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§1. Several recent proposals in artificial intelligence reformulate ancient doubts about the reality of the
“self” by explaining or constructing agents in terms of a collection of interacting, simpler subagents. Some
of these proposals discuss the agent’s actions without reference to any “self” at all, and others presume
“selfhood” to flit epiphenomenally from subagent to subagent as dictated by needs to communicate with the
external world or to assign credit or blame for actions. While thinkers throughout history have occasionally
doubted on philosophical grounds the common “single-agent” view of the human mind, the new proposals
suggest that there may be computational difficulties inherent in single-agent psychologies that are only
overcome by the multi-agent viewpoint. Minsky has called this approach the “society of mind.” In
some proposals the subagents comprising the society are numerous, very simple, neurologically conceived
mechanisms. Other proposals suggest more complex subagents, ranging from the coroutine collections
of “heterarchy,” to the “knowledge sources” of production systems, to frame systems, to collections of
mutually referring logical theories, to Freud’s committee of id, ego, and superego, and modern split-
brain theories, in which the complexities of the subagents rival that of the agent as a whole. We need
not view these proposals as mutually exclusive, if we can subdivide subagents into sub-subagents, but
questions like this are difficult to pursue without reasonably precise characterizations of the different
sorts of subagents to be related. More specifically, the knowledge representation literature is filled with
proposals for complex organizations based on widely differing sorts of “languages of thought,” such as
logic (FOL [Weyhrauch 1980]), list structures and rational algebraic functions (CONLAN [Sussman
and Steele 1980]), nodes and links (NETL [Fahlman 1979]), etc. Although their abstract structures
seem related, there is little hope for understanding the relations among these proposals and for making
rapid further progress without clearly formulating the underlying ideas separately and then analyzing their
range of combinations. Toward this end, we present a mathematical framework for exactly specifying the
structure of mental societies. Since the framework is fairly general, we illustrate it by characterizing a
particular society of mind which incorporates three often-proposed capabilities of subagents and relations
between subagents, namely multiple perspectives, reasoned assumptions, and virtual copies. While these
characteristics of societies are sometimes thought to require the use of logical or quasi-logical languages
as systems of representation, our formulation makes few structural or representational demands, and so
permits use of any desired system of representation (including logical languages) in which the few required
structures may be encoded. For example, we can reconstruct FOL and CONLAN at the end of our
formulation largely by choosing logical or LISP-like languages for the contents of mental subagents.

The mathematical framework is developed and otherwise applied in [Doyle 1982] and [Doyle
1983b]. While I formulate the particular society here to generalize the organization suggested in my
thesis ([Doyle 1980]), the ideas involved have an older, wider history, and I have worked to incorporate
the insights of Johan de Kleer, Merrick Furst, Kurt Konolige, Marvin Minsky, Brian Smith,
Richard Stallman, Guy Steele, Gerald Sussman, David Touretzky, and Richard Weyhrauch
into this exposition.

§2. Researchers frequently motivate proposed decompositions of mind with concerns about self-knowledge,
that is, information and mechanisms the agent employs to understand, predict, control, and modify its
structures and actions. Although specific tasks appear amenable to specific solutions, students of the broad
problems of representation, decision-making, and learning come to appreciate the utility, if not importance,
of self-knowledge in adaptive agents. Artificial intelligence studies many sorts of self-knowledge, but for
brevity we consider only three.

