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Some Mathematical Problems in Artificial Intelligence

by Jon Doyle
October 24, 1981 — Pittsburgh, Pennsylvania

The purpose of this essay is to sketch a few mathematical problems arising in artificial
intelligence, with the hope that some may appeal to mathematicians, logicians, or theoretical
computer scientists. I have thought about these problems off and on for some time, though
mostly off, and am now attempting to set some of them down in response to conversations
with Merrick Furst and Joseph Bates, and in response to recent interest in non-monotonic
logics.

I approach this task with some hesitation. Artificial intelligence is a complex field. As
a science, it has major common interests with cognitive psychology, linguistics, philoso-
phy, mathematical and philosophical logic, and the theory of computation. In addition, the
engineering side of artificial intelligence has close ties to applied computer science (program-
ming systems, methodology, algorithms, hardware) and to the fields it takes as domains for
experimental systems. But more relevant to the purpose of this paper is the infancy of
the field itself. Artificial intelligence is at present still largely concerned with problems of
formulation rather than problems for solution. Sometimes invented techniques precede for-
mulation of the problems they solve, but much work in AI can be seen as struggling towards
a formulation of a problem. This can be seen in almost any conference proceedings—many
of the papers have as their major burden explaining their point of view, the way they for-
mulate the problem. Once one has a formulation, the implementations are almost always
straightforward, at least in one’s imagination. This may be an indicator of the difficulty of
the field—one keeps floundering around until a viewpoint is developed that seems to admit
a solution, in contrast to the initial viewpoints (or lack of them) implicit in the fundamental
questions What is mind? and What is intelligent action? and How might one realize them?

With these disclaimers, I hope the problems I present do not seem too unmotivated. I
have tried to pick out problems that seem relatively well established, that have appeared
in many formulations over a period of time, or that appear to underlie many approaches
held plausible in today’s conventional wisdom. I have also attempted to avoid presenting
problems that seem to involve much effort along philosophical or psychological lines in their
development.

The problems of artificial intelligence discussed here all fall under four categories mapped
out by the agent-action and structure-development dimensions. There is more to the field,
but I cannot present that here—hopefully another work in progress will reach completion
and widen the discussion here. This decomposition of the field is merely an initial ap-
proximation intended as an expository aid—for the structure of actions must find a mirror
in the structure of agents, the structure of agents must permit the development of agent
and action, and the development of agent and its actions is carried out through a series of
actions. Expect to see problems arising repeatedly in the list that follows.

As a final warning: this is merely the first draft of this work. It is doubtless incomplete
in its coverage, as mentioned above. Also, no strong effort has been applied to ensure



the scholarly completeness of its references. In addition, some parts of these problems are
currently under active investigation by the author, by others, and by some students. When
so mentioned, the author hopes for the courtesy of non-competition on the part of the
reader.

1 Conceptual Economy of Representations

We suppose the agent has a set of representations which it uses as its beliefs, desires, and
other attitudes. We further suppose these representations can be viewed as a set of axioms in
some (first-order) language. In such a view, the concepts employed by the agent are subsets
of axioms, i.e., subtheories describing some particular domain (e.g., dogs, or arithmetic).
The agent’s beliefs will include axioms relating the various conceptual subtheories. For
example, the subtheories of dogs and mammals might be related by the statement that
all dogs are mammals, or that the dog-concept subtheory contains the mammal-concept
subtheory.

With this view of the agent’s beliefs as decomposed into many possibly overlapping
subtheories, a number of questions arise which to my knowledge have received no careful
mathematical treatment. The simplest, and most fundamental of these is that of what might
be called the conceptual economy of the agent’s representations—that is, where the set of
concepts employed stands among all alternative conceptualizations and axiomatizations of
the same theory. Logicians have of course studied alternative axiomatizations or bases for
important theories like predicate calculus, arithmetic, and set theory, with attention to both
the simplicity and elegance of the axiomatization, and to the notions captured in the theory.
The extension of this problem of importance to artificial intelligence is to find some way of
classifying the size and structure of whole theories of the world, not just numbers or sets.
The applications and ramifications of this problem will appear in subsequently mentioned
problems.

