
Reset reproduction of two articles published in Computational Intelligence, Vol. 8, No. 2 (May1992): Prolegomena to any future qualitative physics, pp. 187{209, and Epilegomenon, pp. 326{335.Reprinted July 1994. Reprinting c Copyright 1989, 1990, 1991, 1992, 1994 by Elisha P. Sacks andJon Doyle.Prolegomena to Any Future Qualitative Physics�Elisha P. SacksDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544Jon DoyleLaboratory for Computer Science, Massachusetts Institute of Technology545 Technology Square, Cambridge, Massachusetts 02139AbstractWe evaluate the success of the qualitative physics enterprise in automating expertreasoning about physical systems. The �eld has agreed, in essentials, upon a modelinglanguage for dynamical systems, a representation for behavior, and an analysis method.The modeling language consists of generalized ordinary di�erential equations containingunspeci�ed constants and monotonic functions; the behavioral representation decomposesthe state space described by the equations into discrete cells; and the analysis methodtraces the transitory response using sign arithmetic and calculus. The �eld has developedseveral reasoners based on these choices over some �fteen years. We demonstrate thatthese reasoners exhibit severe limitations in comparison with experts and can analyze onlya handful of simple systems. We trace the limitations to inappropriate assumptions aboutexpert needs and methods. Experts ordinarily seek to determine asymptotic behaviorrather than transient response, and use extensive mathematical knowledge and numericalanalysis to derive this information. Standard mathematics provides complete qualitativeunderstanding of many systems, including those addressed so far in qualitative physics.Preliminary evidence suggests that expert knowledge and reasoning methods can be auto-mated directly, without restriction to the accepted language, representation and algorithm.We conclude that expert knowledge and methods provide the most promising basis forautomating qualitative reasoning about physical systems.1 IntroductionTo develop mathematics, one must always labor to substitute ideas for cal-culations. DirichletThe qualitative physics enterprise of arti�cial intelligence seeks to automate reasoningabout the physical world in the manner of scientists, engineers, and other experts, ulti-mately \constructing what could best be described as an `arti�cial engineer' or `arti�cialscientist' " (Weld and de Kleer, 1990, p. 1). Most of this research seeks to capture the abilityof experts to predict the behavior of dynamical systems, such as circuits, uid ows, andmechanisms. Experts reason about dynamical systems by formulating and analyzing di�er-ential equations that capture the properties of interest and abstract away irrelevant details.Qualitative physics hypothesizes that experts mostly use extremely general equations andanalysis tools. The rationale is that general equations are easier to formulate than speci�cequations and that general analysis is more rapid and robust than detailed mathematical or�This paper is a revision and expansion of [12]. Authors listed anti-alphabetically.



Sacks & Doylenumerical analysis. Researchers have developed several approaches based on this hypoth-esis. Although each approach has its own special characteristics, they share a modelinglanguage for physical systems, a representation for behavior, and an analysis method. Inthis paper, we assess this shared theory of expert reasoning, which we call SPQR (short forSimul�atio Process�us Qualit�ativ�o Rati�ocin�ati�one or \Simulation of Processes by QualitativeReasoning").We believe that qualitative physics has not lived up to its initial promise to automateexpert reasoning: not because this task is impossible, but due to fundamental limitationsof SPQR. After �fteen years of research, SPQR can analyze successfully only a handfulof simple systems, such as a falling point mass or a U-shaped tube containing liquid. Itstruggles with linear oscillatory systems, such as simple springs, and fails completely onmany nonlinear oscillators. Despite numerous attempts to improve performance to thelevel of expert analysis by extending SPQR, the analyses that appear in current researchpapers seem, from a mathematical point of view, little better than those of �ve years ago.Qualitative physics blames this state of a�airs on the unforeseen di�culty of identifyingand automating the general mathematical principles that underlie expert reasoning.1 Wepropose a di�erent explanation for the weakness of SPQR compared with routine expertperformance: SPQR embodies inappropriate assumptions about the needs and methods ofexperts for reasoning about dynamical systems, in that it provides little information aboutasymptotic behavior and uses little expert knowledge.Experts need to know the asymptotic behavior of a dynamical system: the stable steady-states, the sets of solutions that converge to each steady-state, and the sensitivity of theseproperties to perturbations in the equations. This information provides a qualitative un-derstanding of the system and sets the stage for further analysis, such as calculating thetransient behavior for speci�c initial conditions. The most important steady-states are con-stant and periodic behavior, followed by quasi-periodic and chaotic behavior. The SPQRbehavioral representation cannot express any information about steady-states, except forthe existence of constant solutions, and the SPQR analysis algorithm only traces the tran-sient behavior of a system for a range of initial conditions. SPQR thus fails to answerexperts' questions about asymptotic behavior.Experts reason about dynamical systems with advanced mathematics, physics, and otherknowledge. They formulate, analyze, and revise speci�c equations until predictions derivedfrom these equations become accurate enough for their needs. They eschew reasoningabout general equations because these support few useful inferences. In many cases, theyanalyze equations by linearizing them over the range of interest and applying the well-developed theory of linear systems. When nonlinearity cannot be ignored, they resort tothe mathematical theory of dynamical systems, which provides qualitative descriptions ofthe possible steady-states, and to numerical software for analyzing speci�c equations. Theyuse the theory to guide the numerical analysis and to verify the results. SPQR, whichembodies little knowledge about linearity, dynamical systems theory, or numerical analysis,cannot reproduce expert understanding.1For example, according to Weld and de Kleer (1990, p. 7), \codifying qualitative knowledge about thephysical world has proven to be surprisingly di�cult. Just getting the qualitative version of the calculus(used to express qualitative knowledge) right took many years of work by a large number of people."2



Prolegomena to Any Future Qualitative PhysicsConcerns with producing causal explanations and with explaining commonsense reason-ing may underlie the di�erences between SPQR and expert knowledge and methods, in thatsome qualitative physics researchers claim that SPQR constructs causal explanations of theworkings of physical devices, and some intend qualitative physics to cover commonsensereasoning as well as expert reasoning. But both these positions are controversial.2 Wewill not address either of these issues here in order to focus more clearly on the acceptedaims and methods of SPQR. Whatever one's position on causality, the limitations of SPQRreduce its utility for producing causal explanations, since it cannot explain systems that itcannot analyze. Using expert methods might thus aid in producing causal explanations ifit proves easier to produce causal paraphrases of possibly noncausal explanations than toenhance SPQR. And whether or not the man on the street infers that \what goes up mustcome down" by reasoning with a general model, the aeronautical engineer analyzes exactaircraft models by advanced mathematics and by extensive numerics. Indeed, a great partof his or her education involves learning how to augment, replace, or re�ne commonsenseconcepts and methods (whatever they may be) with more informed techniques.The plan of discussion is as follows. In Section 2, we describe SPQR and examine itssuccesses, failures, and recent extensions. We demonstrate that most of the successes aresyntactic variants of three simple equations. Despite the extensions, SPQR fails on othersimple problems. Moreover, we prove that many generalized di�erential equations conveyno useful information. We conclude that SPQR is far from attaining expert performance.In Section 3, we trace the problem to a mismatch between expert reasoning and SPQR'sequations, behavioral representation, and algorithms. In Section 4, we explain why advancedmathematics provides the best available basis for automating expert reasoning about thephysical world. We argue that qualitative physics research should focus on modeling andon automating existing mathematics, rather than on inventing analysis tools. In the �nalsection, we summarize our arguments and recommendations.2 The SPQR methodologyThe principal qualitative physics approaches to automating the analysis of dynamical sys-tems include de Kleer and Brown's (1984) conuences, Forbus's (1984) QP theory, andKuipers's (1986) QSIM. Each of these approaches models dynamical systems with time-varying state variables governed by generalized ordinary di�erential equations. Some ap-plications of these approaches obtain the equations as input, while others derive them byparsing an input domain model, such as a circuit schematic or a systems dynamics compo-nent model. Each approach provides a representation for the equations and algorithms for2On the subject of causality, Weld and de Kleer (1990, p. 611) write, \Causality is by far the most fractioustopic in qualitative physics." For example, Iwasaki and Simon (1986a; 1986b) deny that SPQR provides anycausal information beyond that provided by the standard causal ordering method of econometrics, and deKleer and Brown (1986) dispute their conclusions. On the subject of commonsense reasoning, Weld (1990,p. 4) writes \The goal of qualitative physics is to make explicit the unspoken intuitions of experts in thephysical sciences. I distinguish qualitative physics from the �eld of naive physics. Qualitative physics isinterested in expert reasoning, not in duplicating the common mistakes of novices." Apparently in contrast,Forbus (1990, p. 11) writes \The goal of qualitative physics is to capture both the commonsense knowledgeof the person on the street and the tacit knowledge underlying the quantitative knowledge used by engineersand scientists." 3



Sacks & Doyleinferring properties of the solutions. We abstract the approaches into a single framework,called SPQR, that captures the essential features of the equations, behavioral representa-tion, and analysis algorithm. Although the super�cial details of SPQRmost closely resembleQSIM, which we �nd especially clear and precise, our discussion applies equally to the otherapproaches. Crawford et al. (1990) prove the dynamics module of QP theory equivalent toQSIM by implementing a translator from QP theory to QSIM. We prove the applicability ofour arguments to conuences in Section 2.3. Every other approach in the literature closelyresembles one of these three.2.1 SPQR equations, behaviors, and algorithmsSPQR state values are ordered (or partially ordered) sets of numbers and intervals. Themost common set of values is the set of sign values (�1; 0), 0, and (0;1), which weabbreviate as [�], [0], and [+]. SPQR state variables map temporal values, which are pointsor intervals, to SPQR state values. SPQR equations relate state variables via arithmeticoperators, di�erentiation, and functional relations. The arithmetic operators and functionsmap SPQR state values to SPQR state values. The functions are speci�ed as strictlymonotonic increasing (M+) or decreasing (M�) and possibly by a few stipulated values. Inparticular, the symbols M+k and M�k denote monotonic functions that take the value 0 atk. Di�erentiation maps a state variable to its derivative state variable.SPQR de�nes the state of a system as the SPQR values of its state variables and oftheir derivatives. It characterizes the behavior of the system by the sequences of states thatit can go through, ordinarily seeking to identify behavioral properties that hold in everystate sequence compatible with the equations. It represents state sequences as a transitiongraph whose nodes and links denote states and possible transitions.SPQR derives the graph by repeatedly identifying the current state and �nding allimmediate successor states. It identi�es the current state by applying interval arithmeticrules for combining SPQR values, such as [�] + [0] = [�], and propagating these resultsthrough the equations. It �nds the immediate successors with calculus rules, such as theintermediate value and mean value theorems. For example, the state x = [0] and _x = [+]may immediately follow x = [�] and _x = [+], but the state x = [+] and _x = [�] may not.Full descriptions of typical SPQR algorithms appear in (Kuipers, 1986) and in (Williams,1984).2.2 Example: tubular uid owWe illustrate the concepts of SPQR with an example popular in qualitative physics: theinertia-free ow of liquid in a U-shaped tube, displayed in Figure 1. We follow the discussionin Kuipers (1986), but rewrite his equations in standard notation. The SPQR description
4



