Editorial: Strategic Directions in Computing Research
PETER WEGNER

Brown University (pw@cs.brown.edu)
JON DOYLE

Massachusetts Institute of Technology (doyle@mit.edu)

Computing Surveys is commemorating the 50th anniversary of the ACM and of the
computing discipline in two special issues. The March 1996 issue, on “Perspectives
in Computer Science,” examined the status of the discipline, while the present
issue looks to the future with a collection of reports on “Strategic Directions in
Computing Research.” These reports evolved from a workshop, hosted by the MIT
Laboratory for Computer Science in June 1996, at which 22 working groups
consisting of more than 300 participants met to examine research directions. The
preparation of reports in the subsequent months proved more time-consuming than
expected, but 19 of the working groups completed their reports for publication in
this issue. The reports collectively provide a remarkably deep, though incomplete,
view of the field and its future challenges. We hope they will stimulate further
efforts toward strategic understanding, and we offer the pages of Computing
Surveys as a home for future strategic-directions reports. The September or
December 1997 Surveys will contain a symposium on strategic directions in
computing research that reacts to the articles in this issue. Readers interested in
submitting short (1000-word) articles to such a symposium should so inform the
editors (csur@acm.org or pw@cs.brown.edu).

Over the past 30 years computers have become an increasingly important part of
everyday life. The success of computer technology has inevitably altered the role of
core research. The ACM has changed from a small society representing researchers
to a large professional organization in which researchers comprise less than 20% of
its members. The Communications of the ACM has changed its format from a
scholarly journal to a magazine, while Computing Surveys, though preserving its
scholarly character, is also changing to better serve the changed membership
profile. The evolving role of computing in society affects the self-image of research-
ers as well as the research philosophies of funding agencies and governments.

The report Computing the Future [Hartmanis and Lin 1992], which recognized
the changing role of research in the discipline of computing, recommended balanc-
ing its first priority—sustaining core research—with an effort by researchers to
broaden the field, so as to play a greater role in an expanding discipline and to
enrich computing models through contact with applications. These recommenda-
tions engendered some controversy because they struck some researchers as
favoring short-term over long-term research. Such fears of overemphasis on
short-term results at the expense of long-term research are legitimate and need to
be addressed. The reports in this issue balance the desire of researchers to
undertake core research with the need to build bridges connecting theory and
practice. The tension between supply-driven core research—focused on increasing
understanding and exploring new possibilities—and demand-driven applications
research—focused on solving external problems—is a permanent part of the
strategic landscape. We hope that these reports help the computing community
better to appreciate the scope and importance of research.

ACM Computing Surveys, Vol. 28, No. 4, December 1996



566 ° Editorial

The 19 reports are grouped into three broad, though overlapping, areas: founda-
tions, systems, and applications and infrastructure:

Foundations: six reports on theory of computation; computational geometry; con-
currency; formal methods; programming languages; artificial intelligence.

Systems: nine reports on computer architecture; networks and telecommunications;
object-oriented programming; constraint programming; software engineering
and programming languages; software quality; real-time and embedded systems;
database systems; storage 1I/O issues in large-scale computation.

Applications and Infrastructure: four reports on human-computer interaction;
computational science and engineering; electronic commerce and digital librar-
ies; computer science education.

Though the boundaries between these categories are imprecise, this classifica-
tion is nevertheless useful in expressing that computer science builds systems—
anchored in foundations—that provide an infrastructure for domain-specific appli-
cations. The area of foundations combines the traditional areas of algorithms and
complexity with the broader foundational areas of formal methods, programming
languages, and artificial intelligence. Topics under systems focus on the organiza-
tion and implementation of services of computing systems. Topics in the third
category address the technical and social infrastructure of computing via human-
computer interaction and computer science education, and treat applications
crucial in the technical and commercial infrastructure of society via computational
science and engineering, and electronic commerce and digital libraries. Each area
needs the others to make it meaningful, and each report in fact strikes a balance
among foundations, systems, and applications and infrastructure.