• Frankel, Bar-Hillel, and Levy, Foundations of Set Theory

• Fahlman, NETL: A system for Representing and Using Real-World Knowledge

2 Relative Expressibility of Conceptualizations

One application of the agent’s understanding of the conceptual economy of its beliefs is for
it to modify its conceptualizations to employ more economical representations. (We discuss
this question further in a later problem.) But any consideration of alternative conceptual-
izations must take into account their relative expressibility as well as their sizes. Relative
expressibility is simply the question of how the notions of one theory may be defined in
another. We may know that two theories have identical sets of theorems, in each theory,
the axioms of the other theory may either be simple consequences or simple definitions, or
may require long proofs or extremely complex definitions. What is lacking is any classifica-
tion of such relative expressibility problems. For example, one might ask if there are sets of
theorems which admit a bound on the complexity or logical and computational translations
over all pairs of alternative axiomatizations? Are there sets of theorems which allow no
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such bound? Given two theories with the same theorems, is the complexity of translation
of one into the other comparable to the translation in the other direction? (I.e., are there
one-way trapdoor translations?)

A related question concerns the problem of telling whether one has alternative axiom-
atizations in the first place. It is of course not decidable whether two sets of axioms have
the same consequences, for this would involve deciding that each of the axioms of one set
are theorems of the other. Can one classify any decidable or otherwise “easy” cases of the
alternative-axiomatization question?

Related to this determination of alternativeness is the question of equivalence of on-
tologies. Often one comes up with candidate alternative theories by making multiple de-
scriptions of the same things in the world. In fact, this use of such multiple descriptions
is popular and powerful in AI because of pessimistic intuitions about the answers to the
questions posed above. But there are many reasons for being very cautious about can-
didate alternative axiomatizations produced by repeated descriptions of the world. The
problem here involves all the questions of the reducibility or independence of one domain
over another, the possibility that the same object may admit non-mutually-expressible de-
scriptions. Debates have raged about reductions of chemistry to physics, of biology to
chemistry, of psychology to biology, and of economics to psychology. Can a mathematical
theory of relative expressibility say anything about these problems?

Hands Off: One of Merrick Furst’s students is about to complete a thesis on these
questions—wait a month and Merrick promises the full story.

• Pratt, Powers of bases for propositional calculus

• Fodor, Special Sciences

• Fodor, Computation and Reduction

• Putnam, Philosophy and our Mental Life

• Armstrong, A Materialist Theory of Mind

• Ryle, The Concept of Mind

• Sussman, SLICES: At the boundary of analysis and synthesis

• Steele and Sussman, Constraints

• Minsky, A Framework for Representing Knowledge

• Quine, Ontological Relativity and other essays

3 Meta-theory and Conceptual Economy

The use of meta-theoretical devices in representations is becoming more widespread in AI
for a number of reasons. One example is the use of meta-theoretical statements to relate
the dog-concept and mammal-concept theories rather than implications. A simple example
of the added power of this approach is the family resemblance problem. Suppose one has
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a description of the prototypical member of a family, but each member differs from the
prototype in one small regard. If one can relate theories only by implication, one cannot
relate the theories describing the prototype and the individual members, so description
of the prototype allows no conceptual economy. On the other hand, if one has meta-
theoretical tools available, one can relate the prototype to the individuals with statements
like “Individual I shares all axioms with prototype P except for statement F.” This reduces
the size of the description of the family members to the size of the prototype plus the number
of members, rather than the size of the prototype times the number of members.

This example may seem contrived, but I believe it accurately captures many of the
difficulties known about the so-called natural kind terms of ordinary language, nouns like
cat, gold, lemon, etc. If this is true, one can expect such family resemblance problems to
riddle any conceptualization of the world. The mathematical problem is to characterize the
relative economies and expressibility of meta-theoretical and non-meta-theoretical theories.

• Wittgenstein, Tractatus Logico-Philosophicus (I think)

• Putnam, Is Semantics Possible?

• Doyle, A Model for Deliberation, Action, and Introspection

• Doyle, A Theory of Memory (draft)

4 Defaults and Conceptual Economy

A related problem to the previous one, perhaps even a special case, is that of the economic
power of default statements. Defaults are general rules for adopting conclusions which allow
any particular conclusion to be defeated. (We treat the logical status of defaults later in
problem 18.) To build on our previous example, we might phrase the description of the
prototypical family member entirely in terms of defaults: by default a big nose, by default
red hair, etc. Then the theories of each actual family member might be specified as a
copy of the theory of the prototype, plus an axiom defeating some particular default. This
formulation appears to have the advantage of allowing the separation of the statements of
the individual-prototype sharing and individual peculiarities in a way not convenient in the
pure meta-theoretical version given above. AI experience has indicated that any substantial
description of the world must involve many rules for drawing such default conclusions.

