equations. They generally
formulate parameterized differential equations whose parameters represent approximately
known physical constants. They then partition the parameter space into open regions of
equivalent systems bounded by bifurcation curves where the behavior changes qualitatively
(Guckenheimer and Holmes, 1986). Sometimes, experts use other abstractions, for example
modeling frictionless mechanisms by Hamiltonian equations

. OH
. OH
=

without specifying the Hamiltonian function H(x,y). Our point is that experts immediately
reduce any system description to equations that they can hope to analyze, and then revise
these equations if they prove unsuitable.

Experts avoid unspecified monotonic functions because these provide few useful infer-
ences. In Appendix B, we prove that every univariate SPQR expression is locally equivalent
to one of five constraints on functions of bounded variation: monotone increasing (M™),
monotone decreasing (M ), positive (P), negative (N), or unconstrained (U). This con-
strains the expressive power of SPQR equations so that the only first-order SPQR equations
are & = M (x) (positive feedback), # = M~ (z) (negative feedback), # = P(x) (monotone
growth), # = N(z) (monotone decay), and & = U(z) (no information). This classification
result demonstrates that the reduction of (1) to v, = M~ (v,) presented in Section 2.5 does
not represent an isolated simplification. Instead, all first-order problems reduce to one of
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these five cases. The final three cases are far too general for most reasoning. Thus, first-
order SPQR equations can express only two useful models: positive and negative feedback.

Our proof does not apply to multivariate SPQR expressions, such as M ™ (x +y), or to
SPQR expressions that further constrain their instances, such as MJ . But our analysis does
extend to higher-order equations where all SPQR expressions are univariate. For example,
the equation # = ®(&) + V() has only four instances without P, N, or U functions:
# = M™* (&) 4+ M™*(x). One of these generalizes the spring equation, which still gives SPQR
trouble. The others do not appear in the literature.

The weakness of SPQR equations for analyzing dynamical systems does not mean that
monotonic functions are useless. Monotonic relationships play an important role in analyz-
ing some static situations, especially in deriving the stability of fixed points (Sacks, 1990b)
and in decision analysis, where Wellman (1990) presents a useful, implemented theory of
qualitative probabilistic networks based on monotonicity relationships.

3.3 Experts derive qualitative information by numerical analysis

Experts make extensive, informed use of numerical analysis. They find fixed points with
algebraic equation solvers, such as Newton-Rhapson iteration, and compute the eigenvalues
and eigenvectors of the Jacobian with linear algebra packages. They construct trajectories
with differential equation solvers, such as the Runge-Kutta algorithm. More advanced
algorithms find saddle manifolds, limit cycles, attractor basin boundaries, and bifurcations.

Qualitative physics eschews numerical analysis, arguing that it provides only reams of
numbers, not qualitative information, and that it is prohibitively expensive and unreliable
for analyzing realistic systems.* This argument ignores the role of expert knowledge in
numerical analysis. Experts know that “the purpose of computing is insight, not numbers,”
as Hamming (1962, Ch. N + 1) puts it in his classic text on numerical analysis, and they
guide their computations accordingly.

Experts infer qualitative information from numerical data based on theoretical and em-
pirical knowledge about plausible outcomes. For example, the phase diagrams above contain
much qualitative information even though their details come from numerical analysis. The
observed numbers provide strong evidence for the inferences. Although the experts would
prefer the infallible support of a proof, they gladly make do with the empirical support of
a careful simulation. They infer the existence of a fixed point from an approximate zero of
the equations, infer the existence of a limit cycle from a numerically generated trajectory
that intersects itself, and derive the other qualitative information analogously.

Experts use their mathematical and domain knowledge about plausible outputs to con-
trol the expense and reliability of numerical analysis. Rather than exploring the entire

“Forbus (1990, p. 11), for example, argues that “such simulations require immense computational re-
sources. Worse yet, it assumes the existence of a complete set of accurate values for all input parameters.
Typically, we just don’t have such accurate information, thus forcing us to search a space of parameters cor-
responding to the ranges the various input parameters may take. This increases the amount of computation
even more, making numerical simulation infeasible.

“Even if numerical simulation were technologically feasible, by say shirt-pocket supercomputers, or by
allowing rough approximations, it still would be insufficient for our robot. First, we still need to interpret
the output of the simulation. A list of numerical values is not the most perspicuous representation of an
event. Second, any run of a numerical simulator provides a specific set of predictions ... Often we want to
characterize the possibilities that might occur, with some guarantee of completeness.”
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phase space, they focus on the key trajectories, such as attractors and basin boundaries,
and partition the remaining trajectories into equivalence classes. They pick reasonable tol-
erances based on domain knowledge and on previous outputs. In the hands of experts,
numerical analysis of typical ordinary differential equations takes only a few minutes on a
scientific workstation. Although some tasks require greater effort, the main problem today
is interpretation of the output, not computation speed (cf. (Truesdell, 1984)).

4 Mathematics and expert reasoning

The preceding discussion shows that SPQR lacks the knowledge and methods that experts
consider necessary for reasoning about physical systems, with the result that experts rou-
tinely understand many systems beyond the ken of SPQR. Though intended to be a theory
of reasoning about dynamical systems, SPQR has little knowledge of mathematics (or of
physics, for that matter). While SPQR posits that most expert reasoning involves only a
few elements of calculus and interval arithmetic, experts are trained to draw on sophisti-
cated mathematical tools that originate in differential topology, dynamical systems theory,
ergodic theory, and perturbation theory. The tools apply to abstract equations as well as
exact ones and provide qualitative information as well as numerical results. Experts make
use of their knowledge either directly, by applying mathematical results to yield the answers
of interest, or indirectly, by applying the mathematical results in the design of their algo-
rithms. If one seeks a theory of expert reasoning, it seems reasonable to expect the theory
to use at least as much knowledge as the experts do, even if it does not use the knowledge
in exactly the same way.

In the following, we examine the nature and role of mathematics in expert reasoning to
better understand just why it is so important to expert performance. The simple answer
is that mathematics is the best known language for formulating and analyzing models,
whether qualitative or quantitative.