One commonly studied sort of self-knowledge involves multiple coreferential representations. Since
artificial intelligence proposals often suppose representational agents, individual representations and their
relations form natural objects of self-knowledge. Since the feasible mechanization of thinking demands
concern for the difficulty of reaching conclusions and solving problems, one of the most studied relations
between representations is the ease of thinking about something in terms of one representation relative to
the ease of thinking about it in terms of an alternative representation. Minsky emphasizes reformulation
or representation switching as the heart of problem solving; Bobrow and Winograd make similar oppor-
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tunism the basis of KRL; and Sussman and Steele illustrate the inferential importance of interactions
between multiple coreferential representations. Thus useful sorts of self-knowledge include the possible
alternatives to a particular representation, their relative efficiencies, and how to assign credit or blame
to choices among these alternatives upon unusual successes or failures. The motivations for employing
multiple representations of extra-mental objects also apply to the representations of the mental objects
figuring in self-knowledge. It is natural to identify these different views of objects as individual mental
subagents, each with its own distinguished view of parts of the world, parts of the agent, or parts of both.
This is roughly the position taken by Minsky. However, if these different perspectives or subagents are
to influence each other, they must be connected somehow, and the basic sorts of connections are those
of reference and coreference. Both notions are necessary, for while one subagent might refer to another,
intended extra-mental referents cannot be “grasped” in the same way, so at most the agent can intend
that its representations of these objects share referents.

Unfortunately, the introduction of mutually knowledgeable and influential mental subagents into
psychological theories poses many puzzling difficulties of formulation and interpretation. These difficulties
appear most viciously in agents employing logical languages as systems of representation. Where classical
logic and metamathematics usually seek ways of avoiding paradoxes of self-reference, the designers of
artificial agents instead seem to seek them out. Fortunately, analysis of a narrow sort of self-knowledge
(discussed presently) suggests a formal interpretation for these more widely self-referential systems, one
which does not force us to accept any particular psychology for our agents, but instead allows similar
formulation and exact comparison of the many variations we might think to explore.

Another sort of self-knowledge concerns the inferential relations between arbitrary representations
instead of the economic relations between alternative coreferential representations. Many researchers have
studied the uses of explicitly represented inferential relationships in constructing explanations, assigning
blame for mistakes, and revising the agent’s state of mind when its assumptions change. These inferential
relationships need not be strictly deductive. While the most general use simply indicates what represen-
tations were computed from what, inferential records play a crucial role in so-called default reasoning.
Default reasoning involves drawing conclusions in the absence of definite supporting or contrary evidence.
Representations of the partial evidence for and the missing evidence against a conclusion permit the agent
to make reasoned assumptions, “reasoned” in the sense that the agent can identify both the sources of
the assumed conclusion and the specific information which indicates its retraction or reconsideration. The
representations of inferential relationships describing reasoned assumptions also pose problems of interpre-
tation, since the agent’s drawing one conclusion may prevent it from drawing another. Fortunately, this
problem has been solved, and below we extend the solution to handle the problem of multiple perspectives
mentioned above.

A third important sort of self-knowledge concerns structural relationships between representa-
tions. The most studied structural relationship is that of structure sharing. Like the technique of multiple
perspectives, structure sharing has economic motivations, namely minimizing the number of times one
has to encode similar information and the amount of storage the agent must consume for the encodings.
Like general inferential relationships, however, structure sharing need not entail coreference of the related
representations. For example, the species of the cat family (lions, tigers, cheetahs, persians, etc.) may have
no properties in common beyond those of mammals, since each cat species may lack some property shared
by all other cat species. But to write down descriptions of each species is very tedious unless we write
down a single description of a “prototypical” cat species (which we may choose to be one of the actual
species) and describe every other species by its (presumably few) differences from the prototype. Since
such family resemblances occur among the members of every natural kind, great economies can be realized
in representing our common knowledge of the world. The most common sorts of structure sharing rela-
tions usually go by the names of “inheritance relations” and “virtual copies.” As we demonstrate below,
it is easy to interpret some of these structural relationships between subagents along with the previously
mentioned ones.
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§3. We first describe the mathematical framework in which we work, and then introduce the particular
constitutive assumptions which characterize the three representational notions outlined above.

Our first fundamental assumption is that states of the agent can be decomposed into sets of
mental elements or components. We write D to mean the domain of all possible mental components,
so that if S is a state of the agent, then S ⊆ D. Similarly, we assume that A is the set of all possible
subagents, and that states of subagents may also be decomposed into elements of D. For each a ∈ A,
we write Da ⊆ D to mean the subdomain of possible state-components of a, and require that every state
component belong to at least one subagent, that is, D =

⋃

a∈A Da. Thus if S is a state of the agent and
a ∈ A, then S ∩Da is the state of subagent a. We do not require that every subagent exist in every state
of the whole agent, that is, we allow S ∩ Da = ∅.