The mathematical problem here is to characterize the power of expression of default
theories: given a conceptualization in which concepts are expressed using defaults, is there
an equivalent theory not involving defaults, and if so, what are their relative complexities?
The intuition is that defaults allow substantial economies—one need not say for everything
whether some predicate holds or not, but can just say the positive instances and subsume
all the negative cases in a default.

• References for Problem 3 plus

• Reiter, Closed-World data-bases

• Reiter, On reasoning by default
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• Reiter, A logic for default reasoning

• McCarthy, Circumscription: a form of non-monotonic reasoning

• Reiter, Logical Theory of Databases (in preparation - on this topic)

5 Inferential Economy of Representations

In addition to our assumptions about the attitudes of the agent and their representation,
we also suppose the agent has a set of procedures which it can employ in making deductive
inferences, or more generally, in taking mental acts that change its sets of beliefs, desires,
etc., whether or not these inferences are deductively sound or not. Widening our scope
to include the set of procedures of the agent (and assuming this set fixed for the time
being—its evolution will be discussed later), we can ask for a classification of the inferential
economies of conceptualizations and axiomatizations. The most important problem here
is developing some structure in the tradeoffs between complexities of axiomatizations and
complexities of proofs. As is well known, compact axiomatizations may require much longer
proofs than more redundant and richer axiomatizations. The previous questions discussed
ways one might measure the complexity of conceptualizations. Following questions will
discuss different possible measures of the complexity of proofs. But given these notions, can
one relate then in general, or in particular theories? One very important problem is given
specified resource limits (say, on the number of axioms allowed and the length of proofs) can
one tailor one’s set of concepts to meet these limitations? What are the tradeoffs between
effort and foresight? Can precise tradeoff characterizations be used to formulate precise
notions of relevance or perceived relevance of one statement to another?

• Hayes, The Naive Physics Manifesto

• Kowalski, Logic for Problem Solving

• Kowalski, Algorithms = Logic + Control

• Rogers, Theory of Recursive Functions and Effective Computability

• Garey and Johnson, Computers and Intractability: A guide to the theory of NP-
complete problems

• Rabin, Theoretical impediments to artificial intelligence

• Rescher, Restricted inference and inferential myopia in epistemic logic

• Minsky and Papert, Perceptrons: An introduction to computational geometry

• Davis, Obvious inferences
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6 Complexity of Inferences and Arguments

One important problem is characterizing the complexity of inferences and arguments (proofs)
in the context of our ideas of the structure of agents. Where ordinary complexity of theory
looks at time and space for Turing machines, and space and retrieval time for random access
machines, we here want complexity measures relevant to conceptualizations as the memory
store. Of course the traditional measures of size apply, but other measures seem important
in the setting of an agent trying to decide what to do on the basis of its beliefs. Where
ordinary complexity theory assumes the set of possible actions as a given, for AI the decision
of what to do is one of the problems. This means other measures of complexity may be
of great importance in estimating the time required for the agent to retrieve information,
make decisions, and act.

For example, one might look at proofs and arguments as graphs, and study their graph
theoretic properties in addition to their size. One might expect the difficulty of constructing
an argument to depend both on the variety of information used in it as well as on the
intricacy of the ways in which the information is combined. In the former case, one seeks
measures of the size of basis of a proof, of the variety of concepts and axioms entering into
it, the “working set” or “set of support” of the proof. If one has a measure of relevance
on concepts, this could be combined with the idea of working sets to say something about
the difficulty of construction of arguments whose working set members may be of distant
relevance. For the latter case, one can seek to measure the “locality” of the proof with
topological measures of the graph’s genus, etc.

• Minsky and Papert, Perceptrons: An introduction to computational geometry

• Abelson, Towards a theory of Local and Global in Computation

• Statman, Structural complexity of proofs

• Denning, The Working Set model for program behavior

7 Meta-theory and Inferential Economy

In parallel with problem 3, we might ask for a characterization of the power of meta-
theoretical techniques in constructing proofs. For example, the formula

equation omitted in manuscript—JD

may be very difficult to prove using only ordinary rules of inference, while it is easy to prove
if one admits the meta-theorem or derived rule that formulas involving only equivalences
are true iff each proposition occurs an even number of times.