4.1 Mathematical concepts serve practical modeling needs

Qualitative physicists believe traditional fields shed little or no light on pre-formal expert
reasoning.” Qualitative physics rightfully takes automating formulation and revision of
models as one of its central problems, and revising a model requires one to make explicit
the physical and mathematical assumptions underlying the model so that one may change
the faulty assumptions.® Standard textbook formulations of physical problems do not make
explicit any of these assumptions, and instead presume the reader capable of inferring them.
This makes introductory textbook treatments unhelpful for the purposes of qualitative
physics.

Advanced mathematics presents an entirely different picture. While physics textbooks
concentrate on presenting the “compiled” versions of problems that require the reader to

SFor example, Weld and de Kleer (1990, p. 2) write “For almost all the examples we considered, the
conventional mathematical formulation of physics was useless or unnecessary.”

®To quote Weld and de Kleer (1990, p. 4) again, “Typically, the [physicist’s FORTRAN] program [written
to make predictions about some system] has no way to detect when the implicit assumptions under which
it was written are violated. Qualitative physics aims to lay bare the underlying intuitions and make them
sufficiently explicit, so that they can be directly reasoned with and about.”
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supply many of the unstated assumptions, the concepts of advanced mathematics provide
formal ways for expressing these underlying assumptions. In fact, advanced mathematics
concerns itself virtually exclusively with qualitative structures and qualitative properties of
behaviors. Mathematics did not arise in a vacuum, but developed its concepts in order to
provide the best possible tools for solving practical problems about the design, analysis,
and control of physical systems.

Practical problems of design, analysis, and control require one to answer the relevant
questions about the actual or intended behaviors of a system using the available knowledge.
The most important point about these practical tasks is that they lead, in each domain,
to a set of key questions: Will the shell reach its target? Will the tank overflow? Will the
sardine and anchovy populations continue to cycle as fishing increases, or will one displace
the other entirely? Mathematicians took these non-numerical key questions and worked
hard for many years to answer them in the simplest, most general, and most powerful ways
possible. They started with everyday physical properties, and then refined, developed,
systematized, and isolated these into a number of essentially qualitative properties and
notions that constitute the core of mathematics, concepts such as thresholds, boundedness,
continuity, stability, and bifurcations.

These key questions, and the concepts essential for answering them, remain the same
whether or not one automates the solutions on a computer. Experts addressed these tasks
long before the advent of computing machines. The need to solve problems in spite of the
severe limitations imposed by manual calculation provided the initial motivation behind
the invention of many of the qualitative concepts and rules of modern mathematics. (One
should not forget that the word “computer” always referred to a human up until the last
few decades.) Even though experts now use computers to help extend their abilities to carry
out numerical calculations, they must still rely on their underlying qualitative mathematical
knowledge to know when to trust these calculations (Truesdell, 1984).

Let us consider some examples of practical concepts and methods from advanced math-
ematics.

e One key question in design problems is whether some quantity (pressure in a boiler,
say) remains bounded or can increase without limit, so that one can design the device
to remain functional and safe. While this question has not been answered for all
possible systems, mathematicians have identified a number of qualitative properties of
systems which imply boundedness of state values. One of the basic results of topology
states that continuous functions over compact regions (such as closed intervals or finite
unions of closed intervals) are bounded. Another result states that such functions are
also absolutely continuous, that is, can be approximated uniformly over the whole
region of interest. KEvery concept involved in these results is purely qualitative in
nature. Indeed, these results apply to functions of any type whatsoever, not just to
numerical functions.

e Every electrical engineer makes almost daily use of some of the fundamental results
from the theory of functions of a complex variable. One result states that the integral
of an analytic function around a closed curve of any shape or size is zero (or more
generally, the sum of the multiplicity of the poles of the function enclosed by the
curve). Another result states that the integral between any two points is independent
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of the path taken. Knowledge of these results frees the expert to choose paths of
integration so as to make the calculation as easy as possible, or to reduce involved
integrals to simple formulas. These results are related to conservation laws, which
qualitative physics recognizes to be important, but are more widely applicable and
general.

e Engineers model the vast majority of physical systems with linear equations because of
their tractability and intuitive properties. The most useful property, called superposi-
tion, is that linear combinations of solutions are themselves solutions. Time-invariant
systems have particularly simple asymptotic behaviors: all trajectories converge to a
global fixed point or all trajectories diverge to infinity.

e Experts ignore implausible cases by assuming genericity. A generic property of a
set is one that holds for “typical” members. The precise definition varies with the
problem domain. The strongest definition is an open dense set of full measure, such
as the irrational numbers. We must often settle for weaker definitions, such as “an
open dense set” or “a countable intersections of open dense sets in a complete metric
space.” Experts assume that generic properties hold in their models, unless something
special (such as symmetry or conservation laws) indicates otherwise. For example,
a nonhyperbolic fixed point whose Jacobian has imaginary eigenvalues complicates
analysis. Experts can assume that the fixed points of an individual equation are
hyperbolic because this property is generic in the set of all differential equations. They
cannot assume this when analyzing a one-parameter family of differential equations,
but can still assume that the equation has at most one nonhyperbolic fixed point with
one imaginary eigenvalue.

We conclude that mathematics provides a rich, well-developed store of qualitative con-
cepts and results of proven utility for reasoning about physical systems in all their aspects,
not just their dynamics.”

4.2 Mathematical reasoning can be automated

Recent developments in qualitative physics support the thesis that mathematics provides
the best concepts for model formulation and analysis, in that essentially all the extensions
to the basic SPQR algorithm rest upon established mathematics. Kuipers (1988) and Struss
(1988) base their criteria for determining that trajectories do not intersect on the Jordan
curve theorem. Kuipers (1987) and de Kleer and Bobrow (1984) detect spurious SPQR
transitions by reasoning about higher-order derivatives. Sacks (1990b) and Williams (1988)
reduce the ambiguity of SPQR arithmetic with symbolic algebra techniques and with inter-
val analysis (Moore, 1979). Iwasaki and Simon (1986a) and Sacks (1990b) base their fixed
point analysis on sign stability criteria. Raiman (1986), Weld (1990), and Davis (1987) em-
ploy infinitesimals and nonstandard analysis. Doyle and Sacks (1991) base their likelihood
predictions for SPQR behaviors on an application of the theory of Markov chains similar to

TFor other presentations of this idea, see (Browder and Mac Lane, 1978; Jaffe, 1984; Wigner, 1960) and
the collections (COSRIMS, 1969; Steen, 1978). For surveys of mathematics, see (Courant and Robbins,
1941) (elementary), (Garding, 1977; Mac Lane, 1986) (advanced), or (Dieudonné, 1982) (stratospheric). For
the qualitative theory of dynamical behaviors, see (Guckenheimer and Holmes, 1986).
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that of Hsu (1987). Kuipers’s hierarchical models closely resemble the mathematical meth-
ods of averaging (Guckenheimer and Holmes, 1986) and of multiple time scales (Brackbill
and Cohen, 1985).