FOUNDATIONS

The area of foundations is concerned with the broad range of fundamental concepts
and principles that provide a rigorous and systematic framework for the study of
systems and applications. Many strategic areas of computing research support and
contribute to foundations in this broad sense, even when the research goals are
primarily practical.

The theory of computing report focuses on core research in algorithms and
complexity and examines the considerable accomplishments of algorithms in
applications like security, information retrieval, communication networks, statisti-
cal physics, molecular biology, and biochemistry. The report examines achievable
performance of algorithms (upper bounds), inherent difficulty (lower bounds),
reducibility among algorithms (NP-complete and other complexity classes), and
major open questions (is P = NP?). Although algorithms dominated the theoretical
perspective of theorists like Turing, Knuth, and workers in combinatorial algo-
rithms and complexity theory, and although algorithms will always be a central
foundation of computing, theoretical computing research consists of an evolving
body of principles broader than algorithms, and has spawned conferences in areas
such as concurrency and logic in computing. The five other reports classified under
foundations give the flavor of additional theoretical areas, though they do not
completely cover areas like logic and semantics.

Computational geometry, which investigates algorithms for geometric problems,
clearly demonstrates the impact of theory on practice in a particular domain.
Computational geometry has proved both a fertile application area and a driver of
theoretical advances in algorithmic analysis. The report highlights impressive

ACM Computing Surveys, Vol. 28, No. 4, December 1996



Surveys . 567

accomplishments in 14 different problem areas, including motion planning and
parallel algorithms, during this subfield’s short 20-year existence. It addresses the
methodology of robustness, fine-grain complexity analysis, implementation, and
experimentation, discusses paradigms of distributed, real-time, and randomized
computing, and examines visualization, graph drawing, animation, and geographic
information systems. Computational geometry emerges as a cohesive application
area of algorithmic analysis that illustrates how intelligent application of algorith-
mic techniques can provide a systematic approach to the formulation and efficient
solution of large classes of new and interesting problems.

Concurrency is an entirely different subarea of computing, concerned with
largely nonalgorithmic models and logics of parallel computation. It treats prob-
lems arising from multiple threads of control and from ongoing interaction with an
environment. The report focuses on concurrency theory and its use in verification,
rather than on applications to concurrency control, operating systems, debugging,
distributed systems, or real-time computing. In exploring process models it con-
trasts intensional (state-transition) and extensional (observation-based) models,
interleaving and true concurrency, and branching and linear time. Interleaving
models reduce concurrency to equivalent sequential algorithmic processes, while
true concurrency models treat concurrency as a primitive irreducible notion.
Temporal logics and verification algorithms for safety and liveness are classified
according to whether they use linear or branching time. The report examines
alternative unifying semantic frameworks for concurrency and briefly explores
strategic directions for concurrent programming languages, design and verification
methodologies, and education.

Formal methods for the specification and verification of hardware and software
systems are becoming increasingly important as systems increase in size and
complexity. The report illustrates progress in formal methods through an impres-
sive collection of industrial-strength examples that contrast sharply with the toy
examples of early work in the area. Progress has resulted from improved specifica-
tion formalisms, model-checking techniques for verification of finite models, and
improved theorem-proving techniques. The report briefly describes these tech-
niques and their tool support. It identifies the need for further conceptual work on
fundamental concepts like composition, abstraction, and reusable models and
theories; the need for tools that are incremental, efficient, usable, integrable, and
have a common look and feel; and the need to integrate formal methods more
seamlessly into the entire system development cycle. In filling these needs, there is
great promise of further practical benefits.