Prolegomena to Any Future Qualitative Physics
x yequilibrium level

Figure 1: Fluid ow through a U-shaped tube.of this system consists of the equations
9e; f; g; h 2M+0 8>>>>>>>>>><>>>>>>>>>>:

lx = g(vx)px = e(lx)ly = h(vy)py = e(ly)r = f(px � py)_vx = �r_vy = r (1)
with state variables lx; px; vx; ly; py; vy; and r. The variables l, p, and v measure the levels,pressures, and volumes in the chambers x and y. They take on sign values because they aremeasured relative to their equilibria.3 Their values arelx = px = vx = [+]ly = py = vy = [�] (2)in the state shown in the �gure. The variable r measures the ow rate from x to y, andalso takes on sign values. Dotted quantities ( _vx and _vy) indicate derivatives with respect totime.SPQR constructs a transition graph for the U-shaped tube as follows. Starting from theinitial sign values listed in Equation (2), the analysis algorithm derives that r = [+] fromthe �fth equation in system (1), since px � py = [+]� [�] = [+] and f([+]) = [+]. It thenderives that _vx = [�] and _vy = [+] from the last two equations. It infers from the propertiesof derivatives that vx decreases and that vy increases. It infers that lx and px decreaseand that ly and py increase by applying the chain rule of di�erentiation to the �rst fourequations. It infers that r decreases analogously. SPQR has now found the entire initialstate of the system. It �nds a single successor state in which all variables and derivativesequal [0], using the intermediate value theorem and the known relations among variables.It infers that the system cannot leave the [0] state. The transition graph consists solely ofthese two states (Fig. 2). In physical terms, the uid moves directly to the equilibrium leveland stays there. (It does not oscillate because it has no inertia.)2.3 SPQR equations versus conuencesDe Kleer and Brown (1984) model dynamical systems with sign equations, called conu-ences, such as [ _x] = [x] + [y]; (3)3Kuipers (1986) uses the true values rather than sign values.5



Sacks & Doyle
State 1 lx [+] [�]px [+] [�]vx [+] [�]ly [�] [+]py [�] [+]vy [�] [+]r [+] [�] - lx [0] [0]px [0] [0]vx [0] [0]ly [0] [0]py [0] [0]vy [0] [0]r [0] [0] State 2

Figure 2: The transition graph of the U-shaped tube. Each variable is listed with its signand the sign of its time derivative.rather than with SPQR equations. They interpret conuences as constraints on the signs ofthe state variable. In equation (3), _x is positive when one variable is positive and the otheris nonnegative; _x equals zero when both variables equal zero; _x is negative when one variableis negative and the other is nonpositive; and _x is unconstrained when one variable is positiveand the other is negative. Conuences are more general than SPQR equations because signexpressions represent more functions than do M functions. The sign expression [x�k] withconstant k represents every function in M+k (x) along with all other functions f satisfying(x � k)f(x� k) � 0. For example, the function f(x) = x3 + 9x2 + 24x is a nonmonotonicinstance of [x]; it increases from �1 to a local maximum f(�4) = �16, decreases to a localminimum f(�2) = �20, increases to f(0) = 0, and continues increasing forever. The signexpression [k � x] generalizes M�k (x) analogously. Hence, a given conuence subsumes theSPQR equation in which M operators replace sign operators. For example, equation (3)subsumes _x =M+0 (x) +M+0 (y).We con�ne attention to generalized equations in the following. The weaknesses of SPQRrelevant to SPQR equations arise because these equations are overly general, and so applyall the more to the even more general conuences.2.4 Extensions to SPQRResearchers have extended SPQR in many ways. Lee and Kuipers (1988) and Struss (1988)eliminate spurious behaviors that violate the uniqueness of solutions of ordinary di�erentialequations (under the SPQR assumptions). For example, they prove that a block attachedto a spring cannot oscillate erratically. Their methods apply only to second-order equa-tions in which time does not appear explicitly. Kuipers and Chiu (1987) and de Kleerand Bobrow (1984) eliminate spurious behaviors based on smoothness assumptions aboutthe higher-order derivatives of state variables. Sacks (1990b) reformulates transition graphconstruction as proving of algebraic inequalities and develops a less ambiguous algorithmbased on an inequality prover and on sign-stability tests. Williams (1988) reduces the am-biguity of analysis algorithms by augmenting SPQR arithmetic with algebraic techniques.For example, he simpli�es x � x to 0, whereas sign arithmetic yields the ambiguous ex-pression [+] � [+]. Raiman (1986) and Mavrovouniotis and Stephanopoulos (1987) addassertions of the form \variable x is negligible in relation to variable y" and extend theSPQR algorithms to ignore negligible terms. For example, they infer that the sun attracts6



Prolegomena to Any Future Qualitative Physicsthe earth by neglecting the attraction of the moon. Weld (1990) and Davis (1987) extendSPQR to encompass in�nite and in�nitesimal values. Kuipers (1987a) forms hierarchies ofSPQR equations separated by time-scale. Each level of the hierarchy treats faster levels asinstantaneous and treats slower levels as constant. Doyle and Sacks (1991) extend SPQR topredict the relative likelihoods of possible behaviors by viewing the dynamics of a systemas a Markov chain over its transition graph. Kuipers and Berleant (1988) derive numer-ical bounds on the solutions from numerical bounds on the state variables and boundingenvelopes around the M functions.2.5 The state of the artThe qualitative physics literature contains several successful analyses of SPQR equationalmodels of physical systems. The most common examples are uid ow in a U-shaped tube(Kuipers, 1986), heat ow from a ame to a container of liquid (Forbus, 1990), motion ofpoint masses subject to gravitation and friction (de Kleer, 1977; Kuipers, 1986), and currentow in circuits (Williams, 1984). Kuipers (1985; 1987b) analyzes several homeostatic phys-iological mechanisms, including the Starling equilibrium that governs the concentration ofprotein in the body. Molle (1989) analyzes chemical engineering models, such as continuousstirred tank reactors. Falkenhainer and Forbus (1988) analyze a steam plant.The literature also describes simple physical systems, most commonly a block attachedto a spring, whose SPQR analyses are incomplete. The block and spring are modeled bythe SPQR equations 9f; g 2M+0 ( _x = v_v = �f(v)� g(x) (4)with x the displacement of the block from its equilibrium position, v the velocity of theblock, f the frictional force, and g the elastic force. SPQR constructs the transition graphshown in Fig. 3. We infer that, after an initial displacement, the block either oscillatesaround the equilibrium forever or oscillates some number of times and then approachesthe equilibrium directly. The transition graph does not specify whether the oscillations dieout, remain constant, grow, or vary erratically (Kuipers, 1986). The responsibility for thisincompleteness rests with SPQR, since the equations imply that the oscillations die out.We draw this inference by introducing the concept of energy (formalized as a Lyapunovfunction) and proving that energy decreases to zero along all solutions.h[�]; [+]i ! h[0]; [+]i ! h[+]; [+]i" & #h[�]; [0]i h[0]; [0]i h[+]; [0]i" - #h[�]; [�]i  h[0]; [�]i  h[+]; [�]iFigure 3: Transition graph for the block and spring with hx; vi states.7



Sacks & DoyleThe seeming diversity of successful and partially successful SPQR analyses diminishesupon closer examination. Many elaborate SPQR equations are just syntactic variants of afew simple equations. The simple equations yield the same inferences as the originals withmuch less work. We �nd the simple equations by collapsing redundant M functions withthe rewrite rules shown in Table 1. The proof that the rules preserve the SPQR semanticsis straightforward. Kuipers (1984, App. D) presents an equivalent set of rules.expression rewrite expression rewrite1: M+ +M+ M+ 8: 1=M� M+2: M� +M� M� 9: M+ �M+ M+3: �M+ M� 10: M� �M� M+4: �M� M+ 11: M+ �M� M�5: k +M+ M+ 12: M� �M+ M�6: k +M� M� 13: kM+ M+ (k > 0)7: 1=M+ M� 14: kM� M� (k > 0)Table 1: Rewrite rules for monotonic functions.To illustrate the use of these rules, we reduce Equation (1), which contains seven equa-tions in four M functions, to one equation in one M function. We obtain vx + vy = k byadding the last two equations and integrating. We substitute k� vy for vx and combine theremaining equations into _vy = f(A(vy))with A(vy) = e(g(k � vy))� e(h(vy))by elementary algebra. We rewrite �vy as M�(vy) by rule 3, k � vy as M�(vy) by rule 6,e(g(k � vy)) as M�(vy) by rules 9 and 11, �e(h(vy)) as M�(vy) by rules 3 and 9, A(vy) asM�(vy) by rule 2, and f(A(vy)) as M�(vy) by rule 11. The �nal result is_vy =M�(vy):The SPQR analysis of this equation is very easy. In the initial state, _vy = [�] becausevy = [+]. The only possible successor is vy = _vy = [0]. Hence, the volume in arm yincreases toward equilibrium. We can recover the values of the other variables from theoriginal equations.We estimate the number of successful SPQR analyses by surveying the 55 papers in thecollection (Weld and de Kleer, 1990), which presents the state of the art through 1989. (Wefound no new analyses in the proceedings of AAAI-90.) We exclude examples presentedwithout equations, such as the steam plant (Falkenhainer and Forbus, 1988). Table 2summarizes the results; the full list appears in Appendix A. Out of 37 examples, 30 reduceto three simple equations and 5 are purely algebraic, hence have no dynamics. The U-tube,heat ow, motion of a point mass, and physiological mechanisms are of type 1; the blockon a spring and the pressure regulator are of type 2; and the coupled tanks are of type3. Only two examples are more complicated: an n-Mosfet (Williams, 1984) and a voltagefollower (Dague et al., 1987). Although SPQR can analyze types 1, 3, and 4, it cannot8