But SPQR is a theory of expert reasoning that makes use of no knowledge or meth-
ods that are not perfectly intelligible to the educated layman, and its extensions draw on
only a minor portion of the knowledge visibly used by experts in their reasoning. If the
missing expert knowledge is in fact superfluous, SPQR represents a monumental advance
in mathematics and in human inquiry. But the previous discussion shows that SPQR. does
not obviate other mathematical and scientific reasoning. Thus, the solution to SPQR’s
limitations involves automating the full range of expert knowledge and methods.

Some basic mathematical knowledge and methods have already been automated with
considerable success. For example, Sacks (1990a; 1991) presents an analysis program for
one-parameter planar equations that performs at the level of experts by exploiting the
mathematical knowledge available to experts. The input is the equations, bounding intervals
for the state variables and the parameter, and error tolerances. The program partitions the
parameter interval into open subintervals of equivalent behavior bounded by bifurcation
points, classifies the bifurcation points, and constructs representative phase diagrams for the
subintervals. It constructs the phase diagrams by identifying fixed points, saddle manifolds,
and limit cycles and partitioning the remaining trajectories into open regions of uniform
asymptotic behavior. It produced the phase diagrams in Figure 4 in a few seconds on a
standard scientific workstation. It can solve textbook examples along with problems of
practical interest to scientists and engineers, including ones that warranted entire journal
articles within the last decade. In other work, Yip (1989) constructs phase diagrams for
one-parameter area-preserving planar maps, which model conservative phenomena, such as
frictionless bouncing balls. His program treats the equations as a black box for generating
trajectories. It classifies trajectories according to their geometry and picks initial points
for simulation according to the geometry of existing trajectories. The program performs
comparably to experts and has solved an open problem in fluid dynamics. As a third
example, Abelson et al. (1989) survey other research in automating qualitative analysis via
numerical experimentation.

Much work remains to be done. The central problem for qualitative physics must be
automating the formulation of models, which is a problem that neither mathematics nor
most qualitative physics has addressed.® Qualitative physics must also shoulder the burden
of adapting mathematical concepts to take computational concerns into account. The pre-
cise forms of mathematical concepts useful in engineering reasoning may be different from
those useful in mathematics, since the utility of these concepts is different for the two appli-
cations. Practical reasoners seek to optimize computational utility, while mathematicians
seek to optimize mathematical utility, which takes into account simplicity, beauty, and the
power concepts give to human mathematicians in constructing proofs. Optimizing math-
ematical utility does not necessarily mean optimizing computational utility as well, but
modern physics and economics have observed a high correlation. This is not too surpris-

8Weld and de Kleer (1990, p. 481) view this as a lacuna of qualitative physics: “By focusing on tasks
of analysis and design in the framework of a single, human-provided model, the bulk of work in qualitative
physics has finessed what probably is the most important and hardest problem: Constructing an appropriate
model.”
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ing, since most of the qualitative concepts of mathematics were developed to save humans
effort in calculation. Finally, mathematics is not yet complete, and problems in qualitative
physics may require development of new mathematical concepts.”

5 Conclusion

We have argued that the methods that have come to be accepted as the basis for qualitative
physics suffer severe limitations in comparison with human experts because they eschew
the viewpoint, the tools, and the knowledge of experts, especially the wealth of qualitative
concepts and results that modern mathematics provides specifically to facilitate practical
and efficient reasoning about the qualitative properties of physical systems. We base our
arguments on the following observations:

e The accepted approach, which we have called SPQR, has successfully analyzed only
the simplest systems, while routine expert methods succeed on far more complex
systems.

e Virtually all of the systems analyzed in the literature reduce to just three equations.

e SPQR equations are far too general for practical use. Experts instead hypothesize
and revise specific equations until they obtain equations of adequate accuracy.

e Experts focus on asymptotic behavior, while SPQR. focuses on transient behavior.

e Experts derive the behavior of dynamical systems with deep mathematics and exten-
sive numerical analysis, whereas SPQR . uses little of either.

To reproduce expert skills, qualitative physics should cast off the fetters of the currently
accepted methods and instead seek to exploit modern mathematics (and physics, chemistry,
etc.) to the full. Tt should first seek to automate standard expert knowledge and reasoning
methods before deciding to develop entirely different methods. Evidence suggests that the
mathematical concepts and results already available suffice to automate substantial amounts
of expert reasoning, so neglecting mathematics of proven utility simply slows progress and
risks reinventing preliminary versions of established mathematics.

We believe that exploiting standard mathematical concepts and knowledge will also aid
qualitative physics in cooperating with other scientific and engineering fields. The current
practice, with its implication that mathematics has never addressed the problems of rea-
soning in any significant way, and with the concomitant “not invented here” requirement
that one must abandon established concepts and methods to automate expert reasoning,
cannot appear attractive to informed outsiders, and should be abandoned in favor of a more
productive spirit of cooperation and building on past discoveries. We should speak of “ex-
pert reasoning” (or scientific and engineering reasoning) rather than “qualitative reasoning”
when defining the subject, and view qualitative physics as an extension of existing scientific
disciplines rather than as an entirely new field of endeavor.