Can one relate the complexity of theories with particular derived rules to the complexity
of theories without them? I don’t quite know how to formulate the problem here, but feel
there is one.

• Weyhrauch, Prolegomena to a theory of mechanized formal reasoning

• Milner et al., LCF and ML
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• Bates and Constable, The definition of µPRL

• Martin-Löf, Constructive mathematics and Computer Programming

8 Summarization of Arguments

One important ability one would like in an intelligent agent is the ability to summarize
the arguments or proofs it constructs, to create lemmas or derived rules for later use,
thus avoiding the cost of reconstructing the argument. This ability is also important in
communicating or explaining the result to other agents, and in analyzing weaknesses in its
belief or inference system (to be discussed later).

Can one develop a mathematical theory of summarization? Some means is needed for
stating the purpose of the desired sort of summary, and means for checking the satisfactori-
ness of candidate summaries. For example, one might define classes of obvious inferences
and shared (or known) lemmas and reduce an argument to its residue when these inferences
and facts are eliminated. Or one might define some notion of criticality of steps and facts
used in arguments, and present the summary in terms of the critical elements of the argu-
ments. The unobvious inferences and unshared axioms might be critical, or one might look
to the structural complexity measures discussed above to pick out the most consequential
of the axioms or steps, or the least likely to be noticed given a relevance measure. Per-
haps restrictions on intelligible summaries, or motivations for wanting to summarize, can
be phrased in terms of the structural complexity, in terms of the argument topology and
working set.

• Davis, Obvious inferences

• Lehnert, Summarizing narratives

• Doyle, A truth maintenance system

9 Theory of Search

The structure of actions involved in searching some set space of possibilities (a tree or a
graph) has long been studied as the theory of search. Several algorithms for searching are
known, and can be guaranteed to find the sought node given certain sorts of information
about each node and its relation to the sought node. Recently, these correctness and ter-
mination results have been supplemented with analyses of ordinary algorithmic complexity,
measured in number of nodes examined, and with experimental measurements of expected
efficiency.

Search theory has many connections to the developmental problems surveyed below,
for developmental or learnability problems can be cast as reachability problems in a search
space. However, in actual practice, few such castings of developmental problems as formal
search problems have been carried through. A severe complication faced in doing so is
that the most natural conception of progress in solving problems is one in which the agent
is continually reformulating the problem it thinks it wants to solve. Traditional search
theory explores the case of very simple sorts of problem reformulations, namely changes
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from “get from node N in space S to goal node G” to “get from node N ′ in space S to goal
node G”, where N and N ′ are related in some way that varies with the search algorithm.
Traditional search theory avoids, however, problem reformulations in which the whole search
space S and goal G are traded in for new ones. One can make the analogy with Kuhn’s
theory of scientific development: “normal” science is search within a fixed search space,
and “revolutionary” science is search which involves replacement of the whole space. So far
no detailed analyses of these more complex problems have been attempted, though various
programmatic statements have been made.

• Nilsson, Principles of Artificial Intelligence

• Knuth and Moore, Analysis of α-β pruning

• Berliner, The B* tree search algorithm: a best-first proof procedure

• Gashnig, Performance measurement and analysis of certain search algorithms

• Kuhn, Structure of Scientific Revolutions

• Glymour, Theory and Evidence

• Minsky, A Framework for Representing Knowledge

• Lenat, AM: An artificial intelligence approach to discovery in mathematics as heuristic
search

10 Reachability and Continuity in Development

In studies of the development of the agent’s structure or its actions, one can distinguish
questions of reachability and questions of continuity. Questions of reachability ask if certain
final states of agent structure or agent actions are possible given a set of inputs to the agent.
These questions bear closely on the question of induction generally—what conclusions can
be deduced from a given body of data. Reachability questions have been studied in several
forms, discussed below as separate problems. Questions of continuity, on the other hand,
ask which structures of the agent or its actions can be had as “continuous” or “incremental”
changes of given structures. Questions of continuity, thus, concern the process of develop-
ment. The two sorts of questions are naturally combined in theories of development to
questions of reachability via continuous steps—questions on the surface very similar to the
problems of graph searching mentioned earlier, where reachability questions translate into
questions about the boundaries or composition of the search space (its nodes) and conti-
nuity questions translate into the arcs of the graph connecting the nodes. This separation
of questions gives us a somewhat different perspective than that of search theory, in which
search spaces are normally defined in terms of the nodes continuously reachable from a given
node. Particular classes of continuity and continuous reachability questions are discussed
as separate problems below.