Our second fundamental assumption is that every state component has an interpretation as a
restriction on the possible states which contain it. Formally, we assume (and concretely define below) a
function I : D → PPD (P means power set), so that if d ∈ D, then I(d) ⊆ PD is the set of potential
states sanctioned by the element d. We encode in I the intended meanings of subagent state components
for the relations standing between the state of the subagent and the states of other subagents. Note that
these two assumptions permit several levels of decomposition of subagents into other subagents, as long as
the interpretations chosen capture the intended synonymy of subagents with their subsocieties, for example
by ruling out states in which one occurs without the other.

We define the component-admissible sets Q ⊆ PD to contain just the “self-satisfying” sets of
state components. Formally,

Q = {S ⊆ D | S ∈
⋂

d∈S

I(d)}.

That is, if S ∈ Q, then all subagent states are in agreement as far as individual components of the state
can tell. The third fundamental assumption of the framework is that every admissible state of the agent
must be component-admissible. We write 6S for the set of admissible states of the agent, so our assumption
is that 6S ⊆ Q. If 6S = Q, then all restrictions on admissible states are expressed in the “local” restrictions
given by I, and if 6S 6= Q, then there are “global” restrictions not expressed by I. For example, ∅ ∈ Q no
matter how we choose I, so nonemptiness of admissible states cannot be expressed as a local restriction.

These three fundamental assumptions exhaust the basic framework used in this paper. We now
fill in the details of D, I, and 6S to characterize our particular mental society.

§4. While we do not require that subagents be completely representational, or that they employ any
particular system of representation if they are completely representational, we do require a few minimal
capabilities with which subagents can discuss each other. Our first particular constitutive assumption
is that the state components of subagents can be further decomposed into “contents” indexed by the
subagent. Formally, for each subagent a ∈ A, we assume a set Ca such that Da = {a} × Ca. We further
facilitate mutual reference by admitting subagents as possible contents, that is, A ⊆ Ca for each a ∈ A.
To simplify matters, we assume that all content sets are the same set C, and pretend that every content
is a (possibly trivial) subagent by assuming A = C. These simplifications are innocuous since we can
always rule out senseless elements by giving them the empty interpretation I(d) = ∅ which prevents their
inclusion in any admissible state. With these simplifications, we have D = C × C, and read (a, b) ∈ D as
subagent a making the (possibly trivial) statement b. (We say “statement” here for want of a better term.
Contents of subagents are statements only when C is a language, which we do not require.) For each state
S ∈ 6S, we find out what statements subagent a makes by means of the projection or perspective operator

pa(S) = {c ∈ C | (a, c) ∈ S}.

With this minimal notion of statements by subagents, we can describe the vocabularies of mul-
tiple perspectives, reasoned assumptions, and virtual copies. We introduce these vocabularies in turn by
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means of abstract syntax functions. We also introduce separate interpretations I1, I2, and I3 for ele-
ments expressed in these vocabularies and define I = I1 ∩ I2 ∩ I3, so that when more than one of these
interpretations applies to a single element, their intersection is the complete interpretation of the element.

§5. The vocabulary of multiple perspectives is captured with three syntactic constructors on the set of
contents. We assume the existence of functions

(

,
)

[enlarged parentheses],
〈

,
〉

, and ⇔ from C × C into

C, so that for every a, b ∈ C, we have
(

a, b
)

∈ C,
〈

a, b
〉

∈ C, and a ⇔ b ∈ C.

The
(

,
)

constructor permits subagents to discuss the contents of other subagents, where we read

(a,
(

b, c
)

) ∈ D as the statement made by a that subagent b makes the statement c. Since the constructor
may be iterated, we can construct even more complex statements, such as

(c,
(

a,
(

c,
(

a, b
)))

),

whose reading is left as an exercise.