“Doyle (1983) uses the term “rational psychology” (in analogy with rational mechanics) for the branch
of mathematics aimed at finding the most appropriate concepts for theories in psychology and artificial
intelligence.
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A Classification of SPQR examples

Table 4 below lists the SPQR analyses contained in Weld and de Kleer (1990). Type 1
is & = M (x), type 2 is & = M~ (%) + M (x), and type 3 is a coupled pair of type 1
equations. As noted in the text, SPQR can analyze types 1, 3, and algebraic equations,
but cannot fully analyze type 2 or the other types. Mathematicians fully analyzed all these
equations before the advent of artificial intelligence (Brauer and Nohel, 1969). Hence, only
five SPQR equations support useful inferences about dynamical systems and none support
new inferences.

page author system type

99 de Kleer pressure regulator 1
103 de Kleer pressure regulator 2
128 Bobrow & de Kleer pressure regulator 2
139  Williams RC circuit 1; linear
151  Williams RR current divider algebraic
154  Williams RC current divider 1; linear
157  Williams RC high-pass filter 1; linear
160 Williams RCRC ladder 3; linear
161  Williams Wheatstone bridge algebraic
167  Williams n-Mosfet other
196 Forbus U-tube 1
198  Forbus heat flow 1; linear
207 Forbus spring 2
211 Forbus W-tube 3
231 Forbus heat flow 1; linear
237 Kuipers U-tube 1
244  Kuipers flying ball algebraic
249 Kuipers spring 2
262 Kuipers & Chiu cascaded tanks 1
262 Kuipers & Chiu coupled tanks 3
270 Lee & Kuipers spring 2
273 Struss spring 2
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308 Dormay & Raiman pressure regulator 2

313 Williams U-tube 1

318 Raiman colliding masses algebraic
359  Williams spring 2

398  Weld spring 2

399  Weld heat exchanger 1; linear
409 Weld Wheatstone bridge algebraic
420 Weld heat exchanger 1; linear
427  Davis block 2

438 Dague & Raiman voltage follower other
444  Forbus heat flow 1; linear
531 Kuipers water balance 1

531 Kuipers sodium balance 1

632 Iwasaki & Simon evaporator 1; linear
642 Iwasaki & Simon pressure regulator 2

Table 4: Classification of systems analyzed in Weld and de Kleer (1990).

B Classification of SPQR equations

The small repertoire of useful SPQR equations reflects their limited expressive power. We
use a standard result about monotonic functions to make this claim precise. Given a function
f defined on the interval [a, b] and a subdivision a = zy < x1--- < x, = b of [a, b], define

t=>|f(zi) — f(zic1)].
=1

The function f is of bounded variation over [a, b] if the supremum of ¢ over all subdivisions
of [a,b] is finite.

Lemma 1 Let ® be of bounded variation on [a,b]. There exist f,g € M such that ® =
f—g onla,b.

ProoOF: We can find monotonic functions f and ¢ such that ® = f — ¢ on [a,b] by a
standard theorem (Royden, 1968, p. 100). Setting f = f 4 and g = § 4+ x guarantees
frgeMt. O

We use this result to characterize the expressive power of univariate SPQR. expressions.
Define an SPQR expression in x as M ™ (x), M~ (z), or any expression a + 3, —a, af3,
1/a, M*(a), or M (a) in which « and 3 are SPQR expressions in z. Every SPQR
expression is of bounded variation under the standard SPQR assumptions (Kuipers, 1986).
Define the extended SPQR values on [a,b] as {M+, M, P,N,U} where M T and M~ are
strictly increasing and decreasing continuous functions on [a,b] and P, N, and U denote
any positive, any negative, or simply any function of bounded variation over [a, b].
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Theorem 2 Let & be an SPQR expression in x defined on [a,b]. There exists a subdivision
a=x9< w1+ <Xy =D of [a,b] such that ® is equivalent to an extended SPQR value on
each subinterval [x;_1,x;].

PrOOF: The proof is by induction on the nesting level of ®. If n = 1, the only possible
expressions are M T (x) and M~ (x), which both satisfy the condition on [a,b]. Assuming
n — 1, the proof for n > 1 is by cases. The cases apply to the intervals of the n — 1
subdivision. If one argument is U, it absorbs the other argument and U is the result. The
values P, N, and U are their own reciprocals. We now consider the other cases.

M®* + P =U: We can write the expression M+ + P as M+ 4 (P + k) for any constant
k by rule 5 of Table 1. We can write any f on [a,b] as P + k with k the absolute value
of the infimum of f on [a,b]. Hence, M* + (P + k) = M™* + U, which equals U as shown
above. We reduce M~ + P to —M ™ + P and so to U as well. The cases M* + N = U are
analogous.

M¥*(P) = U: We obtain any f as the result of M+ (P) by setting Mt to \z.x + k with
k as above. We reduce M~ (P) to —M*(P) and so to U as well. The cases M*(N) = U
are analogous.

M*xM*%*: Let f,g € M*. Divide the interval [a, b] into four subintervals (some possibly
empty): (i) f,¢g > 0, (ii) f,g < 0, (iii) f > 0;¢9 < 0, and (iv) f < 0;¢ > 0. The result is
M™ on (i) by rule 1 of Table 1 and M~ on (ii) by rule 2 because (fg)' = f'g + f¢' and
f',g’ > 0. On interval (iii), we have

fg = —elo8(-f9) = _clog(f)Hlog(—g) — _ MTH+M~ _ _ U _ _p_ N,

The third equality holds because any function can be written as the log of a positive function;
the fourth holds by Lemma 1; and the fifth holds because any positive function can be
written as the exponential of a function. Interval (iv) yields P analogously. The remaining
cases of M* x M™* are similar.

Mt x P: Let f € MT,g € P, and divide the interval [a,b] into two subintervals
corresponding to f < 0 and f > 0 (one of these may be empty). The product is N in the
subinterval where f < 0, as it generalizes interval (iii) of the previous case, and is P in the
f > 0 interval, as g absorbs f. The cases M~ x P and M* x N reduce to this case or its
negation.