The programming language report examines strategic directions in semantics,
types, static program analysis, program transformation, and implementation. It
focuses on foundations, leaving to other reports areas like object-oriented and
constraint programming and software engineering. Programming languages are a
primary tool for thinking about problem formulation and programming. The area
of programming languages has always been difficult to classify because it deals
both with issues of semantics and types that are central areas of the theory of
computation and with questions of design, implementation, and usability that are
eminently practical. The classification of programming languages by paradigm into
imperative, functional, logic, constraint, object-oriented, and concurrent language
classes, which nicely captures major differences of style in problem-solving and
programming, is not suitable for classifying strategic research directions since the
research categories considered cut across paradigms. Users increasingly interact
with computers through graphical user interfaces rather than programming lan-

ACM Computing Surveys, Vol. 28, No. 4, December 1996



568 ° Editorial

guages, and this may cause a change in emphasis in the languages and semantic
frameworks to be studied.

Artificial intelligence is concerned with foundational issues of formalizing knowl-
edge and its use in building intelligent systems and machines, as well as the
scientific and practical aims of constructing computational models of human
behavior and creating an infrastructure that makes computers easier to use. It has
succeeded to varying degrees in building systems that solve intellectual problems,
control robot motions, understand natural language, and learn from experience.
The report divides the field into ten primary areas, including knowledge represen-
tation, learning, planning, language and image understanding, robotic motor
control, autonomous agents, cognitive modeling, and mathematical foundations. It
describes several major directions, influencing research in all these areas rather
than summarizing each individually. These major directions include building
robots, modeling rationality, supporting collaboration, communication, and knowl-
edge acquisition, and integrating techniques drawn from different subareas, from
other areas of computing research (such as databases) and from other disciplines
(such as economics). The beginnings of artificial intelligence antedate computer
science, going back to automata like the Golem and questions like “Can machines
think?” Its impact on mainstream computer science has been considerable through
languages like Lisp, which was developed in the 1950s at the same time as
Fortran. Though much of the practical impact of artificial intelligence has been
slower to develop and is less visible than in other areas of computing, advancing
computing power and progress of the field now support an increasingly wide range
of successful industrial-strength applications and technologies.

SYSTEMS

Computing systems were the primary subject of early computer science, since
building effective compilers and operating systems was a primary bottleneck to the
expanded use of computers. The scope of the system area has steadily expanded to
include databases, networks, and software engineering. Systems extend the func-
tionality of hardware by imposing a logical structure on resources delivered to
users which builds on the physical structure of underlying computers. They
provide a common substrate of services for application programming. Though
research in systems initially focused on the building and maintenance of usable
software, theory plays an increasing role in developing principles and models,
while new kinds of applications made possible by advances in technology drive the
development of new kinds of systems.

Computer architecture is concerned with the structure and design principles of
major components of a computing system. Advances in hardware architecture are
driven by the technology of semiconductors, VLSI, and telecommunication, and by
applications like the World-Wide Web, distributed systems, multimedia, and
virtual reality. Architectural challenges in reducing power consumption and com-
plexity, while increasing performance, complement software challenges. Architec-
tural technologies like pipelining, superscalar, and very long instruction words,
first proposed for supercomputers, are being applied to microprocessors as they
become more powerful. Massively parallel and high-performance computing, which
received strong support under the U.S. high-performance computing initiative, has
become less fashionable, in part because of commercial failures. Parallel processing
has succeeded at the instruction and networking level with Pentium, Alpha, and
MIPS-R10000 technologies, rather than at the supercomputer level. Memory
hierarchy design is an important area addressed in another report. Moore’s law of

ACM Computing Surveys, Vol. 28, No. 4, December 1996



Surveys . 569

hardware improvement by a factor of 2 every 18 months shows no sign of abating,
though performance improvements will eventually run into physical barriers due
to the speed of light. Though architecture will continue to be a challenging and
strategically important research area, software will increasingly be the bottleneck
in computer application development.

The area of networks and telecommunications spans both architecture and
software. Networking technologies initially developed for telecommunications are
being adapted to computer communication: circuit technology has been replaced by
packet technology with connection-oriented packets, whose switching is accom-
plished by the network, or with datagrams, whose switching information is
contained in the packet itself. Questions of architecture, protocols, reliability, and
scalability have different solutions for information networks and must be further
developed to accommodate multimedia and the low latency required for virtual
reality. Networking models collaborative processes closely tied to emerging re-
search areas of coordination and interoperability. Questions of congestion control,
routing, and signaling protocols, which were central in maintaining efficient
telephone networks, are still important, but many new issues must be considered
in areas like network security, mobile processes and wireless communication, and
security protection, both against viruses and to facilitate electronic commerce.