The
〈

,
〉

constructor is the dual of
(

,
)

, and produces names for the multitude of relative perspec-

tives. That is, we read (
〈

a, b
〉

, c) as the statement c made by the subagent corresponding to a’s view of b.
The corresponding reading exercise for this constructor is

(
〈〈〈

c, a
〉

, c
〉

, a
〉

, b).

We make no assumptions of correctness or completeness about the “views” held by subagents
about other subagents. That is, we allow an admissible state S to contain (a,

(

b, c
)

) even if (b, c) /∈ S,

and to contain (b, c) even if (a,
(

b, c
)

) /∈ S. We leave pursuit of constitutive assumptions like correctness
and completeness to future work. The only requirement we make is the intended connection between the
dual constructor functions. This we express with the interpretation function I1 by requiring, for every
a, b, c ∈ C,

I1((a,
(

b, c
)

)) = {S ⊆ D | (
〈

a, b
〉

, c) ∈ S}

and
I1((

〈

a, b
〉

, c)) = {S ⊆ D | (a,
(

b, c
)

) ∈ S}.

These interpretations have the consequence that

6S ⊆ {S ⊆ D | ∀a, b, c ∈ C (a,
(

b, c
)

) ∈ S ≡ (
〈

a, b
〉

, c) ∈ S},

which makes formulation of reasoned assumptions and virtual copies much easier.

Subagents use the ⇔ constructor to specify coreferences. We read (a, b ⇔ c) as a’s thought that
to it, b and c mean the same. Thus in a’s view, every statement made by b will also be made by c, and
vice versa. We capture this formally by defining, for every a, b, c ∈ C,

I1((a, b ⇔ c)) = {S ⊆ D | p〈a,b〉(S) = p〈a,c〉(S)}.

We complete the definition of I1 by defining I1(e) = PD for every e ∈ D not covered above.

While the coreference constructor allows subagents to relate some of their own subperspectives,
it cannot be used to relate “top-level” subagents. Since we require that every domain element belong to at
least one subagent, every coreference statement must occur within some subagent, and hence only relate
its subperspectives. That is, (a, b⇔ c) relates the perspectives of

〈

a, b
〉

and
〈

a, c
〉

, not those of b and c. If
our society is not to be a crowd of sleepwalkers, each unrelated to the others no matter how it dreams it is
related, there must be connections between the subagents expressed either in I (which we do not do here)
or in the

〈

,
〉

constructor. That is, we can read
〈

a, b
〉

= c as a’s reference to c by means of b. Since the
〈

,
〉
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constructor is defined, along with D, independent of the element interpretations, all such references are
“hard-wired” into the agent’s realization, and cannot be changed by any action of the agent. We do not
require that

〈

,
〉

be 1-1, and this allows us to “wire together” subagents by defining common references,

for example by defining the constructor so that
〈

b, a
〉

= a =
〈

c, a
〉

, in which b and c can communicate and

otherwise influence each other through a. If we imagine the human mind described in this way,
〈

,
〉

reflects
the actual neural connections in the brain, while stated coreference relations using ⇔ simply reflect the
decisions of mental subagents.

We could of course introduce modifiable references by incorporating the
〈

,
〉

table into states. To

do this, we need only redefine D to be C
2 ∪ C

3, where elements (a, b) ∈ C
2 are as before, and elements

(a, b, c) ∈ C
3 indicate entries in the constructor table, specifically, (a, b, c) ∈ S means that

〈

a, b
〉

= c in

S. We require that
〈

,
〉

be single-valued (but not necessarily complete) with the modified interpretation
function

I1((a, b, c)) = {S ⊆ D | ∀d ∈ C (a, b, d) ∈ S ⊃ d = c}.

We give subagents the capability to specify references by means of a constructor ⇒ from C
2 to C, where

(a, b ⇒ c) is a’s (ostensive) decision to use b to refer to c. This is formalized with the interpretation

I1((a, b ⇒ c)) = {S ⊆ D | (a, b, c) ∈ S}.