The remaining cases follow from direct applications of Lemma 1 and the rewrite rules
in Table 1. O

As mentioned in the text, this result means that the only first-order SPQR equations
are & = M (x) (positive feedback), = M~ (z) (negative feedback), # = P(x) (monotone
growth), & = N(x) (monotone decay), and & = U(x) (no information). The final three
cases are far too general for most reasoning. Thus, first-order SPQR. equations can express
only two useful models: positive and negative feedback. This conclusion extends to higher-
order equations where all SPQR expressions are univariate. For example, the equation
# = ®(&)+ ¥ (z) has only four instances without P, N, or U functions: & = M*(&)+M™*(z).
Only one of these appears in the literature, and it gives SPQR trouble.
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We are deeply indebted to the commentators for the hard work they have applied to
responding to our paper. Neither their efforts nor our own in responding to their comments
have been as enjoyable as one might wish. Our paper apparently persuaded some com-
mentators that we hold positions that we thought we had explicitly denied, positions we
denied for many of the same reasons as have the commentators. Though we expected dis-
agreements, we were very surprised by some of the points actually taken to represent major
controversies. We did not anticipate the variety of ways in which placing different emphases
on our words yields unintended interpretations. We would have chosen different words in
some cases, and probably a different organization for the text, had we foreseen these unin-
tended interpretations. We regret that our paper is not the one we wish we had written,
and regret that our tongue-in-cheek title may have given offense, for none was intended.
To make amends, we will attempt in this afterword to express our intentions more clearly.
Rather than attempt a comprehensive response to every point raised by the commentators,
we restate our major points and principal arguments, saying exactly what we intended to
say in our paper, but in a form we hope will be less conducive to misunderstanding.

1 Our intention

Our intention in writing the paper was to encourage work on the problems of qualitative
physics by calling attention to the overwhelmingly qualitative nature of the many concepts
and results modern mathematics provides for representing knowledge about the physical
world, and by proposing that vigorous exploitation of these concepts and results in auto-
mated reasoners promises the most direct path to mechanizing scientific and engineering
reasoning.

In explicitly focusing on the qualitative physics project of automating scientific and en-
gineering reasoning about physical systems, we did not intend to equate qualitative physics
with this one project or to denigrate its other projects, such as elucidating and mechanizing
commonsense and causal reasoning about the world. We view these other projects as both
interesting and important, and do not believe that any success or failure of some method in
automating scientific and engineering reasoning necessarily entails success or failure in these
other projects. Nor did we intend to equate qualitative physics with any specific reasoning
task like prediction, or with the set of concepts, representations, and algorithms we call
SPQR. Most importantly, we believe that while qualitative physics has yet to produce an
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automated scientist or engineer, this simple fact says nothing about the ultimate success or
value of the field, since few grand human endeavors ever achieve their aims in short order.

We intended all of our discussion concerning “experts” to refer to scientists and engi-
neers, and introduced the term in reference to Weld and de Kleer’s stated aim of constructing
artificial scientists and artificial engineers. We intended our generic statements about what
experts do to refer to what typical experts typically do, and not to things that all experts,
without exception, do in all cases, without exception. In particular, we intended our dis-
cussion of expert behavior to concern the responsible practices of the broad spectrum of
scientists and engineers, and did not intend to restrict attention to the special practices of
academic dynamicists or any other subpopulation.

We of course intended our paper to speak to Al researchers already working in qualitative
physics. But as we expected that they were already cognizant of many of the issues we
discuss, even if they might not share our opinions on these issues, we viewed as even more
important the task of alerting students contemplating work in the field to the existence
of many useful concepts not commonly encountered in computer science educations. We
also hoped to speak to mathematicians, scientists, and engineers looking for opportunities
to apply their expertise in a new area. For each of the audiences, we sought to encourage
more work on automating qualitative reasoning about physical systems, not to discourage
anyone from the enterprise.

2 Our thesis

The main thesis of our paper is that mathematics provides an eztensive, well-developed,
formal, and qualitative language for describing and characterizing the structure and behavior
of a very wide variety of systems and for formulating and solving a wide variety of practical
problems arising in prediction, design, diagnosis, and control.

In making this point, we intended to follow a tradition of papers in mathematics and
physics (Browder and Mac Lane, 1978; COSRIMS, 1969; Jaffe, 1984; Mac Lane, 1986;
Truesdell, 1984; Wigner, 1960) that attempt to counter the attitude (widespread throughout
civilization) that mathematics concerns only numbers and equations (or worse yet, only
numerical solution of ordinary differential equations). In fact, mathematics is not identical
with numbers and equations any more than computer science is identical with bits and
microprocessors. The intellectual cores of both fields concern qualitative, non-numerical
structures for describing real and imaginary systems, situations, and processes, and these
structures underlie most of the successful techniques employed by scientists and engineers.
We did not intend to suggest that scientists and engineers always consciously or knowingly
exploit these qualitative concepts, but only that these concepts provide the basis for many
of the techniques successfully employed by scientists and engineers: techniques they employ
successfully even if they lack knowledge of the underlying formal theories (but even more
successfully when they do know these theories).

The main moral we drew from this thesis is that the most expeditious way of automating
scientific and engineering reasoning involves automating mathematical concepts and knowl-
edge directly, given the proven utility of mathematics in aiding human reasoning about
both expert and everyday situations, and given that most mathematical concepts and re-
sults are already formalized. Creating artificial scientists and engineers requires more than
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this, of course; we undoubtedly will need to invent some new mathematics along the way
(cf. (Doyle, 1983)). For example, mathematics does not provide a language for describ-
ing shapes and regions that meets the demands of some practical applications. Practical
reasoning tasks often need to characterize shapes and regions by their use, rather than by
their expression (in, for example, landmark values of algebraic and trigonometric expres-
sions). We expect that qualitative physics work on kinematics (e.g., Faltings, Joskowicz)
and artificial intelligence work on vision constitute steps in this direction. More immedi-
ately, though, the point of greatest leverage for Al is in automating the process of model
formulation. Even though mathematics provides some of the best concepts and analytical
tools for use in constructing models, it provides no formal procedures for using its concepts
and tools in actually carrying out such constructions. In contrast, we view many works in
AT as developing automatic procedures for formulating problems and models over a variety
of representations. These procedures often embody important ideas entirely independent of
any use of SPQR concepts and representations.

While we focused our discussion on the automation of mathematical concepts and knowl-
edge, one cannot hope to construct an automated scientist or engineer without also automat-
ing non-mathematical knowledge from physics and other worldly subjects. This truism
formed the basis for our suggestion of changing talk about “qualitative reasoning” to talk
about “expert reasoning” when discussing automated scientific and engineering reasoning.
As qualitative physics has observed, however, textbooks in physics and other fields do not
always present their qualitative knowledge in qualitative form. (Texts in rational mechan-
ics, however, present an instructive counterexample. See, for example, (Truesdell, 1977).)
We thus focused on automating the qualitative concepts of mathematics as a step enabling
a more perspicuous formalization of physics and other subjects, but in no way intended to
suggest that automating mathematics alone suffices to automate scientific and engineering
reasoning.