Can one develop theories of abstract reachability and continuity so that one can discuss
tradeoffs? That is, given a notion of reachability and a notion of continuity, can one say how
refined or widened notions of continuity change the set of continuously reachable nodes?
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And given a notion of reachability, can one characterize what sorts of continuity relations
are possible? All of these questions must be formulated in terms of some decomposition of
nodes—in terms of “atoms”, where reachable nodes are “possible molecules” and continuity
relations on “molecules” are generated by continuity relations on “atoms”.

[Are there Betti numbers for theories and problems?]
Another question that arises in this framework of reachability and continuity is that of

limits. Are there limit points in the learning space? Can one derive the theory of practice,
with its power-laws and diminishing returns, from topological considerations?

• Kelly, General Topology

• Alexandroff, Elementary Concepts of Topology

• Whitehead, Homotopy Theory

• Hilton and Wylie, Homology Theory

11 Parameter learnability

Minsky and Papert’s study of perceptrons focused on a particularly simple sort of machine
that computed with sets of numerical parameters. Outside of their negative results concern-
ing the computational powers of such machines, they were also able to show that for certain
perceptron-computable functions the parameters must be astronomical in size compared
to the size of the input. One can make an analogy with Gödel numbering and view this
phenomenon as the result of having to code a table of values in a single set of numbers.

For perceptrons, can one characterize the sets recognizable with bounds on the sizes of
parameters, i.e., characterize the “space” hierarchy for perceptrons?

Can one generalize these results to other sorts of machines in interesting ways? For
Gödel numbering problems, elementary results say that any pairing function of integers must
grow as the product of the absolute values of the integers. Are all natural generalizations of
parameter encodings related to space utilization in counter automata, and hence to space
utilization in other sorts of machines as already studied in computational complexity?

• Minsky and Papert, Perceptrons: An introduction to computational geometry

• Garey and Johnson, Computers and Intractability: A guide to the theory of NP-
complete problems

• Minsky, Computation: Finite and Infinite Machines

• Ehrenfeucht and Mycielski

12 Parameter learning

Along with their results on learnability for perceptron parameters, Minsky and Papert
prove the perceptron convergence theorems about the efficacy of parameter adjustments
in response to success and error. Have all the interesting questions been solved? Perhaps
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not. For example, they ask for a comparison of the relative efficiency of perceptron conver-
gence algorithms and related, non-incremental algorithms for solving linear programming
problems.

• Same references as for Problem 11

13 Grammar learnability and learning

Initial studies have produced several results about the learnability of grammars, given gram-
mars of certain recursiveness classes and example sentences of certain forms. Other work
has also investigated the learnability of restricted grammar classes under certain local gram-
mar modification rules. What is still lacking is a mathematical classification of learnable
languages which takes into account not just the recursiveness class of the language, but also
other constraints, such as sorts of input data, continuity of learning rules, and existence of
efficient parsers. The problem here is that we still lack all but the most crude characteri-
zations of these subsidiary constraints (e.g., interpreting “existence of efficient parsers” to
mean simply “context-free”).

• Gold, Language identification in the limit

• Hamburger and Wexler, A mathematical theory of learning transformational grammar

• Wexler and Culicover, Formal Principles of Language Acquisition

• Berwick, Locality Principles and the acquisition of syntactic knowledge

• Berwick and Weinberg, Parsing efficiency, computational complexity, and the evalua-
tion of grammatical theories

14 General theory of inductive inference

Solmonoff, Blum, and others have developed basic results about the induction problem in
the setting of finding Turing machines of minimal size which recognize the input sequence
of data. These results say something about all learnability problems, but the detailed
connections may not have been pursued. For example, work is still carried out in AI on
learning procedures from examples (to be discussed later in more detail), but no clear
connections have been made to the general results.

One might pursue these general results along different lines. The criteria of minimal
recognizer size is a powerful one, and has connections with the Chaitin-Kolmogorov theory
of randomness. However, in light of our earlier problems, one might explore induction based
on given space-time resource limits, rather than just space alone. One cannot ask simply
for minimum time recognizers, for any finite set of data can be coded directly into the state
table of the machine. But does this trivialize all restrictions on time?

• Solmonoff

• Blum

• Chaitin, A measure of program size formally identical to information theory
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15 Concept learning and learnability

Much work still proceeds in AI on learning of concepts, where we may view this work as the
automated formation of logical theories describing the input examples. It would be nice if
this work was related to other sorts of learnability results as mentioned above, but to my
knowledge it has not yet been so related.