Of course, we can get ostensive coreference from reference by using (a, b ⇒ d) and (a, c ⇒ d) instead of
(a, b⇔ c). However, to keep the rest of the discussion as simple as possible, we forgo modifiable references
for our original definitions, and leave recasting the subsequent definitions in terms of modifiable references
as an easy exercise for the reader.

§6. The vocabulary of reasoned assumptions is captured with a single syntactic constructor of so-called
finite simple reasons (see [Doyle 1982]). This constructor encodes each three finite subsets A, B, C ⊆ C

as a single element of C written A \\ B ‖− C. We read (d, A \\ B ‖− C) ∈ D as d’s commitment to make
every statement in C whenever it also makes every statement in A and none of those in B. Formally, we
define for every finite A, B, C ⊆ C and d ∈ C

I2((d, A \\ B ‖− C)) = {S ⊆ D | A ⊆ pd(S) ⊆ Bc ⊃C ⊆ pd(S)},

and I2(e) = PD for every other e ∈ D. (Bc means the set-complement of B.) Note that elements of
the form (d, ∅ \\ ∅ ‖− A) correspond roughly to Minsky’s “K-nodes.” Combining simple reasons with
mentioned perspectives allows phrasing versions of Stallman’s [1981] “inter-theory inference rules,” for
instance

(d, {
(

a1, c1

)

} \\ {
(

a2, c2

)

} ‖− {
(

a3, c3

)

}).

§7. The vocabulary of virtual copies is captured in seven syntactic constructors, each of which represents
an “indirect reference” version of the simple reason constructor. Specifically, we may substitute an indirect
reference to the contents of a single subagent for one or more of the concrete sets mentioned by simple
reasons. We indicate indirect reference to the contents of subagent a by the notation @a, so our constructors
range from @a \\ B ‖− C to @a \\ @b ‖− @c. The usual notion of simple structure sharing is then captured
in elements like (b, ∅ \\ ∅ ‖− @a), which we interpret as b’s commitment to make every statement it thinks
a makes. Formally, we define I3 so that

I3((d, @a \\ B ‖− C)) = {S ⊆ D | p〈d,a〉(S) ⊆ pd(S) ⊆ Bc ⊃C ⊆ pd(S)},

...
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I3(d, (@a \\ @b ‖− @c)) = {S ⊆ D | p〈d,a〉(S) ⊆ pd(S) ⊆ (p〈d,b〉(S))c ⊃ p〈d,c〉(S) ⊆ pd(S)},

and I3(e) = PD for every other e ∈ D.

§8. These definitions exhaust the vocabulary and interpretations of our simple society. We define
I(d) = I1(d) ∩ I2(d) ∩ I3(d) for every d ∈ D and take 6S = Q. Although very brief, these constructions
capture a surprisingly large part of the structure of important representational systems. We have left C

unspecified, and some well-known representational systems can be captured largely as specific choices for
C. For example, if we choose C to be the set of all LISP S-expressions, the society bears close resemblance
to Sussman and Steele’s constraint language. In this case, subperspectives correspond to the “parts”
of constraints, or at the very deepest levels of embedding, the “values” of cells. The constraint language
system also involves further restrictions on admissible states, such as closure under solutions to sets of
equations between rational functions, but we avoid formalizing those here. As another example, if we
choose C to be the set of sentences in a first-order logical language and adopt the modifiable reference
definitions discussed earlier, the society bears close resemblance to the variant of Weyhrauch’s FOL
system used in [Doyle 1980]. In this case, subagents and perspectives correspond to “theories” and
“subtheories,” and ⇒ corresponds to “semantic attachment.” Weyhrauch’s system also incorporates a
simplifier, evaluator, and automatic reflection mechanism, but we avoid pursuing these here as well.

§9. Our task is not yet done, however, for we have not yet formulated the “virtual” sense of virtual copies.
If S ∈ 6S, the above interpretations ensure that S contains all conclusions sanctioned by reasons and by
structure sharing relations. That is, if (b, ∅ \\ ∅ ‖− A) ∈ S, then A ⊆ pb(S), and if (b, ∅ \\ ∅ ‖− @a) ∈ S,
then p〈b,a〉(S) ⊆ pb(S). If the agent must realize all these elements in permanent storage, we have not
achieved any economy of storage, even though we may have achieved economy in writing the information
in the first place.