In making these points, we did not mean to imply that qualitative physics attaches
no importance to mathematics. Qualitative physics continues to incorporate additional
mathematical ideas beyond those represented in SPQR. Taken together over time, these
increments will, as Archimedes suggested, yield success. We nevertheless urged changing
current practice in the field because, in talking with people outside the field, we found
it conveys to outsiders the impression of a field suspicious of mathematics and externally
developed concepts. (We note that Al generally has often conveyed a similar impression:
cf. (Doyle, 1988).) We did not believe that that superficial impression accurately reflects the
more complex attitudes of qualitative physics researchers concerning the costs and benefits
of mathematics. But accurate or not, the impression needlessly damages reputations and
impedes cooperation with outsiders who feel offended by the field as they perceive it.

While we observe reasonable differences of opinion in the commentaries on the com-
parative utility of deliberate automation of mathematical concepts and knowledge, we see
no substantial disagreements on the importance of model formulation. We believe almost
everyone in qualitative physics also views model construction as a central problem, if not
the central problem, of the field, whether or not they choose to work on it themselves. In
echoing Weld and de Kleer’s observation that the the field has paid less attention to model
construction than it deserves, we in no way intended to imply that the field totally neglects
the problem. To the contrary, we believed that this is where the field shines brightest, and
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the thrust of our main point was to help it shine even brighter by exploiting qualitative
mathematical concepts more rapidly. Our intent was not to propose or critique any specific
procedures for constructing models, only to urge that the models constructed make use of
the relevant mathematical concepts.

3 Owur arguments

To support the thesis that direct automation of the qualitative concepts of mathematics
provides the most expeditious way of automating scientific and engineering reasoning, we
provided arguments both for the efficacy of these concepts and for their advantages over
the alternatives.

3.1 The efficacy of mathematics

We presented three arguments for the efficacy of mathematical concepts. Two of these
concern its epistemological adequacy (in the sense of McCarthy and Hayes), looking at how
mathematical concepts were developed in order to describe the world (the design argument),
and looking at some examples of how mathematical theories provide concepts appropriate
to making important qualitative distinctions (the inductive argument). The third concerns
the heuristic adequacy of mathematics, looking at how some mathematical concepts have
entered into automated reasoners (the pragmatic argument).

3.1.1 The design argument

In the design argument, we observed that mathematicians did not generally invent their
concepts and results as abstract playthings, but as practical means of reaching targeted
conclusions about expert and commonsense situations. Mathematicians approached prac-
tical problems by determining both the minimal information necessary to reach particular
conclusions and the most useful abstractions for each task. Comparisons of the utility of
abstractions, while rarely explicit, involved computational difficulty as well as esthetic crite-
ria like simplicity and beauty since mathematicians knew they had to compute the answers
themselves. Traditional computational complexity criteria were, in some ways, even more
harsh than those applied today since, as we noted in our paper, “computers” were human
beings until very recently (cf. (Truesdell, 1984)).

Those mathematicians, such as G. H. Hardy, who publicly delighted in working on
beautiful theories they assumed would be forever totally impractical, would be horrified to
learn just how regularly modern science finds parts of mathematics to be exactly what it
needs to formulate and solve some intensely practical problem. In Hardy’s case, the number
theory he so admired for its impracticality now serves as the basis for work on reliable and
secure communications. Even category theory, long derided as “abstract nonsense” by
mathematicians themselves, now justifiably plays increasingly important roles in the design
and semantics of programming languages. These constitute just two of the newest cases
of what Wigner (1960) called “the unreasonable effectiveness of mathematics” and what
Jaffe (1984) identified as mathematics’ concern with “ordering the universe”.
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The reason mathematics proves so successful in practice, whether by intent or not,
is because its main concern is to find the most appropriate representations and rules for
reasoning about different subjects for different purposes. Consider the attributes of good
reasoning methods and representations stated in the responses by Joskowicz and the Xerox
SERA group. Joskowicz suggests evaluating methods with respect to the criteria of onto-
logical adequacy, inferential adequacy, inferential parsimony, coverage, and computational
efficiency. Williams, Shirley, Raiman, Falkenhainer, de Kleer, and Bobrow paraphrase Win-
ston to write “Good representations facilitate problem solving. They make important things
explicit and expose natural constraints. They are complete, concise, transparent, facilitate
computation and suppress detail.” These two sets of attributes say essentially the same
thing. But more importantly, both describe the essence of the mathematical method in
formulating, formalizing, and investigating a subject (cf. (Doyle, 1983)). In other words,
mathematics has been working on finding good ways of representing and reasoning about
the world for thousands of years, and has, together with natural philosophy, constituted
the field of “qualitative reasoning about physical systems” for most of the time prior to the
rise of artificial intelligence.

3.1.2 The inductive argument

The inductive argument simply points to a variety of examples of qualitative mathematical
theories and the useful concepts and methods they provide, leaving the reader to infer that
the theories, concepts, and methods not mentioned explicitly are similarly useful in treating
other problems. We thought this argument preferable to a complete survey of mathematics
only because few readers would wish to read such a proof by exhaustion (literally, given
the scope of mathematics) even if we believed ourselves competent to write it. We chose
our examples to reflect a bit of the diversity of mathematical concepts, including dynamics,
topology, analytic functions, functional analysis, linear relationships, and measure theory.
No short list like this can convey much, and perhaps some other selection of theories would
have illustrated our thesis better.

As our main example, we delved deepest into the mathematical theory of dynamics, both
because of the prominence of dynamical problems in the literature of qualitative physics
and because of our familiarity with the theory. We did not intend to equate the overall
problem of reasoning about physical systems with the subtask of predicting the behavior
of dynamical systems, nor did we mean to imply that all reasoning about physical systems
involves the concepts of dynamics. More importantly, we in no way intended our claims for
the utility of mathematical concepts to be restricted to dynamics or the few other subjects
explicitly mentioned in our paper, as these are just some examples among many. Instead, we
believe mathematics supplies the best known formal concepts for understanding all aspects
of the world, whether concerning structure or process, statics or dynamics, and whether
applied to tasks of prediction, design, diagnosis, or control.