Object-oriented programming is viewed as a modeling technique that better
captures the correspondence with objects of application domains than procedure-
oriented programming. It promotes reusability, extensibility, and adaptability, and
is robust in uniformly modeling the lifecycle phases of specification, design,
implementation, and enhancement in an integrated way. The report examines
work on foundations, languages, environments, tools, architecture, and design. It
identifies technology integration, software components, patterns and frameworks,
and distributed programming as important research areas. Future directions
include adaptive programming, object composition, reflection, and aspect-oriented
programming (which captures the notion that modeling and implementation have
multiple aspects, facets, and interfaces). Though object-oriented programming in
the narrow sense is classified as a subfield of programming languages, it is
increasingly viewed by its practitioners as a paradigm for modeling and software
engineering that more directly models domain-specific applications than impera-
tive structured programming.

Constraint programming is a paradigm built around the mathematical concept of
relational constraints. Though it evolved as a generalization of logic programming,
its basic concept—problem solving by progressively constraining a space of possi-
bilities—is a general top-down paradigm that may be contrasted to the bottom-up
paradigm of developing an algorithm for a specific solution. The report combines
the presentation of fundamental concepts with an in-depth discussion of applica-
tions to artificial intelligence, databases, user interfaces, operations research,
concurrency, robotics, and control theory. It classifies constraints by whether they
are Boolean, finite, real-valued, linear, global, or user-defined. The report also
examines constraint-based tools for programming, debugging, and visualization
and discusses implementation techniques for constraint-based programming lan-
guages. This report, like many of the others, provides a synthesis both of the
current state of the art and of the strategic directions along which the field will
progress over the next few years.

The report on software engineering and programming languages examines the
role of programming languages in controlling software complexity and lifecycle

ACM Computing Surveys, Vol. 28, No. 4, December 1996



570 . Editorial

cost, paying particular attention to synergy between the software-engineering and
programming-language communities in the areas of programming the Web, do-
main-specific programming, specification, and program analysis. Web issues in-
clude security, distributed software development, mobility, and global require-
ments. Domain-specific issues include formalizing informal notions, integrating
multiple specifications, domain specialization of best practices, and optimization.
Specification research includes methods of precise description, formal methods,
partial specification of key properties, and development of specification languages.
Program analysis includes a wide range of issues relating to reengineering,
binding time, representation management, and integrity checking.

The goal of affordable development of safe, dependable, and usable software has
proved elusive, in part because software quality has dimensions of robustness,
usability, and efficiency that transcend correctness and are difficult to specify and
verify. Formal methods for correctness specification and verification have made
progress, but formalization is difficult even for correctness and is even harder for
other software qualities. The report examines the state of the art in dynamic
testing, static analysis, symbolic execution, formal methods, experimental evalua-
tion and measurement, and a number of other areas. Software quality practice
relies on empirical techniques like regression testing. An important strategic
direction in achieving software quality will be research on built-in quality starting
at the early lifecycle phases. Postdevelopment testing and analysis has serious
limitations that are well recognized, and should be supplemented by more analysis
and testing during design. Movement of research developments into practice has
been slow, and progress in achieving better software quality will require greater
synergy between the research community and practitioners than has been achieved
in the past.

Real-time computing is an enabling technology for process control, manufactur-
ing, avionics, multimedia, virtual reality, defense applications, and many other
areas. Real-time systems requirements transcend functional correctness and in-
clude safety-critical soft and hard real-time requirements. The report presents
some illuminating case studies and examines issues of systems evolution, open
real-time systems, composability, software engineering, timeliness and reliability
guarantees, formal verification, multimedia, programming languages, and educa-
tion. In the near future almost all products and engineering processes will contain
real-time features and embedded processes, and the demand for safe, certifiable,
and dependable real-time systems with high quality of service will be overwhelm-
ing.