Similarly, admissible states contain all rewritings of all their elements in all equivalent perspec-
tives. Since these agree in information, explicit realization in storage is uneconomical. One might also
worry that admissible states must be infinite, but that is not so. Even if the constructor functions force D
to be infinite, admissible states need not be infinite since we do not require that subagents be complete in
their knowledge of each other. This means that most perspectives may be void, indeed, that finite states
contain only finitely many nonempty perspectives. This situation is altered if we employ the sentences
of a logical language for C and further require perspectives to be deductively closed, but we avoid those
assumptions here.

We capture the motivations of virtual copies and virtual perspectives with the notions of exten-
sions and admissible extensions. Suppose the agent only records some set S ⊆ D in storage. S need not
be admissible itself if the agent interprets it as the “kernel” information from which to reconstruct a “full”
admissible state. That is, if the agent needs to check the presence of some element in its state, it recon-
structs the full state from S, checks for the element, remembers the answer, and then reclaims all storage
except that used by S itself. We define Exts(S), the extensions of S, by Exts(S) = {E ∈ 6S | S ⊆ E}. We
require that the full state reconstructed from S must be some E ∈ Exts(S).

Unfortunately, extensions of S can contain, in addition to the missing elements virtually specified
by S, elements completely unrelated to the kernel specifications. To see this, consider an analogous
situation from logic. We may choose to economize storage in a logically structured agent by choosing
and explicitly storing some axiomatization A of a deductively closed set S, that is, by picking A so that
S = Th(A). In such an agent, deductively closed supersets correspond to extensions. But to reconstruct
the initial set S from A, we cannot simply pick any deductively closed superset of A, since S is the
smallest of these, and larger ones will contain extra unintended axioms and their consequences. To avoid
the corresponding problem in our society, we introduce the notion of admissible extension. We say that

6



E is an admissible extension of S, written E ∈ AExts(S), if and only if E ∈ Exts(S) and E is finitely

grounded in S. By finitely grounded we mean that for every e ∈ E there is a finite sequence σ of elements
of E (a “proof” of e in E) such that e ∈ σ and every element of σ is either in S or is a required consequence
of some elements appearing earlier in σ. Thus if σi = (a,

(

b, c
)

), either (1) σi ∈ S; or (2) for some j < i,

σj = (
〈

a, b
〉

, c); or (3) for some j < i, σj = (a, A \\ B ‖− C) where
(

b, c
)

∈ C and for every d ∈ A,
(a, d) precedes σj in σ and for every d ∈ B, (a, d) /∈ E; etc. We avoid presenting the full definition here,
as it is not difficult to construct, merely tedious. A detailed development for the special case of finite
simple reasons alone can be found in [Doyle 1982]. Since states contain reasoned assumptions, there
may be several sets of assumptions possible in the kernel set S, and these can lead to distinct admissible
extensions. For example, if just (a, ∅ \\ {b} ‖− {c}) and (a, ∅ \\ {c} ‖− {b}) are in S, then there will be two
finitely grounded extensions, one containing (a, c) but not (a, b), and the other containing (a, b) but not
(a, c).