Prolegomena to Any Future Qualitative Physicsfully analyze types 2 and 5. Mathematicians fully analyzed all these equations before theadvent of arti�cial intelligence (Brauer and Nohel, 1969). Hence, only �ve SPQR equationssupport useful inferences about dynamical systems and none support new inferences.type # analysis1. _x =M�(x) 16 full2. �x =M�( _x) +M�(x) 11 partial3. coupled pair of type 1 3 full4. algebraic 5 full5. other 2 partialTable 2: Number of occurrences of SPQR equations analyzed in Weld and de Kleer (1990).3 SPQR versus expert reasoningThe methods of SPQR have provided successful analyses of a number of simple systems.But there are other simple and common systems that SPQR still cannot comprehend after15 years of investigation. From the point of view of classical mathematics, the problemsattacked with SPQR today are not in essentials harder, or even di�erent, from those workedon �ve years ago. Does this simply reect the preliminary state of research in the �eld? Webelieve there is a more fundamental explanation: SPQR embodies inappropriate assump-tions about the needs and methods of experts for reasoning about dynamical systems. Tosupport this explanation, we compare the SPQR method of reasoning with the knowledgeand methods taught to experts-to-be in standard texts from dynamics (Guckenheimer andHolmes, 1986; Hirsch and Smale, 1974), science (Abraham and Marsden, 1978; Arnold, 1984;Benson, 1982; Clark, 1976; Prigogine, 1980; Thompson and Stewart, 1986), and engineer-ing (Chua et al., 1987; Etkin, 1972; Marsden and Hughes, 1983; Parker and Chua, 1989;White, 1986). We demonstrate that the methods di�er profoundly and that the di�erencesexplain why experts far outperform SPQR.3.1 Experts focus on asymptotic behaviorScientists and engineers normally focus on the asymptotic behavior of dynamical systems.The asymptotic analysis gives a qualitative understanding of the system behavior and setsthe stage for further analysis, such as determining the transient behavior and settling timefor speci�c initial conditions. The primary asymptotic concept, called an attractor, is asteady-state toward which nearby initial conditions converge. The most important attrac-tors are constant solutions, called �xed points, and periodic solutions, called limit cycles,followed by quasi-periodic solutions that contain two incommensurate periodic componentsand chaotic solutions that wander erratically through state space. Each attractor has anassociated basin of attraction consisting of the initial conditions that converge to it. Thebasins of attraction of a system partition its state space into regions of equivalent asymptoticbehavior. 9



Sacks & DoyleExperts reason about asymptotic behavior geometrically and topologically, following thestrategy pioneered by Poincar�e a century ago. They put di�erential equations in the normalform _xi = fi(x1; : : : ; xn); i = 1; : : : ; nby algebraic manipulation and by introducing new variables as synonyms for higher-orderderivatives. For example, the normal form for �x + f( _x) + g(x) = 0 is _x = v and _v =�f(v) � g(x). They represent the solutions as curves in the Cartesian product of thedomains of the state variables, called trajectories in the phase space of the system. Theycharacterize the (uncountably in�nite) solution set of a system by a sketch of its attractorsand attractor basins, called a phase diagram, thus abstracting away transient behaviorand settling times. The qualitative properties of solutions translate into geometric andtopological properties of their trajectories.The block and spring example has a single attractor, the �xed point x = v = 0, whosebasin is the entire phase space. The phase diagrams of more complicated systems containother attractors. The trajectories of these attractors are also closed, invariant subsetsof phase space. Periodic, quasi-periodic, and chaotic solutions yield simple loops, tori,and fractals. For example, Fig. 4 shows a phase diagram with two attracting limit cycleswhose basins are separated by a repelling limit cycle. The corresponding equations modelaeroelastic galloping of a square prism in a steady wind (Thompson and Stewart, 1986). Thediagram shows that the prism oscillates up and down and that the magnitude of oscillationjumps when the initial condition crosses the unstable limit cycle. Table 3 summarizes thesephase space concepts.
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Figure 4: Phase diagram of the aeroelastic galloping model.In many cases, experts derive asymptotic behavior by assuming that the governing equa-tions are linear over the range of interest and applying the well-developed theory of linearsystems. When nonlinearity cannot be ignored, they resort to the mathematical theory of10



Prolegomena to Any Future Qualitative Physicsconcept de�nitionphase space geometric representation of state spacetrajectory solution curve in phase space�xed point constant solution; a point trajectorylimit cycle periodic solution; a simple loop trajectoryinvariant set trapping region in phase spaceattractor invariant set to which nearby trajectories convergeattractor basin invariant set of all trajectories that converge to the attractorTable 3: Key concepts of phase space analysis.dynamical systems, which provides qualitative descriptions of the possible attractors, andto numerical software for �nding speci�c attractors and basins.The SPQR representation does not support asymptotic analysis. Although SPQR canrepresent �xed points as states whose derivatives all equal 0, it cannot represent the othersteady-states. The most important missing case is a limit cycle, such as the waveform ofa driven oscillator or the path of a swing pushed by a diligent parent. Transition graphscannot express the di�erence between a limit cycle (which yields a happy child), a solutionthat approaches a �xed point via damped oscillations (an unhappy child), and a solutionthat moves away from a �xed point via growing oscillations (an endangered child); all threeappear as cycles in the graph. For example, all three behaviors in Fig. 5 are consistent withthe transition graph of the block and spring (Fig. 3), as discussed in Section 2.5. SPQR lacksany means for representing quasi-periodic and chaotic steady-states, stability, or attractorbasins.
vvv

x x x

Figure 5: State space depictions of three behaviors consistent with the transition graph ofthe block and spring: an attracting �xed point (damped oscillation) a limit cycle (periodicoscillation), and a repelling �xed point (growing oscillation).The SPQR algorithm exacerbates the limitations of the behavioral representation bydownplaying linear systems theory, dynamical systems theory, and numerical analysis andby tracing the transient behavior of a system, perhaps forever, rather than directly exploringits asymptotic behavior. It can derive the asymptotic behavior only when every paththrough the transition graph leads to a �xed point (cf. (Iwasaki and Simon, 1986b)). Itcannot handle systems whose graphs contain cycles, such as the block and spring. Some of11



Sacks & Doylethe SPQR extensions can distinguish limit cycles from spiral �xed points, but only in a fewspecial cases.We can view SPQR as a limited form of phase space analysis, following Sacks (1990b).The SPQR states of a system translate to rectangular regions (including degenerate rect-angles, such as points and lines) in phase space (Fig. 6). The transition graph speci�esthe realizable transitions between regions. Sacks recasts the SPQR transition test as twoalgebraic conditions on the equations at the region boundaries. The conditions produceno ambiguous transitions, apply to regions of all shapes, and are testable by an inequalityprover. 6
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Figure 6: Phase space regions for the SPQR states of the block and spring.Many of the limitations of SPQR in comparison with expert analysis stem directly fromthe use of transition graphs over rectangular regions instead of phase diagrams. Rectangularregions cannot represent curved attractors and basins, which are the norm. SPQR couldapproximate the curved shapes with large numbers of rectangles, but at a high cost inconceptual clarity and in computation. For example, capturing the three limit cycles ofthe aeroelastic galloping model (Fig. 4) requires hundreds of rectangles. SPQR makes noattempt to approximate attractors, however, and simply partitions phase space accordingto the signs of the state variables. The resulting transition graphs tend to reect irrelevantdistinctions in the equations, while omitting key distinctions in the solutions. For example,the transition graph of the block and spring (Fig. 3) contains an in�nity of paths eventhough the system has a single asymptotic behavior, since x and v can change signs anynumber of times as they approach h[0]; [0]i. Yet the transition graph fails to distinguish thetrue asymptotic behavior from growing, stable, or erratic oscillations.3.2 Experts hypothesize and revise speci�c equationsExperts model physical systems with speci�c di�erential equations that capture the fea-tures of interest. Qualitative physics o�ers two arguments that speci�c equations cannotadequately model physical systems whose exact workings are unknown or extremely com-plex: speci�c equations must incorporate unwarranted assumptions about the system, hencemay yield incorrect inferences; and speci�c equations may yield no inferences due to limi-tations on the reasoning or computational abilities of the analyst. Although both problems12