Winston made one of the earliest studies of concept learning from examples and non-
examples, and his apparent intent was to construct minimal conceptual complexity de-
scriptions of the examples. Later work has followed along these lines. Fahlman makes
suggestions about learning techniques which mix both conceptual complexity and inferen-
tial complexity measures, but as far as I know, no detailed work has been done on minimal
inferential complexity learning algorithms or on combinations of the two. There may be
a better chance of obtaining an interesting theory here than in the Turing machine case
discussed before because databases of concepts and axioms need not be fully associative.
This means one may not be able to simply add the input example to the database and
have it be rapidly retrievable; instead, a full search of the database may be necessary. Thus
theories of concept induction involving inferential complexity must be built on particular
notions of database structure and retrieval procedures. Perhaps this sort of consideration
can be reflected back into the Turing machine case by assigning costs to state-table accesses,
but given the restricted nature of Turing machine operations, the prospects seem bleak for
doing this in such a way that minimal time complexity does not imply minimal machine
complexity.

• Winston, Learning Structural Descriptions from Examples

• Mitchell

• Fahlman, NETL: A system for Representing and Using Real-World Knowledge

• Lenat and Harris, Cognitive Economy

• Langley

16 Circumscription and concept learning

A very interesting alternative to characterizing minimal conceptual complexity concept
learning (such as Winston’s) is in terms of circumscription. All the induction procedures
explored make the tentative assumption that the concept aimed for involves only what the
presented examples do, and not anything else. This, in fact, is just the sort of inference that
can be stated formally in terms of circumscription. For example, Reiter has pursued the
use of circumscription in answering database queries, in which completions of the database
are induced from the actual entries contained by means of circumscription.

The mathematics of circumscription is still full of problems. One of the most serious is
that of choosing instantiations for the inductive schema one develops by applying circum-
scription to data. The general problem of automated deduction from schema is intractable,
but can one get most of what is needed with simpler techniques? Reiter explores a simple-
minded instance of the schema which can be constructed in a straightforward manner and
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which permits drawing the desired results in many cases. Can this be improved on? Also,
can one develop a classification of the difficulty of the circumscription problem as a function
of the input theory? Is there ever a “maximal” schema instance which alone generates the
entire set of circumscriptive theorems? If there is no “maximal” instance, can one say how
many there are? What their syntactic size is? Can one precisely relate minimal Turing
machine formulations of induction to the minimal-model formulation underlying circum-
scription?

• McCarthy, Circumscription: a form of non-monotonic reasoning

• Reiter, Logical Theory of Databases

• Davis, The Mathematics of Non-Montonic Reasoning

17 Procedure learning and learnability

The learning of procedures is closely connected to the learning of concepts in some respects,
in that one can take the concept being learned to be a description of a procedure—the
instances of the concept corresponding to the instances (input-output pairs) of the proce-
dure. This connection works both ways. We get all the results about concept and Turing
machine learning in the context of learning of procedures, and we can feed back results
about procedures to results about concepts.

One promising area of investigation draws on the connection between computation and
deduction, and applies proof-theoretic techniques to both extract procedures from proofs,
and to refine procedures by manipulating proofs. For example, given a notion of the proce-
dural interpretation of logical formulae, as in PROLOG, one can attempt to prove theorems
from an initial set of axioms which represent a more efficient procedure. Alternatively, one
can take the proof and manipulate or refine it to produce a more efficient program. Aside
from the exploration of these ideas in themselves, can one use them to formulate interesting
notions of inferential complexity of concepts for use in concept learning theories?

The problem of learning of procedures is more general than that of concept learning,
however, since procedures may have side-effects, that is, change the state of the world. The
procedures corresponding to concepts are not of this character. For procedures of actions,
as I will call them, the problem is not so much learning from examples as learning from
errors, where errors show up as failed executions or unexpected effects. Learning of these
sorts of procedures is still in its infancy because analysis of failures entails some notion of
the intentions of the procedure. This connection with the mental attitudes of the agent
means this problem is much more complex, and not likely to be purely mathematical, at
least without a mathematical psychology and theory of action to ground it in. The theory
of procedure correction also depends on the decomposability of domains, of the ability to
localize causes. Mathematical models of the world which allow such characterization of the
complexity of causal relations are largely yet to be developed. (See the problems on revision
of attitudes below, however.) It might be possible, however, to characterize the complexity
or possibility of procedure learning by procedure correction given specified sorts of causality.
If errors can always be traced to single causes, the problem should be simple, and should
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admit rapid learning procedures. If errors can have multiple causes, things should be less
nice.