The topic of databases is concerned with building database systems and also
with data management, which is a core application technology for managing the
information infrastructure. The forms of data storage and management are under-
going radical changes as a consequence of changes in information technology. Data
management is becoming increasingly independent of databases: for example, the
data management problems of the World-Wide Web are rarely handled by classical
database management systems. The report concludes that data management
should be unbundled from database management and that the incremental tools
for managing data in distributed networked environments may have very different
requirements than classical database-management tools. The report presents case
studies of virtual enterprises and personal information systems to illustrate the
need for unbundled tools. It examines questions of scale, scheme organization, data
quality, heterogeneity, query complexity, ease of use, and security from this point

ACM Computing Surveys, Vol. 28, No. 4, December 1996



Surveys . 571

of view, as well as research topics that must be addressed to facilitate the
technology transition to “lightweight” data management.

Storage 1/0 in large-scale computing is a new area whose identity as a separate
field of study is defined for the first time in this report. The report makes a strong
case that the management of large-scale storage systems determines an emerging
strategic subfield of great technological importance. The body of principles and
algorithms for storage I/0 determines a domain-specific area of computing systems
with close connections to several other areas, such as databases, distributed
systems, architecture, real-time systems, algorithms, parallel computing, compil-
ers, operating systems, and file systems, for which I/O performance is a prime
scalability factor. Issues of performance, persistence, reliability, scale, and usabil-
ity are examined for cached, historical, multimedia, and scientific data. The report
puts forward as a strategic goal a unified body of storage access and management
techniques in many specific application areas. Technical research towards this goal
includes work on virtual device drivers, new program abstractions, exploiting data
types and access paths, prefetching, caching, and scheduling, performance and
behavior models, and a variety of other techniques.

APPLICATIONS AND INFRASTRUCTURE

Applications and infrastructure motivate research in foundations and systems and
provide a measure of success. Applications provide problems and case studies that
suggest new kinds of theoretical research and allow such research to be grounded
in reality. Human-computer interaction deals with domain-independent principles
and infrastructure for interacting with computers. Computational science and
engineering was one of the earliest application areas, which today provides the key
infrastructure of science and technology as well as being a catalyst for high-
performance computing. Electronic commerce and digital libraries provide infra-
structure for broad domain-specific application areas. Education is concerned with
maintaining and improving the infrastructure of human and social knowledge and
nurturing human skills that determines progress in all areas of computing.

Human-computer interaction (HCI) provides domain-independent infrastructure
to facilitate effective communication between people and computers. It addresses
ease of use and interface technology, as well as broader questions of how computers
affect individuals, organizations, and society. The report reviews the evolution of
windows, hypertext, user-interface, and toolkit technologies and the connection of
HCI to psychology, linguistics, artificial intelligence, and anthropology. It exam-
ines the relation of HCI to progress in database technology, education, and lifelong
learning, electronic commerce, end-user programming, information visualization,
and computer-mediated communication. Technological trends that impact HCI
include ubiquitous computing, speed, size, and bandwidth, input modalities like
speech, handwriting, natural language, and three-dimensional environments and
virtual reality. The look-and-feel of the future information infrastructure and of an
information marketplace for commerce, entertainment, and education will depend
heavily on HCI research and technology.

Computational science and engineering, a dominant early application area of
computing is experiencing a resurgence as computing power expands to make
possible the solution of increasingly complex scientific and engineering problems.
It played an important part in motivating the U.S. high-performance computing
initiative through grand challenges in weather, materials sciences, human ge-
nome, astronomy, and transportation problems. The report presents case studies