Prolegomena to Any Future Qualitative Physicscan occur, the qualitative physics literature contains only anecdotal evidence that they oc-cur in practice. More to the point, it lacks any examples where experts draw incorrector incomplete conclusions from a speci�c equation while SPQR does better on a general-ized version. On the contrary, SPQR often draws incorrect conclusions or bogs down onproblems that experts solve quickly.The objection to speci�c equations contradicts a hard-learned lesson of arti�cial intel-ligence research: the best way to solve complex, ambiguous problems is often to searchthrough more concrete problems by making and re�ning reasonable assumptions. This isjust what experts do when faced with a system for which they lack precise equations. Theyiteratively formulate and analyze equations that embody reasonable assumptions (evenwhen they know these assumptions to be false, strictly speaking), compare the solutionswith observations, and revise the equations until the discrepancies become insigni�cant forthe problem at hand. Experts start with linear equations because these describe manyreal-world problems adequately (even if the behavior is not linear at some larger or smallerlevel of detail), and because one can analyze linear systems quickly and completely. Theyprogress to nonlinear equations when linear equations prove inadequate. Simple equations,such as low-order rational functions, cover essentially everything.Moreover, unwillingness to risk incorrect conclusions also prevents SPQR from drawingconclusions about reasonable, as opposed to possible, behavior. To ensure the soundnessof its conclusions, SPQR must take into account every wild behavior compatible with itsgeneral equations. These wild behaviors di�er in every way from the normal behaviors, andso preclude sound inference of any normal properties of behaviors.All this is not to say that experts formulate completely speci�c equations. They generallyformulate parameterized di�erential equations whose parameters represent approximatelyknown physical constants. They then partition the parameter space into open regions ofequivalent systems bounded by bifurcation curves where the behavior changes qualitatively(Guckenheimer and Holmes, 1986). Sometimes, experts use other abstractions, for examplemodeling frictionless mechanisms by Hamiltonian equations_x = @H@y_y = �@H@xwithout specifying the Hamiltonian function H(x; y). Our point is that experts immediatelyreduce any system description to equations that they can hope to analyze, and then revisethese equations if they prove unsuitable.Experts avoid unspeci�ed monotonic functions because these provide few useful infer-ences. In Appendix B, we prove that every univariate SPQR expression is locally equivalentto one of �ve constraints on functions of bounded variation: monotone increasing (M+),monotone decreasing (M�), positive (P ), negative (N), or unconstrained (U). This con-strains the expressive power of SPQR equations so that the only �rst-order SPQR equationsare _x = M+(x) (positive feedback), _x = M�(x) (negative feedback), _x = P (x) (monotonegrowth), _x = N(x) (monotone decay), and _x = U(x) (no information). This classi�cationresult demonstrates that the reduction of (1) to _vy =M�(vy) presented in Section 2.5 doesnot represent an isolated simpli�cation. Instead, all �rst-order problems reduce to one of13



Sacks & Doylethese �ve cases. The �nal three cases are far too general for most reasoning. Thus, �rst-order SPQR equations can express only two useful models: positive and negative feedback.Our proof does not apply to multivariate SPQR expressions, such as M+(x + y), or toSPQR expressions that further constrain their instances, such asM+0 . But our analysis doesextend to higher-order equations where all SPQR expressions are univariate. For example,the equation �x = �( _x) + 	(x) has only four instances without P , N , or U functions:�x =M�( _x) +M�(x). One of these generalizes the spring equation, which still gives SPQRtrouble. The others do not appear in the literature.The weakness of SPQR equations for analyzing dynamical systems does not mean thatmonotonic functions are useless. Monotonic relationships play an important role in analyz-ing some static situations, especially in deriving the stability of �xed points (Sacks, 1990b)and in decision analysis, where Wellman (1990) presents a useful, implemented theory ofqualitative probabilistic networks based on monotonicity relationships.3.3 Experts derive qualitative information by numerical analysisExperts make extensive, informed use of numerical analysis. They �nd �xed points withalgebraic equation solvers, such as Newton-Rhapson iteration, and compute the eigenvaluesand eigenvectors of the Jacobian with linear algebra packages. They construct trajectorieswith di�erential equation solvers, such as the Runge-Kutta algorithm. More advancedalgorithms �nd saddle manifolds, limit cycles, attractor basin boundaries, and bifurcations.Qualitative physics eschews numerical analysis, arguing that it provides only reams ofnumbers, not qualitative information, and that it is prohibitively expensive and unreliablefor analyzing realistic systems.4 This argument ignores the role of expert knowledge innumerical analysis. Experts know that \the purpose of computing is insight, not numbers,"as Hamming (1962, Ch. N + 1) puts it in his classic text on numerical analysis, and theyguide their computations accordingly.Experts infer qualitative information from numerical data based on theoretical and em-pirical knowledge about plausible outcomes. For example, the phase diagrams above containmuch qualitative information even though their details come from numerical analysis. Theobserved numbers provide strong evidence for the inferences. Although the experts wouldprefer the infallible support of a proof, they gladly make do with the empirical support ofa careful simulation. They infer the existence of a �xed point from an approximate zero ofthe equations, infer the existence of a limit cycle from a numerically generated trajectorythat intersects itself, and derive the other qualitative information analogously.Experts use their mathematical and domain knowledge about plausible outputs to con-trol the expense and reliability of numerical analysis. Rather than exploring the entire4Forbus (1990, p. 11), for example, argues that \such simulations require immense computational re-sources. Worse yet, it assumes the existence of a complete set of accurate values for all input parameters.Typically, we just don't have such accurate information, thus forcing us to search a space of parameters cor-responding to the ranges the various input parameters may take. This increases the amount of computationeven more, making numerical simulation infeasible.\Even if numerical simulation were technologically feasible, by say shirt-pocket supercomputers, or byallowing rough approximations, it still would be insu�cient for our robot. First, we still need to interpretthe output of the simulation. A list of numerical values is not the most perspicuous representation of anevent. Second, any run of a numerical simulator provides a speci�c set of predictions : : : Often we want tocharacterize the possibilities that might occur, with some guarantee of completeness."14



Prolegomena to Any Future Qualitative Physicsphase space, they focus on the key trajectories, such as attractors and basin boundaries,and partition the remaining trajectories into equivalence classes. They pick reasonable tol-erances based on domain knowledge and on previous outputs. In the hands of experts,numerical analysis of typical ordinary di�erential equations takes only a few minutes on ascienti�c workstation. Although some tasks require greater e�ort, the main problem todayis interpretation of the output, not computation speed (cf. (Truesdell, 1984)).4 Mathematics and expert reasoningThe preceding discussion shows that SPQR lacks the knowledge and methods that expertsconsider necessary for reasoning about physical systems, with the result that experts rou-tinely understand many systems beyond the ken of SPQR. Though intended to be a theoryof reasoning about dynamical systems, SPQR has little knowledge of mathematics (or ofphysics, for that matter). While SPQR posits that most expert reasoning involves only afew elements of calculus and interval arithmetic, experts are trained to draw on sophisti-cated mathematical tools that originate in di�erential topology, dynamical systems theory,ergodic theory, and perturbation theory. The tools apply to abstract equations as well asexact ones and provide qualitative information as well as numerical results. Experts makeuse of their knowledge either directly, by applying mathematical results to yield the answersof interest, or indirectly, by applying the mathematical results in the design of their algo-rithms. If one seeks a theory of expert reasoning, it seems reasonable to expect the theoryto use at least as much knowledge as the experts do, even if it does not use the knowledgein exactly the same way.In the following, we examine the nature and role of mathematics in expert reasoning tobetter understand just why it is so important to expert performance. The simple answeris that mathematics is the best known language for formulating and analyzing models,whether qualitative or quantitative.4.1 Mathematical concepts serve practical modeling needsQualitative physicists believe traditional �elds shed little or no light on pre-formal expertreasoning.5 Qualitative physics rightfully takes automating formulation and revision ofmodels as one of its central problems, and revising a model requires one to make explicitthe physical and mathematical assumptions underlying the model so that one may changethe faulty assumptions.6 Standard textbook formulations of physical problems do not makeexplicit any of these assumptions, and instead presume the reader capable of inferring them.This makes introductory textbook treatments unhelpful for the purposes of qualitativephysics.Advanced mathematics presents an entirely di�erent picture. While physics textbooksconcentrate on presenting the \compiled" versions of problems that require the reader to5For example, Weld and de Kleer (1990, p. 2) write \For almost all the examples we considered, theconventional mathematical formulation of physics was useless or unnecessary."6To quote Weld and de Kleer (1990, p. 4) again, \Typically, the [physicist's FORTRAN] program [writtento make predictions about some system] has no way to detect when the implicit assumptions under whichit was written are violated. Qualitative physics aims to lay bare the underlying intuitions and make themsu�ciently explicit, so that they can be directly reasoned with and about."15



Sacks & Doylesupply many of the unstated assumptions, the concepts of advanced mathematics provideformal ways for expressing these underlying assumptions. In fact, advanced mathematicsconcerns itself virtually exclusively with qualitative structures and qualitative properties ofbehaviors. Mathematics did not arise in a vacuum, but developed its concepts in order toprovide the best possible tools for solving practical problems about the design, analysis,and control of physical systems.Practical problems of design, analysis, and control require one to answer the relevantquestions about the actual or intended behaviors of a system using the available knowledge.The most important point about these practical tasks is that they lead, in each domain,to a set of key questions: Will the shell reach its target? Will the tank overow? Will thesardine and anchovy populations continue to cycle as �shing increases, or will one displacethe other entirely? Mathematicians took these non-numerical key questions and workedhard for many years to answer them in the simplest, most general, and most powerful wayspossible. They started with everyday physical properties, and then re�ned, developed,systematized, and isolated these into a number of essentially qualitative properties andnotions that constitute the core of mathematics, concepts such as thresholds, boundedness,continuity, stability, and bifurcations.These key questions, and the concepts essential for answering them, remain the samewhether or not one automates the solutions on a computer. Experts addressed these taskslong before the advent of computing machines. The need to solve problems in spite of thesevere limitations imposed by manual calculation provided the initial motivation behindthe invention of many of the qualitative concepts and rules of modern mathematics. (Oneshould not forget that the word \computer" always referred to a human up until the lastfew decades.) Even though experts now use computers to help extend their abilities to carryout numerical calculations, they must still rely on their underlying qualitative mathematicalknowledge to know when to trust these calculations (Truesdell, 1984).Let us consider some examples of practical concepts and methods from advanced math-ematics.� One key question in design problems is whether some quantity (pressure in a boiler,say) remains bounded or can increase without limit, so that one can design the deviceto remain functional and safe. While this question has not been answered for allpossible systems, mathematicians have identi�ed a number of qualitative properties ofsystems which imply boundedness of state values. One of the basic results of topologystates that continuous functions over compact regions (such as closed intervals or �niteunions of closed intervals) are bounded. Another result states that such functions arealso absolutely continuous, that is, can be approximated uniformly over the wholeregion of interest. Every concept involved in these results is purely qualitative innature. Indeed, these results apply to functions of any type whatsoever, not just tonumerical functions.� Every electrical engineer makes almost daily use of some of the fundamental resultsfrom the theory of functions of a complex variable. One result states that the integralof an analytic function around a closed curve of any shape or size is zero (or moregenerally, the sum of the multiplicity of the poles of the function enclosed by thecurve). Another result states that the integral between any two points is independent16