While we here accept finitely grounded extensions as admissible extensions, they are inadequate
to fully capture the usual notion of virtual copy. In current practice, it is crucial that successive queries
agree, that is, that virtual information is conserved across reconstructions. But this cannot be guaranteed
with multiple admissible extensions, since the agent might for one query construct E and next time
construct E′ 6= E, differing in some answers even though no kernel information has changed. Thus
the virtual state is conserved only if the agent computes a unique admissible extension. Touretzky
[1983] is currently developing restrictions on the sorts of information states can contain, restrictions
designed to guarantee the existence and uniqueness of admissible extensions. He also motivates the aim
of uniqueness by seeking parallel algorithms for reconstructing the virtual elements, and requiring that
concurrent processes computing subsets of the virtual elements agree on their overlap. Touretzky’s
discoveries notwithstanding, I doubt that completely unoffensive restrictions on the vocabulary of the
agent can alone guarantee uniqueness of finitely grounded extensions. I suspect that some applications
demand a vocabulary sufficient to phrase ambiguities, and for these one appealing approach is to make
the reconstruction algorithm, whether concurrently or serially realized, be a probabilistic algorithm. That
is, when an ambiguity arises during reconstruction, the algorithm makes a random choice (random, not
arbitrary). The intent of such deliberate randomization is to make every possible reconstruction equally
likely or to occur with some specified frequency. If the agent wishes to judge its certainty on some
question, it asks that question repeatedly. Questions with answers common to or absent from all admissible
extensions never vary in their answer, while other queries exhibit uncertainty, waffling in response over
time. If the alternative admissible extensions do not differ greatly, then most answers will be the same
anyway no matter which admissible extension is chosen. [Doyle 1982] develops a theory of subjective
probability by measuring the relative frequencies of different answers, but we cannot go into that here.

§10. Even if the ambiguities of admissible extensions are resolved, ambiguities due to multiple perspectives
remain. Minsky and others have suggested that some abrupt changes in human behaviors and attitudes
stem from changes in which subagent has control as “spokesman” over the communication or motor
channels to the external world. In that view, there is no fixed notion of “self,” but a different sense of self
depending on which subagent gains control. One advantage of that view is that abrupt changes of attitudes
are computationally trivial, for they stem from switching vantage points rather than from laborious revision
of the state itself. The framework proposed here facilitates consideration of such proposals. For example, a
natural problem is that of formulating precise notions of “abrupt” changes. If we decide when perspectives
of different subagents are “similar,” we can allow wide variations in which subagent is currently “self”
as long as most of the self-image is conserved across self-changes, and single out as abrupt those changes
of self which bring large or significant changes in the self-perspective. That is, if pa(S) and pb(S) are
very similar, say if pa(S) and pb(S) differ by no more than 7 (±2) elements, we might say that no major
self-changes, only changes of attention, are involved in switches between a-self and b-self. Indeed, if the
probabilistic approach to ambiguities of interpretation is adopted, then one need make no special provision
for ambiguities due to self-changes. Can we develop measures of similarity on both states and perspectives
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so that if S and S′ are similar, so are pa(S) and pa(S′), or vice versa? Unfortunately, we cannot pursue
such questions here.

§11. There are many other possibilities to be explored in introducing notions of self into societies such
as this. In [Doyle 1980] I advocated distinguishing a particular subagent, called ME, as the self. (I am
less committed to that approach now.) When compared to the free-floating approach just discussed, the
use of a fixed self-subagent appears to require significant computational costs for substantial perspective
changes. (But see [McDermott 1982] and [Martins 1983].) In any event, distinguished perspectives
still merit consideration, for it may be easier to endow them with limited completeness and correctness
properties than amorphous agents. Specifically, one of the intents of my earlier proposal was to have
the subagent ME be the authority on just what the state contained. The idea here is to construct the
agent so that (modifiable references or not)

〈

ME, a
〉

= a for every a ∈ C (including ME itself), if that
is possible. I suspect it is not too difficult to achieve, and such organizations have obvious attractions
for constructing agents possessing reflective powers. To pursue this idea, if one perspective admits the
limited self-omniscience described above, does it follow that all do? That is, does global self-omniscience
follow from local self-omniscience? I suspect not, but have no counterexample. It also seems certain that
different perspectives can differ arbitrarily much even if both are mutually omniscient. If the subagents
all use a logical language as a system of representation, well-known results indicate general limits to
self-omniscience, but which sorts of limited self-knowledge can be introduced without difficulties arising?
Kripke’s analysis of truth indicates that even seemingly innocuous statements of mutual knowledge can in
concert produce unreconcilable paradoxes. Since his theory involves a notion of groundedness resembling
our notion of grounded extension, similar results seem likely here. Unfortunately, we must leave these
questions for future study.
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