3.1.3 The pragmatic argument

The pragmatic argument points to the effectiveness of mathematical concepts in qualitative
physics when the relevant concepts are applied in appropriate ways. Some problems call for
exactly the concepts embodied in SPQR, hence the apt success of SPQR on them. Other
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problems call for additional concepts, and the extensions to SPQR add in some of these. The
concepts embodied in SPQR are inappropriate to other problems, but systems automating
the knowledge relevant to these problems (e.g., KAM (Yip, 1989) and POINCARE (Sacks,
1991)) have exhibited initial successes.

3.2 The advantages of mathematics

We provided three arguments for the advantages of direct automation of mathematics as
a means to automating scientific and engineering reasoning. The first argument simply re-
peats the design argument for efficacy above with a different emphasis: given the centuries
of concentrated effort by thousands of mathematicians on finding the best formalizations
of worldly structures and phenomena, it seems unlikely that significantly better ways of
formalizing these same phenomena will be found without comparable effort. We recognize
that it occasionally may be easier to develop adequate formalizations from scratch than
to find and apply the relevant extant mathematics; but we expect these cases to be the
exception rather than the rule, and believe that the intellectual and social benefits of vig-
orous, deliberate exploitation of mathematics outweigh the costs. The second argument
is mainly indirect, pointing out the limitations of the available alternatives: using SPQR
alone, and using incremental extensions of SPQR. The third argument points out some
specific advantages of direct automation over incremental extensions of SPQR.

3.2.1 Limitations of SPQR

Our claim concerns identifying the best path to future capabilities, not the best existing
systems. Thus the question of how to automate scientific and engineering reasoning most
rapidly would be moot if some existing automated system provided a reasonable approxi-
mation of the broad spectrum of reasoning abilities of human scientists and engineers. We
know of no one who believes any extant system does this, but we examined the progress
achieved by systems based on SPQR as a way of both verifying this assessment and identify-
ing the strengths and weaknesses of its approach as a path to creating an automated scientist
or engineer. We found that extant systems based on SPQR provide an understanding of
some mathematically simple systems, but fail on other simple systems easily understood
completely by scientists and engineers. Some of these failures are overcome by some of the
extensions to SPQR, and some by using completely different sets of abstractions, but the
goal of constructing an automated scientist or engineer remains to be achieved. In exam-
ining the failures, we found severe limitations having to do with the expressiveness of the
language and representations SPQR provides, in addition to computational limitations due
to the algorithms it employs. Some of these limitations were found by analyzing its language
and representations on their own, and some by comparing the SPQR approach with some
approaches employed by human scientists and engineers. In making these comparisons, we
in no way intended to set up a competition between the current performance of systems
based on SPQR and humans, or between systems based on SPQR and automated systems
based on any other approach. We intended only to compare future prospects. Given the
short history of the field, we viewed current performance as one of the least informative
indicators of future prospects.
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Inexpressiveness: We found the conceptual language of SPQR to be highly limited in
its ability to draw some distinctions important for reasoning about the behavior of systems.
Its language represents some systems with qualitatively different behaviors by the same
generalized differential equation, such as systems described by the differential equations
3. It also represents other systems with the same qualitative behaviors
by different generalized equations. We presented a set of simple rewrite rules, successors
to similar rules first observed by Kuipers, that may be applied in short order to reduce
complex sets of generalized equations to simpler ones describing the same behaviors. We
also drew on a standard theorem concerning monotone functions to provide an indication of
the inherent inexpressiveness of generalized equations based on monotonicity relationships.
Finally, we presented a summary of some of the concepts underlying the mathematical
theory of qualitative dynamics to illustrate the difficulty of expressing some important
distinctions of proven utility with SPQR concepts and representations.

In finding SPQR’s concepts and representations inexpressive, we did not intend to sug-
gest that understanding a system requires making unambiguous predictions. As noted by
several commentators, all abstractions hide some distinctions and highlight others; when
choosing an abstraction for a particular reasoning task, one asks whether it hides all the
unimportant distinctions and highlights all the important distinctions. Every abstraction,
therefore, introduces a deliberate ambiguity about irrelevant distinctions. The ambiguities
inherent in SPQR concepts form limitations only because SPQR analyses remain ambiguous
about important qualitative properties of systems concerning asymptotic behaviors, while
the corresponding qualitative concepts from mathematics make more useful qualitative dis-
tinctions among asymptotic behaviors.

We intended our discussion of the inability of SPQR concepts to distinguish qualitatively
different asymptotic properties as just one example of the limitations of its conceptual lan-
guage; it lacks the appropriate concepts to characterize other qualitative properties as well,
even when asymptotic behavior is not important. We did not intend to suggest that sci-
entists and engineers never find transient behavior important, only that most transient
analyses presuppose some reference to an equilibrium state or cycle. The practical problem
need not be one of determining the precise nature of the baseline state or attractor; that
may be be already known, easily determined, or even difficult or infeasible to determine.
But most analyses depend on some knowledge about the reference behavior (as in Well-
man’s distinction between absolute and relative analyses), thus making a practical concern
out of the expressive limitations of SPQR for characterizing the qualitative properties of
asymptotic behavior.

This examination of the expressiveness of SPQR casts the past successes of SPQR in a
new light, since the reduction rules quickly collapse the representations of the seeming wide
variety of systems analyzed by SPQR to just a handful of simple generalized equations. We
surveyed the 55 papers in the Weld and de Kleer collection, which we took to present the
state of the art through 1989, examining all analyses, including those based on extensions to
SPQR. We found that after applying the rewrite rules all but two of the successful analyses
involve three simple equations.

T =xand T = x

Lack of routine methods: While the expressive limitations of SPQR prevent it from
exploiting some information relevant to understanding behaviors qualitatively, the algo-
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rithms it offers do not support some of the methods routinely used by human scientists and
engineers in reaching a qualitative understanding of a system, namely the method of mod-
eling systems using parameterized equations, and the method of determining qualitative
properties through selected numerical experiments.

Scientists and engineers, like other humans, and like AT systems generally, do not always
restrict their reasoning to sound, deductive elaboration of only those consequences strictly
entailed by what they know:; instead, they ordinarily make reasonable assumptions and
guesses, and revise these as they see fit. Only in special cases involving great stakes do they
even attempt to consider all and only the logically possible consequences of their hypotheses,
and then usually only after some disaster awakens them to the danger. We see no reason
to reduce the utility of qualitative physics on the broad range of mundane, small-stakes
applications by restricting it to use only methods that provide guarantees appropriate to
the narrower range of exotic, great-stakes applications.