Prolegomena to Any Future Qualitative Physicsof the path taken. Knowledge of these results frees the expert to choose paths ofintegration so as to make the calculation as easy as possible, or to reduce involvedintegrals to simple formulas. These results are related to conservation laws, whichqualitative physics recognizes to be important, but are more widely applicable andgeneral.� Engineers model the vast majority of physical systems with linear equations because oftheir tractability and intuitive properties. The most useful property, called superposi-tion, is that linear combinations of solutions are themselves solutions. Time-invariantsystems have particularly simple asymptotic behaviors: all trajectories converge to aglobal �xed point or all trajectories diverge to in�nity.� Experts ignore implausible cases by assuming genericity. A generic property of aset is one that holds for \typical" members. The precise de�nition varies with theproblem domain. The strongest de�nition is an open dense set of full measure, suchas the irrational numbers. We must often settle for weaker de�nitions, such as \anopen dense set" or \a countable intersections of open dense sets in a complete metricspace." Experts assume that generic properties hold in their models, unless somethingspecial (such as symmetry or conservation laws) indicates otherwise. For example,a nonhyperbolic �xed point whose Jacobian has imaginary eigenvalues complicatesanalysis. Experts can assume that the �xed points of an individual equation arehyperbolic because this property is generic in the set of all di�erential equations. Theycannot assume this when analyzing a one-parameter family of di�erential equations,but can still assume that the equation has at most one nonhyperbolic �xed point withone imaginary eigenvalue.We conclude that mathematics provides a rich, well-developed store of qualitative con-cepts and results of proven utility for reasoning about physical systems in all their aspects,not just their dynamics.74.2 Mathematical reasoning can be automatedRecent developments in qualitative physics support the thesis that mathematics providesthe best concepts for model formulation and analysis, in that essentially all the extensionsto the basic SPQR algorithm rest upon established mathematics. Kuipers (1988) and Struss(1988) base their criteria for determining that trajectories do not intersect on the Jordancurve theorem. Kuipers (1987) and de Kleer and Bobrow (1984) detect spurious SPQRtransitions by reasoning about higher-order derivatives. Sacks (1990b) and Williams (1988)reduce the ambiguity of SPQR arithmetic with symbolic algebra techniques and with inter-val analysis (Moore, 1979). Iwasaki and Simon (1986a) and Sacks (1990b) base their �xedpoint analysis on sign stability criteria. Raiman (1986), Weld (1990), and Davis (1987) em-ploy in�nitesimals and nonstandard analysis. Doyle and Sacks (1991) base their likelihoodpredictions for SPQR behaviors on an application of the theory of Markov chains similar to7For other presentations of this idea, see (Browder and Mac Lane, 1978; Ja�e, 1984; Wigner, 1960) andthe collections (COSRIMS, 1969; Steen, 1978). For surveys of mathematics, see (Courant and Robbins,1941) (elementary), (G�arding, 1977; Mac Lane, 1986) (advanced), or (Dieudonn�e, 1982) (stratospheric). Forthe qualitative theory of dynamical behaviors, see (Guckenheimer and Holmes, 1986).17



Sacks & Doylethat of Hsu (1987). Kuipers's hierarchical models closely resemble the mathematical meth-ods of averaging (Guckenheimer and Holmes, 1986) and of multiple time scales (Brackbilland Cohen, 1985).But SPQR is a theory of expert reasoning that makes use of no knowledge or meth-ods that are not perfectly intelligible to the educated layman, and its extensions draw ononly a minor portion of the knowledge visibly used by experts in their reasoning. If themissing expert knowledge is in fact superuous, SPQR represents a monumental advancein mathematics and in human inquiry. But the previous discussion shows that SPQR doesnot obviate other mathematical and scienti�c reasoning. Thus, the solution to SPQR'slimitations involves automating the full range of expert knowledge and methods.Some basic mathematical knowledge and methods have already been automated withconsiderable success. For example, Sacks (1990a; 1991) presents an analysis program forone-parameter planar equations that performs at the level of experts by exploiting themathematical knowledge available to experts. The input is the equations, bounding intervalsfor the state variables and the parameter, and error tolerances. The program partitions theparameter interval into open subintervals of equivalent behavior bounded by bifurcationpoints, classi�es the bifurcation points, and constructs representative phase diagrams for thesubintervals. It constructs the phase diagrams by identifying �xed points, saddle manifolds,and limit cycles and partitioning the remaining trajectories into open regions of uniformasymptotic behavior. It produced the phase diagrams in Figure 4 in a few seconds on astandard scienti�c workstation. It can solve textbook examples along with problems ofpractical interest to scientists and engineers, including ones that warranted entire journalarticles within the last decade. In other work, Yip (1989) constructs phase diagrams forone-parameter area-preserving planar maps, which model conservative phenomena, such asfrictionless bouncing balls. His program treats the equations as a black box for generatingtrajectories. It classi�es trajectories according to their geometry and picks initial pointsfor simulation according to the geometry of existing trajectories. The program performscomparably to experts and has solved an open problem in uid dynamics. As a thirdexample, Abelson et al. (1989) survey other research in automating qualitative analysis vianumerical experimentation.Much work remains to be done. The central problem for qualitative physics must beautomating the formulation of models, which is a problem that neither mathematics normost qualitative physics has addressed.8 Qualitative physics must also shoulder the burdenof adapting mathematical concepts to take computational concerns into account. The pre-cise forms of mathematical concepts useful in engineering reasoning may be di�erent fromthose useful in mathematics, since the utility of these concepts is di�erent for the two appli-cations. Practical reasoners seek to optimize computational utility, while mathematiciansseek to optimize mathematical utility, which takes into account simplicity, beauty, and thepower concepts give to human mathematicians in constructing proofs. Optimizing math-ematical utility does not necessarily mean optimizing computational utility as well, butmodern physics and economics have observed a high correlation. This is not too surpris-8Weld and de Kleer (1990, p. 481) view this as a lacuna of qualitative physics: \By focusing on tasksof analysis and design in the framework of a single, human-provided model, the bulk of work in qualitativephysics has �nessed what probably is the most important and hardest problem: Constructing an appropriatemodel." 18



Prolegomena to Any Future Qualitative Physicsing, since most of the qualitative concepts of mathematics were developed to save humanse�ort in calculation. Finally, mathematics is not yet complete, and problems in qualitativephysics may require development of new mathematical concepts.95 ConclusionWe have argued that the methods that have come to be accepted as the basis for qualitativephysics su�er severe limitations in comparison with human experts because they eschewthe viewpoint, the tools, and the knowledge of experts, especially the wealth of qualitativeconcepts and results that modern mathematics provides speci�cally to facilitate practicaland e�cient reasoning about the qualitative properties of physical systems. We base ourarguments on the following observations:� The accepted approach, which we have called SPQR, has successfully analyzed onlythe simplest systems, while routine expert methods succeed on far more complexsystems.� Virtually all of the systems analyzed in the literature reduce to just three equations.� SPQR equations are far too general for practical use. Experts instead hypothesizeand revise speci�c equations until they obtain equations of adequate accuracy.� Experts focus on asymptotic behavior, while SPQR focuses on transient behavior.� Experts derive the behavior of dynamical systems with deep mathematics and exten-sive numerical analysis, whereas SPQR uses little of either.To reproduce expert skills, qualitative physics should cast o� the fetters of the currentlyaccepted methods and instead seek to exploit modern mathematics (and physics, chemistry,etc.) to the full. It should �rst seek to automate standard expert knowledge and reasoningmethods before deciding to develop entirely di�erent methods. Evidence suggests that themathematical concepts and results already available su�ce to automate substantial amountsof expert reasoning, so neglecting mathematics of proven utility simply slows progress andrisks reinventing preliminary versions of established mathematics.We believe that exploiting standard mathematical concepts and knowledge will also aidqualitative physics in cooperating with other scienti�c and engineering �elds. The currentpractice, with its implication that mathematics has never addressed the problems of rea-soning in any signi�cant way, and with the concomitant \not invented here" requirementthat one must abandon established concepts and methods to automate expert reasoning,cannot appear attractive to informed outsiders, and should be abandoned in favor of a moreproductive spirit of cooperation and building on past discoveries. We should speak of \ex-pert reasoning" (or scienti�c and engineering reasoning) rather than \qualitative reasoning"when de�ning the subject, and view qualitative physics as an extension of existing scienti�cdisciplines rather than as an entirely new �eld of endeavor.9Doyle (1983) uses the term \rational psychology" (in analogy with rational mechanics) for the branchof mathematics aimed at �nding the most appropriate concepts for theories in psychology and arti�cialintelligence. 19
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Prolegomena to Any Future Qualitative Physics308 Dormay & Raiman pressure regulator 2313 Williams U-tube 1318 Raiman colliding masses algebraic359 Williams spring 2398 Weld spring 2399 Weld heat exchanger 1; linear409 Weld Wheatstone bridge algebraic420 Weld heat exchanger 1; linear427 Davis block 2438 Dague & Raiman voltage follower other444 Forbus heat ow 1; linear531 Kuipers water balance 1531 Kuipers sodium balance 1632 Iwasaki & Simon evaporator 1; linear642 Iwasaki & Simon pressure regulator 2Table 4: Classi�cation of systems analyzed in Weld and de Kleer (1990).B Classi�cation of SPQR equationsThe small repertoire of useful SPQR equations reects their limited expressive power. Weuse a standard result about monotonic functions to make this claim precise. Given a functionf de�ned on the interval [a; b] and a subdivision a = x0 < x1 � � � < xn = b of [a; b], de�net = nXi=1 jf(xi)� f(xi�1)j:The function f is of bounded variation over [a; b] if the supremum of t over all subdivisionsof [a; b] is �nite.Lemma 1 Let � be of bounded variation on [a; b]. There exist f; g 2 M+ such that � =f � g on [a; b].Proof: We can �nd monotonic functions f̂ and ĝ such that � = f � g on [a; b] by astandard theorem (Royden, 1968, p. 100). Setting f = f̂ + x and g = ĝ + x guaranteesf; g 2M+. 2We use this result to characterize the expressive power of univariate SPQR expressions.De�ne an SPQR expression in x as M+(x), M�(x), or any expression � + �, ��, ��,1=�, M+(�), or M�(�) in which � and � are SPQR expressions in x. Every SPQRexpression is of bounded variation under the standard SPQR assumptions (Kuipers, 1986).De�ne the extended SPQR values on [a; b] as fM+;M�; P;N;Ug where M+ and M� arestrictly increasing and decreasing continuous functions on [a; b] and P , N , and U denoteany positive, any negative, or simply any function of bounded variation over [a; b].21