A satisfactory analysis of causality and types of errors should allow formulation of a
generative theory of test-cases for procedures, so that learning might progress by testing
procedures at their weakest points.

• Goad

• Clark and Sickel

• Sussman, A Computer Model of Skill Acquisition

• Bates and Constable, The definition of µPRL

• Goldstein and Miller

• de Kleer

18 Logics of Assumptions and Inference

The default formulation of concepts requires a careful determination of the meaning of
defaults, since defaults might conflict, and in any event appear to have unusual properties.
The task of characterizing interpretations of sets of axioms and defaults has been studied
as default logic and as non-monotonic logic. I have recently developed a unified extension
to these approaches, which I am writing up. There are many interesting mathematical
problems yet to be solved, but I leave them for that exposition.

• Reiter, A logic for default reasoning

• McDermott and Doyle, Non-monotonic logic I

• Doyle, Logics of Assumptions and Inference, in preparation

19 Revision of Attitudes

If logics of assumption and inference characterize the “reachable” sets of attitudes, i.e., the
coherent interpretations of axioms and defaults, the recent work on revision of attitudes
addresses the related continuity questions. The attitude revision procedures are mappings
from sets of attitudes and additions to new sets of attitudes which both preserve coherence
(as formulated by the logics) and which incorporate notions similar to Quine’s “minimum
mutilation” principle. Unfortunately, these notions of distance for attitude sets have to date
been left implicit in the programs, so one problem is their precise characterization given the
language of the logics of assumption and inference.

One unexplored question is that of what sets of attitudes are reachable from a given set.
McDermott and Doyle have raised this problem for the pure reachability problem, but we
can also ask it for the continuous reachability problem.
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One might also formulate other sorts of notions of continuity than minimum mutilation.
Touretzky (Hands off this one, folks) is developing a thesis in which the continuous changes
also preserve determinateness (non-ambiguity) as well as coherence of assumptions.

Finally, the existing algorithms for attitude revision need lots of exploration, analysis,
and improvement, especially in light of the subsequent work on their logics. What is their
worst case and average complexity? This should be asked for several notions of complexity—
running time, number of statements examined, number of statements changed, etc. Some
of the answers are bound to be disappointing—e.g., in the current algorithms one might
have to examine an arbitrarily large set of conclusions even if one changes none of them.
Can other algorithms be devised which avoid this? And what are the tradeoffs between
algorithms which allow easy access to several (e.g., chronological) states of attitudes vs.
those which do not?

• McDermott and Doyle, Non-monotonic logic I

• Doyle, Logics of Assumptions and Inference

• Touretzky, in preparation

• McAllester

• McDermott
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Postscript—August 15, 1994

Complaining of an acute attack of la vida breve, and inspired by Minsky’s example in [3], I
wrote up these notes and delivered them in a Carnegie Mellon University Computer Science
Department seminar. I typed up the first half, but never completed the task of typesetting
and revising it—delayed indefinitely, I can guess, by the rapid progress I was making in
my thinking at the time. In lieu of a properly typeset copy, I gave out photocopies of the
manuscript to various people over the years.

For this reprinting, I have limited my editing to correction of misspellings and minor
typos, and the addition of the partial and partially-specified bibliography I prepared at the
time, which I have incorporated into the text by putting the references for each problem at
the end of the problem section. Rereading the text tempts me to add many more historical
notes concerning the state of knowledge at the time, the evolution of these ideas in my then
future work, and the ways that AI eventually addressed some of them. But I defer this
task to a later postscript, as checking and restoring the accuracy of my memories of these
matters requires rereading my notebooks and writings of the time.

In spite of this disclaimer, I will clarify one reference in the text. The “work in progress”
mentioned in the introduction and again in problem 18 refers to my unfinished and unpub-
lished monograph Logics of Assumptions and Inference, which as my mathematical thinking
progressed was rewritten first into the monograph A Mathematical Basis for Psychology,
and then transformed into the substantially different widely-circulated monograph Some

Theories of Reasoned Assumptions [1]. Some of the material in the text above was con-
tained in versions of these earlier works, and I took up statement the mathematical view
again in [2].
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