One of the most common assumptions scientists and engineers make is to model systems
in terms of generalized equations. But the generalized equations they use take a very differ-
ent form than those employed in SPQR. Rather than use equations over monotone functions,
they use parametric and piecewise-linear equations of varying degrees of complexity. These
equations capture more narrow classes of behaviors than do SPQR equations, and so may
necessitate more search to find a model consistent with, approximating, or appropriate to
the available information, but this appears to be an advantage in light of the inherent in-
ability of SPQR equations to express many important qualitative distinctions, however long
one searches.

One might still prefer SPQR. equations to parametric and piecewise-linear equations on
the grounds that they are easier to analyze, in the sense that one can draw many of the
most important conclusions that follow from individual SPQR equations from qualitative
simulations, while many parametric and piecewise-linear equations have no closed-form
solutions from which to draw the major conclusions. That is, one might view SPQR methods
as trading expressive power to gain inferential efficiency. But this comparison does not
represent a true tradeoff of this kind. Scientists and engineers do not restrict themselves to
seeking only closed-form solutions; they also resort to numerical experiments to see if their
models capture the important qualitative distinctions they observe in the world. To do this,
they use their mathematical and physical knowledge to choose numerical simulations that
produce reliable answers to specific qualitative questions.

We did not intend our discussion of the utility of numerical experiments to say that such
computations obviate the need to reason about models. To the contrary, we followed Ham-
ming (1962) and Truesdell (1984) in observing that setting up and accurately interpreting
numerical simulations of complex systems requires a great deal of the qualitative knowledge
offered by mathematics. In our view, numerical experiments correspond to observations,
using a calculating machine as a sensor that detects properties of models. They cannot
supplant reasoning with mathematical and physical knowledge because observations cannot
be interpreted except by using knowledge of what one might be looking at or looking for.
Uninformed numerical computation never substitutes for reasoning, but informed numerical
calculation sometimes can.
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3.2.2 Limitations of SPQR extensions

Our conclusion from the preceding observations was that SPQR does not seem to offer a
better alternative than direct automation of mathematics for automating scientific and engi-
neering reasoning. However, we recognized that no one proposes to use SPQR alone toward
this end, since most current work studies various extensions to SPQR. But we did not think
that such incremental extension of SPQR offers a better approach than direct automation
of mathematics either. Any requirement of backward compatibility in the sense of always
using concepts that refine those of SPQR enshrines the irrelevant distinctions already made
in SPQR concepts. As noted earlier, the appropriate abstractions for some problems must
hide the distinctions made by SPQR and introduce entirely different ones. Thus no artificial
scientist or engineer will force every problem into any fixed representation, since different
problems make different distinctions relevant. Relying on model representations based on
those of SPQR will then be an impediment to automation, not an advantage. Direct au-
tomation of mathematical concepts will incorporate SPQR concepts and representations,
of course, since they capture some important mathematical notions. An artificial scientist
or engineer will, in this way, be an “extension” of SPQR, but only in a trivial sense, for
it seems unlikely that SPQR concepts and representations will enter into any but a small
fraction of the reasoner’s abilities. We concluded that incremental extension of SPQR does
not offer advantages over direct automation of mathematical knowledge.

Incremental extension of SPQR seems most attractive if one believes that SPQR. cap-
tures naive or commonsense reasoning well, and that experts differ from novices and laymen
mainly in possessing more knowledge and reasoning methods. We did not intend our paper
to take any position on the nature of commonsense reasoning, and remain open to the pos-
sibility that SPQR. aptly characterizes some forms of commonsense reasoning. But we read
the psychological literature on expertise to contain substantial disagreement about the re-
lation between naive and expert reasoning, with some psychologists, notably Carey (1985),
finding that novices and experts reason with very different concepts, even though they may
use some of the same words to name them. Rather than simply augmenting their com-
monsense concepts as they learn, experts replace their initial viewpoint with very different
ways of thinking. We thus counted the view that scientific and engineering reasoning can
be automated by building on SPQR as a substantial hypothesis that both requires careful
justification and risks seriously impeding progress if it is wrong.

3.2.3 Advantages of direct automation

One advantage of direct automation of mathematics over incremental extension of SPQR
consists of the fixed target (loosely speaking) that mathematics provides. For the purpose
of automating scientific and engineering reasoning, it seems prudent to attempt to exploit
the knowledge and methods that scientists and engineers have found useful, particularly the
knowledge and methods that have already been formalized. Thus the researcher can use
existing mathematics as a specific target for automation, and lay out a schedule (even if
overly ambitious) for automating each of its theories. Simply seeking to extend SPQR incre-
mentally runs the real risk of increasing the work necessary by not being ambitious enough.
That is, without the global perspective offered by deliberately aiming to automate all of
mathematical knowledge, specific problems constitute the primary impetus to incremen-
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tal extensions. Successively incorporating just enough ideas to solve each specific problem
may yield many special-case solutions, each of which may require just as much effort to
devise as a general solution incorporating the larger theory. Even when direct automation
is attempted in successive stages, at least one can choose the successive approximations to
broaden the coverage, rather than risk automating numerous special cases all subsumed by
the same broader approximation.

4 Reiteration

Now all has been heard; here is the conclusion of the matter
(Kohelet/Ecclesiastes 11:10, NIV)

We conclude this epilegomenon by reiterating the points of our paper.

1.

Qualitative physics seeks (among other things) to automate scientific and engineering
reasoning.

. Much (if not most) work in qualitative physics has been based on the concepts, rep-

resentations, and algorithms we call SPQR.

. SPQR lacks the expressiveness and knowledge needed to automate scientific and en-

gineering reasoning.

. Backward compatibility with SPQR imposes high costs and probably impedes progress.

. Mathematics provides a large vocabulary (already formalized) of qualitative concepts

and results for expert and commonsense reasoning.

. Exploiting known mathematics as rapidly as possible constitutes the most expeditious

way of automating scientific and engineering reasoning.

. Inventing new mathematics remains an opportunity for Al, but the opportunity clos-

est to home for Al is automating the formulation and construction of models, since
mathematics provides only concepts and knowledge, not automatic procedures.
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