Sacks & DoyleTheorem 2 Let � be an SPQR expression in x de�ned on [a; b]. There exists a subdivisiona = x0 < x1 � � � < xn = b of [a; b] such that � is equivalent to an extended SPQR value oneach subinterval [xi�1; xi].Proof: The proof is by induction on the nesting level of �. If n = 1, the only possibleexpressions are M+(x) and M�(x), which both satisfy the condition on [a; b]. Assumingn � 1, the proof for n > 1 is by cases. The cases apply to the intervals of the n � 1subdivision. If one argument is U , it absorbs the other argument and U is the result. Thevalues P , N , and U are their own reciprocals. We now consider the other cases.M� + P = U : We can write the expression M+ + P as M+ + (P + k) for any constantk by rule 5 of Table 1. We can write any f on [a; b] as P + k with k the absolute valueof the in�mum of f on [a; b]. Hence, M+ + (P + k) = M+ + U , which equals U as shownabove. We reduce M� + P to �M+ + P and so to U as well. The cases M� +N = U areanalogous.M�(P ) = U : We obtain any f as the result of M+(P ) by setting M+ to �x:x+ k withk as above. We reduce M�(P ) to �M+(P ) and so to U as well. The cases M�(N) = Uare analogous.M��M�: Let f; g 2M+. Divide the interval [a; b] into four subintervals (some possiblyempty): (i) f; g > 0, (ii) f; g < 0, (iii) f > 0; g < 0, and (iv) f < 0; g > 0. The result isM+ on (i) by rule 1 of Table 1 and M� on (ii) by rule 2 because (fg)0 = f 0g + fg0 andf 0; g0 > 0. On interval (iii), we havefg = �elog(�fg) = �elog(f)+log(�g) = �eM++M� = �eU = �P = N:The third equality holds because any function can be written as the log of a positive function;the fourth holds by Lemma 1; and the �fth holds because any positive function can bewritten as the exponential of a function. Interval (iv) yields P analogously. The remainingcases of M� �M� are similar.M+ � P : Let f 2 M+; g 2 P , and divide the interval [a; b] into two subintervalscorresponding to f < 0 and f > 0 (one of these may be empty). The product is N in thesubinterval where f < 0, as it generalizes interval (iii) of the previous case, and is P in thef > 0 interval, as g absorbs f . The cases M� � P and M� �N reduce to this case or itsnegation.The remaining cases follow from direct applications of Lemma 1 and the rewrite rulesin Table 1. 2As mentioned in the text, this result means that the only �rst-order SPQR equationsare _x = M+(x) (positive feedback), _x = M�(x) (negative feedback), _x = P (x) (monotonegrowth), _x = N(x) (monotone decay), and _x = U(x) (no information). The �nal threecases are far too general for most reasoning. Thus, �rst-order SPQR equations can expressonly two useful models: positive and negative feedback. This conclusion extends to higher-order equations where all SPQR expressions are univariate. For example, the equation�x = �( _x)+	(x) has only four instances without P , N , or U functions: �x =M�( _x)+M�(x).Only one of these appears in the literature, and it gives SPQR trouble.
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Reset reproduction of article published in Computational Intelligence, Vol. 8, No. 2 (May 1992), pp.326{335. Reprinted July 1994. Reprinting c Copyright 1989, 1990, 1991, 1992, 1994 by Elisha P.Sacks and Jon Doyle. EpilegomenonElisha P. SacksDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544Jon DoyleLaboratory for Computer Science, Massachusetts Institute of Technology545 Technology Square, Cambridge, Massachusetts 02139We are deeply indebted to the commentators for the hard work they have applied toresponding to our paper. Neither their e�orts nor our own in responding to their commentshave been as enjoyable as one might wish. Our paper apparently persuaded some com-mentators that we hold positions that we thought we had explicitly denied, positions wedenied for many of the same reasons as have the commentators. Though we expected dis-agreements, we were very surprised by some of the points actually taken to represent majorcontroversies. We did not anticipate the variety of ways in which placing di�erent emphaseson our words yields unintended interpretations. We would have chosen di�erent words insome cases, and probably a di�erent organization for the text, had we foreseen these unin-tended interpretations. We regret that our paper is not the one we wish we had written,and regret that our tongue-in-cheek title may have given o�ense, for none was intended.To make amends, we will attempt in this afterword to express our intentions more clearly.Rather than attempt a comprehensive response to every point raised by the commentators,we restate our major points and principal arguments, saying exactly what we intended tosay in our paper, but in a form we hope will be less conducive to misunderstanding.1 Our intentionOur intention in writing the paper was to encourage work on the problems of qualitativephysics by calling attention to the overwhelmingly qualitative nature of the many conceptsand results modern mathematics provides for representing knowledge about the physicalworld, and by proposing that vigorous exploitation of these concepts and results in auto-mated reasoners promises the most direct path to mechanizing scienti�c and engineeringreasoning.In explicitly focusing on the qualitative physics project of automating scienti�c and en-gineering reasoning about physical systems, we did not intend to equate qualitative physicswith this one project or to denigrate its other projects, such as elucidating and mechanizingcommonsense and causal reasoning about the world. We view these other projects as bothinteresting and important, and do not believe that any success or failure of some method inautomating scienti�c and engineering reasoning necessarily entails success or failure in theseother projects. Nor did we intend to equate qualitative physics with any speci�c reasoningtask like prediction, or with the set of concepts, representations, and algorithms we callSPQR. Most importantly, we believe that while qualitative physics has yet to produce an



Sacks & Doyleautomated scientist or engineer, this simple fact says nothing about the ultimate success orvalue of the �eld, since few grand human endeavors ever achieve their aims in short order.We intended all of our discussion concerning \experts" to refer to scientists and engi-neers, and introduced the term in reference to Weld and de Kleer's stated aim of constructingarti�cial scientists and arti�cial engineers. We intended our generic statements about whatexperts do to refer to what typical experts typically do, and not to things that all experts,without exception, do in all cases, without exception. In particular, we intended our dis-cussion of expert behavior to concern the responsible practices of the broad spectrum ofscientists and engineers, and did not intend to restrict attention to the special practices ofacademic dynamicists or any other subpopulation.We of course intended our paper to speak to AI researchers already working in qualitativephysics. But as we expected that they were already cognizant of many of the issues wediscuss, even if they might not share our opinions on these issues, we viewed as even moreimportant the task of alerting students contemplating work in the �eld to the existenceof many useful concepts not commonly encountered in computer science educations. Wealso hoped to speak to mathematicians, scientists, and engineers looking for opportunitiesto apply their expertise in a new area. For each of the audiences, we sought to encouragemore work on automating qualitative reasoning about physical systems, not to discourageanyone from the enterprise.2 Our thesisThe main thesis of our paper is that mathematics provides an extensive, well-developed,formal, and qualitative language for describing and characterizing the structure and behaviorof a very wide variety of systems and for formulating and solving a wide variety of practicalproblems arising in prediction, design, diagnosis, and control.In making this point, we intended to follow a tradition of papers in mathematics andphysics (Browder and Mac Lane, 1978; COSRIMS, 1969; Ja�e, 1984; Mac Lane, 1986;Truesdell, 1984; Wigner, 1960) that attempt to counter the attitude (widespread throughoutcivilization) that mathematics concerns only numbers and equations (or worse yet, onlynumerical solution of ordinary di�erential equations). In fact, mathematics is not identicalwith numbers and equations any more than computer science is identical with bits andmicroprocessors. The intellectual cores of both �elds concern qualitative, non-numericalstructures for describing real and imaginary systems, situations, and processes, and thesestructures underlie most of the successful techniques employed by scientists and engineers.We did not intend to suggest that scientists and engineers always consciously or knowinglyexploit these qualitative concepts, but only that these concepts provide the basis for manyof the techniques successfully employed by scientists and engineers: techniques they employsuccessfully even if they lack knowledge of the underlying formal theories (but even moresuccessfully when they do know these theories).The main moral we drew from this thesis is that the most expeditious way of automatingscienti�c and engineering reasoning involves automating mathematical concepts and knowl-edge directly, given the proven utility of mathematics in aiding human reasoning aboutboth expert and everyday situations, and given that most mathematical concepts and re-sults are already formalized. Creating arti�cial scientists and engineers requires more than28



Epilegomenonthis, of course; we undoubtedly will need to invent some new mathematics along the way(cf. (Doyle, 1983)). For example, mathematics does not provide a language for describ-ing shapes and regions that meets the demands of some practical applications. Practicalreasoning tasks often need to characterize shapes and regions by their use, rather than bytheir expression (in, for example, landmark values of algebraic and trigonometric expres-sions). We expect that qualitative physics work on kinematics (e.g., Faltings, Joskowicz)and arti�cial intelligence work on vision constitute steps in this direction. More immedi-ately, though, the point of greatest leverage for AI is in automating the process of modelformulation. Even though mathematics provides some of the best concepts and analyticaltools for use in constructing models, it provides no formal procedures for using its conceptsand tools in actually carrying out such constructions. In contrast, we view many works inAI as developing automatic procedures for formulating problems and models over a varietyof representations. These procedures often embody important ideas entirely independent ofany use of SPQR concepts and representations.While we focused our discussion on the automation of mathematical concepts and knowl-edge, one cannot hope to construct an automated scientist or engineer without also automat-ing non-mathematical knowledge from physics and other worldly subjects. This truismformed the basis for our suggestion of changing talk about \qualitative reasoning" to talkabout \expert reasoning" when discussing automated scienti�c and engineering reasoning.As qualitative physics has observed, however, textbooks in physics and other �elds do notalways present their qualitative knowledge in qualitative form. (Texts in rational mechan-ics, however, present an instructive counterexample. See, for example, (Truesdell, 1977).)We thus focused on automating the qualitative concepts of mathematics as a step enablinga more perspicuous formalization of physics and other subjects, but in no way intended tosuggest that automating mathematics alone su�ces to automate scienti�c and engineeringreasoning.In making these points, we did not mean to imply that qualitative physics attachesno importance to mathematics. Qualitative physics continues to incorporate additionalmathematical ideas beyond those represented in SPQR. Taken together over time, theseincrements will, as Archimedes suggested, yield success. We nevertheless urged changingcurrent practice in the �eld because, in talking with people outside the �eld, we foundit conveys to outsiders the impression of a �eld suspicious of mathematics and externallydeveloped concepts. (We note that AI generally has often conveyed a similar impression:cf. (Doyle, 1988).) We did not believe that that super�cial impression accurately reects themore complex attitudes of qualitative physics researchers concerning the costs and bene�tsof mathematics. But accurate or not, the impression needlessly damages reputations andimpedes cooperation with outsiders who feel o�ended by the �eld as they perceive it.While we observe reasonable di�erences of opinion in the commentaries on the com-parative utility of deliberate automation of mathematical concepts and knowledge, we seeno substantial disagreements on the importance of model formulation. We believe almosteveryone in qualitative physics also views model construction as a central problem, if notthe central problem, of the �eld, whether or not they choose to work on it themselves. Inechoing Weld and de Kleer's observation that the the �eld has paid less attention to modelconstruction than it deserves, we in no way intended to imply that the �eld totally neglectsthe problem. To the contrary, we believed that this is where the �eld shines brightest, and29



Sacks & Doylethe thrust of our main point was to help it shine even brighter by exploiting qualitativemathematical concepts more rapidly. Our intent was not to propose or critique any speci�cprocedures for constructing models, only to urge that the models constructed make use ofthe relevant mathematical concepts.3 Our argumentsTo support the thesis that direct automation of the qualitative concepts of mathematicsprovides the most expeditious way of automating scienti�c and engineering reasoning, weprovided arguments both for the e�cacy of these concepts and for their advantages overthe alternatives.3.1 The e�cacy of mathematicsWe presented three arguments for the e�cacy of mathematical concepts. Two of theseconcern its epistemological adequacy (in the sense of McCarthy and Hayes), looking at howmathematical concepts were developed in order to describe the world (the design argument),and looking at some examples of how mathematical theories provide concepts appropriateto making important qualitative distinctions (the inductive argument). The third concernsthe heuristic adequacy of mathematics, looking at how some mathematical concepts haveentered into automated reasoners (the pragmatic argument).3.1.1 The design argumentIn the design argument, we observed that mathematicians did not generally invent theirconcepts and results as abstract playthings, but as practical means of reaching targetedconclusions about expert and commonsense situations. Mathematicians approached prac-tical problems by determining both the minimal information necessary to reach particularconclusions and the most useful abstractions for each task. Comparisons of the utility ofabstractions, while rarely explicit, involved computational di�culty as well as esthetic crite-ria like simplicity and beauty since mathematicians knew they had to compute the answersthemselves. Traditional computational complexity criteria were, in some ways, even moreharsh than those applied today since, as we noted in our paper, \computers" were humanbeings until very recently (cf. (Truesdell, 1984)).Those mathematicians, such as G. H. Hardy, who publicly delighted in working onbeautiful theories they assumed would be forever totally impractical, would be horri�ed tolearn just how regularly modern science �nds parts of mathematics to be exactly what itneeds to formulate and solve some intensely practical problem. In Hardy's case, the numbertheory he so admired for its impracticality now serves as the basis for work on reliable andsecure communications. Even category theory, long derided as \abstract nonsense" bymathematicians themselves, now justi�ably plays increasingly important roles in the designand semantics of programming languages. These constitute just two of the newest casesof what Wigner (1960) called \the unreasonable e�ectiveness of mathematics" and whatJa�e (1984) identi�ed as mathematics' concern with \ordering the universe".30



EpilegomenonThe reason mathematics proves so successful in practice, whether by intent or not,is because its main concern is to �nd the most appropriate representations and rules forreasoning about di�erent subjects for di�erent purposes. Consider the attributes of goodreasoning methods and representations stated in the responses by Joskowicz and the XeroxSERA group. Joskowicz suggests evaluating methods with respect to the criteria of onto-logical adequacy, inferential adequacy, inferential parsimony, coverage, and computationale�ciency. Williams, Shirley, Raiman, Falkenhainer, de Kleer, and Bobrow paraphrase Win-ston to write \Good representations facilitate problem solving. They make important thingsexplicit and expose natural constraints. They are complete, concise, transparent, facilitatecomputation and suppress detail." These two sets of attributes say essentially the samething. But more importantly, both describe the essence of the mathematical method informulating, formalizing, and investigating a subject (cf. (Doyle, 1983)). In other words,mathematics has been working on �nding good ways of representing and reasoning aboutthe world for thousands of years, and has, together with natural philosophy, constitutedthe �eld of \qualitative reasoning about physical systems" for most of the time prior to therise of arti�cial intelligence.3.1.2 The inductive argumentThe inductive argument simply points to a variety of examples of qualitative mathematicaltheories and the useful concepts and methods they provide, leaving the reader to infer thatthe theories, concepts, and methods not mentioned explicitly are similarly useful in treatingother problems. We thought this argument preferable to a complete survey of mathematicsonly because few readers would wish to read such a proof by exhaustion (literally, giventhe scope of mathematics) even if we believed ourselves competent to write it. We choseour examples to reect a bit of the diversity of mathematical concepts, including dynamics,topology, analytic functions, functional analysis, linear relationships, and measure theory.No short list like this can convey much, and perhaps some other selection of theories wouldhave illustrated our thesis better.As our main example, we delved deepest into the mathematical theory of dynamics, bothbecause of the prominence of dynamical problems in the literature of qualitative physicsand because of our familiarity with the theory. We did not intend to equate the overallproblem of reasoning about physical systems with the subtask of predicting the behaviorof dynamical systems, nor did we mean to imply that all reasoning about physical systemsinvolves the concepts of dynamics. More importantly, we in no way intended our claims forthe utility of mathematical concepts to be restricted to dynamics or the few other subjectsexplicitly mentioned in our paper, as these are just some examples among many. Instead, webelieve mathematics supplies the best known formal concepts for understanding all aspectsof the world, whether concerning structure or process, statics or dynamics, and whetherapplied to tasks of prediction, design, diagnosis, or control.3.1.3 The pragmatic argumentThe pragmatic argument points to the e�ectiveness of mathematical concepts in qualitativephysics when the relevant concepts are applied in appropriate ways. Some problems call forexactly the concepts embodied in SPQR, hence the apt success of SPQR on them. Other31



Sacks & Doyleproblems call for additional concepts, and the extensions to SPQR add in some of these. Theconcepts embodied in SPQR are inappropriate to other problems, but systems automatingthe knowledge relevant to these problems (e.g., KAM (Yip, 1989) and POINCARE (Sacks,1991)) have exhibited initial successes.3.2 The advantages of mathematicsWe provided three arguments for the advantages of direct automation of mathematics asa means to automating scienti�c and engineering reasoning. The �rst argument simply re-peats the design argument for e�cacy above with a di�erent emphasis: given the centuriesof concentrated e�ort by thousands of mathematicians on �nding the best formalizationsof worldly structures and phenomena, it seems unlikely that signi�cantly better ways offormalizing these same phenomena will be found without comparable e�ort. We recognizethat it occasionally may be easier to develop adequate formalizations from scratch thanto �nd and apply the relevant extant mathematics; but we expect these cases to be theexception rather than the rule, and believe that the intellectual and social bene�ts of vig-orous, deliberate exploitation of mathematics outweigh the costs. The second argumentis mainly indirect, pointing out the limitations of the available alternatives: using SPQRalone, and using incremental extensions of SPQR. The third argument points out somespeci�c advantages of direct automation over incremental extensions of SPQR.3.2.1 Limitations of SPQROur claim concerns identifying the best path to future capabilities, not the best existingsystems. Thus the question of how to automate scienti�c and engineering reasoning mostrapidly would be moot if some existing automated system provided a reasonable approxi-mation of the broad spectrum of reasoning abilities of human scientists and engineers. Weknow of no one who believes any extant system does this, but we examined the progressachieved by systems based on SPQR as a way of both verifying this assessment and identify-ing the strengths and weaknesses of its approach as a path to creating an automated scientistor engineer. We found that extant systems based on SPQR provide an understanding ofsome mathematically simple systems, but fail on other simple systems easily understoodcompletely by scientists and engineers. Some of these failures are overcome by some of theextensions to SPQR, and some by using completely di�erent sets of abstractions, but thegoal of constructing an automated scientist or engineer remains to be achieved. In exam-ining the failures, we found severe limitations having to do with the expressiveness of thelanguage and representations SPQR provides, in addition to computational limitations dueto the algorithms it employs. Some of these limitations were found by analyzing its languageand representations on their own, and some by comparing the SPQR approach with someapproaches employed by human scientists and engineers. In making these comparisons, wein no way intended to set up a competition between the current performance of systemsbased on SPQR and humans, or between systems based on SPQR and automated systemsbased on any other approach. We intended only to compare future prospects. Given theshort history of the �eld, we viewed current performance as one of the least informativeindicators of future prospects. 32



EpilegomenonInexpressiveness: We found the conceptual language of SPQR to be highly limited inits ability to draw some distinctions important for reasoning about the behavior of systems.Its language represents some systems with qualitatively di�erent behaviors by the samegeneralized di�erential equation, such as systems described by the di�erential equations_x = x and _x = x3. It also represents other systems with the same qualitative behaviorsby di�erent generalized equations. We presented a set of simple rewrite rules, successorsto similar rules �rst observed by Kuipers, that may be applied in short order to reducecomplex sets of generalized equations to simpler ones describing the same behaviors. Wealso drew on a standard theorem concerning monotone functions to provide an indication ofthe inherent inexpressiveness of generalized equations based on monotonicity relationships.Finally, we presented a summary of some of the concepts underlying the mathematicaltheory of qualitative dynamics to illustrate the di�culty of expressing some importantdistinctions of proven utility with SPQR concepts and representations.In �nding SPQR's concepts and representations inexpressive, we did not intend to sug-gest that understanding a system requires making unambiguous predictions. As noted byseveral commentators, all abstractions hide some distinctions and highlight others; whenchoosing an abstraction for a particular reasoning task, one asks whether it hides all theunimportant distinctions and highlights all the important distinctions. Every abstraction,therefore, introduces a deliberate ambiguity about irrelevant distinctions. The ambiguitiesinherent in SPQR concepts form limitations only because SPQR analyses remain ambiguousabout important qualitative properties of systems concerning asymptotic behaviors, whilethe corresponding qualitative concepts from mathematics make more useful qualitative dis-tinctions among asymptotic behaviors.We intended our discussion of the inability of SPQR concepts to distinguish qualitativelydi�erent asymptotic properties as just one example of the limitations of its conceptual lan-guage; it lacks the appropriate concepts to characterize other qualitative properties as well,even when asymptotic behavior is not important. We did not intend to suggest that sci-entists and engineers never �nd transient behavior important, only that most transientanalyses presuppose some reference to an equilibrium state or cycle. The practical problemneed not be one of determining the precise nature of the baseline state or attractor; thatmay be be already known, easily determined, or even di�cult or infeasible to determine.But most analyses depend on some knowledge about the reference behavior (as in Well-man's distinction between absolute and relative analyses), thus making a practical concernout of the expressive limitations of SPQR for characterizing the qualitative properties ofasymptotic behavior.This examination of the expressiveness of SPQR casts the past successes of SPQR in anew light, since the reduction rules quickly collapse the representations of the seeming widevariety of systems analyzed by SPQR to just a handful of simple generalized equations. Wesurveyed the 55 papers in the Weld and de Kleer collection, which we took to present thestate of the art through 1989, examining all analyses, including those based on extensions toSPQR. We found that after applying the rewrite rules all but two of the successful analysesinvolve three simple equations.Lack of routine methods: While the expressive limitations of SPQR prevent it fromexploiting some information relevant to understanding behaviors qualitatively, the algo-33



Sacks & Doylerithms it o�ers do not support some of the methods routinely used by human scientists andengineers in reaching a qualitative understanding of a system, namely the method of mod-eling systems using parameterized equations, and the method of determining qualitativeproperties through selected numerical experiments.Scientists and engineers, like other humans, and like AI systems generally, do not alwaysrestrict their reasoning to sound, deductive elaboration of only those consequences strictlyentailed by what they know; instead, they ordinarily make reasonable assumptions andguesses, and revise these as they see �t. Only in special cases involving great stakes do theyeven attempt to consider all and only the logically possible consequences of their hypotheses,and then usually only after some disaster awakens them to the danger. We see no reasonto reduce the utility of qualitative physics on the broad range of mundane, small-stakesapplications by restricting it to use only methods that provide guarantees appropriate tothe narrower range of exotic, great-stakes applications.One of the most common assumptions scientists and engineers make is to model systemsin terms of generalized equations. But the generalized equations they use take a very di�er-ent form than those employed in SPQR. Rather than use equations over monotone functions,they use parametric and piecewise-linear equations of varying degrees of complexity. Theseequations capture more narrow classes of behaviors than do SPQR equations, and so maynecessitate more search to �nd a model consistent with, approximating, or appropriate tothe available information, but this appears to be an advantage in light of the inherent in-ability of SPQR equations to express many important qualitative distinctions, however longone searches.One might still prefer SPQR equations to parametric and piecewise-linear equations onthe grounds that they are easier to analyze, in the sense that one can draw many of themost important conclusions that follow from individual SPQR equations from qualitativesimulations, while many parametric and piecewise-linear equations have no closed-formsolutions from which to draw the major conclusions. That is, one might view SPQRmethodsas trading expressive power to gain inferential e�ciency. But this comparison does notrepresent a true tradeo� of this kind. Scientists and engineers do not restrict themselves toseeking only closed-form solutions; they also resort to numerical experiments to see if theirmodels capture the important qualitative distinctions they observe in the world. To do this,they use their mathematical and physical knowledge to choose numerical simulations thatproduce reliable answers to speci�c qualitative questions.We did not intend our discussion of the utility of numerical experiments to say that suchcomputations obviate the need to reason about models. To the contrary, we followed Ham-ming (1962) and Truesdell (1984) in observing that setting up and accurately interpretingnumerical simulations of complex systems requires a great deal of the qualitative knowledgeo�ered by mathematics. In our view, numerical experiments correspond to observations,using a calculating machine as a sensor that detects properties of models. They cannotsupplant reasoning with mathematical and physical knowledge because observations cannotbe interpreted except by using knowledge of what one might be looking at or looking for.Uninformed numerical computation never substitutes for reasoning, but informed numericalcalculation sometimes can.
34



Epilegomenon3.2.2 Limitations of SPQR extensionsOur conclusion from the preceding observations was that SPQR does not seem to o�er abetter alternative than direct automation of mathematics for automating scienti�c and engi-neering reasoning. However, we recognized that no one proposes to use SPQR alone towardthis end, since most current work studies various extensions to SPQR. But we did not thinkthat such incremental extension of SPQR o�ers a better approach than direct automationof mathematics either. Any requirement of backward compatibility in the sense of alwaysusing concepts that re�ne those of SPQR enshrines the irrelevant distinctions already madein SPQR concepts. As noted earlier, the appropriate abstractions for some problems musthide the distinctions made by SPQR and introduce entirely di�erent ones. Thus no arti�cialscientist or engineer will force every problem into any �xed representation, since di�erentproblems make di�erent distinctions relevant. Relying on model representations based onthose of SPQR will then be an impediment to automation, not an advantage. Direct au-tomation of mathematical concepts will incorporate SPQR concepts and representations,of course, since they capture some important mathematical notions. An arti�cial scientistor engineer will, in this way, be an \extension" of SPQR, but only in a trivial sense, forit seems unlikely that SPQR concepts and representations will enter into any but a smallfraction of the reasoner's abilities. We concluded that incremental extension of SPQR doesnot o�er advantages over direct automation of mathematical knowledge.Incremental extension of SPQR seems most attractive if one believes that SPQR cap-tures naive or commonsense reasoning well, and that experts di�er from novices and laymenmainly in possessing more knowledge and reasoning methods. We did not intend our paperto take any position on the nature of commonsense reasoning, and remain open to the pos-sibility that SPQR aptly characterizes some forms of commonsense reasoning. But we readthe psychological literature on expertise to contain substantial disagreement about the re-lation between naive and expert reasoning, with some psychologists, notably Carey (1985),�nding that novices and experts reason with very di�erent concepts, even though they mayuse some of the same words to name them. Rather than simply augmenting their com-monsense concepts as they learn, experts replace their initial viewpoint with very di�erentways of thinking. We thus counted the view that scienti�c and engineering reasoning canbe automated by building on SPQR as a substantial hypothesis that both requires carefuljusti�cation and risks seriously impeding progress if it is wrong.3.2.3 Advantages of direct automationOne advantage of direct automation of mathematics over incremental extension of SPQRconsists of the �xed target (loosely speaking) that mathematics provides. For the purposeof automating scienti�c and engineering reasoning, it seems prudent to attempt to exploitthe knowledge and methods that scientists and engineers have found useful, particularly theknowledge and methods that have already been formalized. Thus the researcher can useexisting mathematics as a speci�c target for automation, and lay out a schedule (even ifoverly ambitious) for automating each of its theories. Simply seeking to extend SPQR incre-mentally runs the real risk of increasing the work necessary by not being ambitious enough.That is, without the global perspective o�ered by deliberately aiming to automate all ofmathematical knowledge, speci�c problems constitute the primary impetus to incremen-35



Sacks & Doyletal extensions. Successively incorporating just enough ideas to solve each speci�c problemmay yield many special-case solutions, each of which may require just as much e�ort todevise as a general solution incorporating the larger theory. Even when direct automationis attempted in successive stages, at least one can choose the successive approximations tobroaden the coverage, rather than risk automating numerous special cases all subsumed bythe same broader approximation.4 ReiterationNow all has been heard; here is the conclusion of the matter(Kohelet/Ecclesiastes 11:10, NIV)We conclude this epilegomenon by reiterating the points of our paper.1. Qualitative physics seeks (among other things) to automate scienti�c and engineeringreasoning.2. Much (if not most) work in qualitative physics has been based on the concepts, rep-resentations, and algorithms we call SPQR.3. SPQR lacks the expressiveness and knowledge needed to automate scienti�c and en-gineering reasoning.4. Backward compatibility with SPQR imposes high costs and probably impedes progress.5. Mathematics provides a large vocabulary (already formalized) of qualitative conceptsand results for expert and commonsense reasoning.6. Exploiting known mathematics as rapidly as possible constitutes the most expeditiousway of automating scienti�c and engineering reasoning.7. Inventing new mathematics remains an opportunity for AI, but the opportunity clos-est to home for AI is automating the formulation and construction of models, sincemathematics provides only concepts and knowledge, not automatic procedures.ReferencesBrowder, F. E. and Mac Lane, S. The relevance of mathematics. In Steen, L. A., editor,Mathematics Today: Twelve Informal Essays, pages 323{350. Springer-Verlag, New York,1978.Carey, S. Conceptual Change in Childhood. MIT Press, Cambridge, MA, 1985.COSRIMS. The Mathematical Sciences: A Collection of Essays. MIT Press, Cambridge,MA, 1969. Edited by the Committee on Support of Research in the Mathematical Sciences(cosrims) with the collaboration of George A. W. Boehm.36
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