ACM Computing Surveys, Vol. 28, No. 4, December 1996



572 . Editorial

relating to atomic structure of viruses and proteins, modeling biomolecules,
structural engineering, computational electromagnetics, computational medicine,
fluid flow, and computational finance. Computational science and engineering can
reduce duplication of algorithms across applications and build on advances in
sequential and parallel computation to solve increasingly large and important
computational problems. Parallel computing has not realized its promise, however,
and has in fact suffered a commercial slump, in part because of a lack of
coordination between computer and computational science. High-performance com-
puting addressed the problem of scalability for existing problems but was not as
successful in expanding the scope and complexity of problems that could be solved.
The impedance mismatch between large-scale and large-scope computing cannot be
resolved without greater attention by computer scientists to the domain-specific
problems of computational scientists. Challenging large-scope problems include
microscale electromechanical systems, large mechanical systems like airplanes,
automobiles, and robots, natural environments and data mining. Enabling technol-
ogies that computer scientists can provide for computational science include
interactive compilers, parallel programming languages, graphics and visualization
tools, performance evaluation tools, distributed operating systems, innovative
architectures, and database management. The report also criticizes the publication
style for algorithms in computer science as not being in a form that computational
scientists can easily apply to their problems. This article deserves careful reading
by computer scientists for both its constructive suggestions and its criticisms of
how the computer science community interacts with application programmers.

Electronic commerce and digital libraries are two major components of the
emerging global open marketplace (digital agora) for information, goods, and
services. The report examines both common features of electronic commerce and
digital libraries that provide the infrastructure of the information marketplace and
domain-specific features of electronic commerce and digital libraries. The infra-
structure challenges include tools for acquiring, storing, and filtering information,
feature extraction, quality of information, agents and matchmaking services,
domain-specific ontologies, data mining, and query management. The report also
considers security and confidentiality, particularly important for electronic com-
merce, and discusses the importance of new forms of cost management and laws
concerning intellectual property. It also discusses the socioeconomic and legal
impacts of relying on cyberspace rather than paper for commerce and other
everyday needs. Three case studies of electronic commerce and six digital library
projects are presented. The domain-specific discussion of this report nicely comple-
ments the more abstract discussion of infrastructure requirements in the HCI and
database reports.

Education in computer science and engineering will determine the priorities and
competence of the next generation of computing professionals. The report reviews
curriculum development from ACM’s “Curriculum 68” to the ACM/IEEE-sponsored
“Computing Curricula 1991,” discusses general curriculum issues such as adapta-
tion in a rapidly changing field and sharing of educational resources, and examines
K-12, undergraduate, and graduate issues and coordination within the education
community. The report addresses the balance between research and teaching and
between long-term and industrial needs, and recommends more emphasis on the
needs of industry in advanced courses. Graduate education, especially at the
master’s level, should combine teaching of basic principles with training for the
kinds of jobs that students are likely to take when they finish. The report
recommends more interaction among organizations that represent education, and

ACM Computing Surveys, Vol. 28, No. 4, December 1996



Surveys . 573

makes a specific proposal for a center for computer science and engineering
education that facilitates the sharing of computational resources. There is much
ferment and some confusion at all levels concerning the teaching of computing,
with no agreement on how it should be taught in high school, at the advanced
placement level, in first courses, or in junior-senior courses. The number of
undergraduate students in U.S. institutions reached a peak around 1986, experi-
enced a dip in the late 1980s and early 1990s, but now seems to be equaling or
exceeding the mid-1980s levels. The need for more uniform standards and a better
understanding of what we should teach is certainly great, and new initiatives are
needed to develop relevant curricula that meet the needs of the 21st century.

PERSONAL POSITION STATEMENTS

Most participants at the Strategic Directions in Computing Research workshop
wrote personal statements before the meeting to help shape the discussions at the
meeting. The chairs of each working group have acted as editors in reviewing and
selecting many of these statements for electronic publication in the online volume
described below.

NEW ONLINE SECTIONS

Starting with this issue, Computing Surveys inaugurates a new series of online
sections of issues to complement the printed volumes. The first such section,
Volume 28(4es), contains personal statements from some of the participants at the
Strategic Directions in Computing Research workshop. The chairs of each working
group acted as editors in selecting and reviewing these statements for publication.

Readers may obtain the online sections through the Computing Surveys web
page located at http://www.acm.org/surveys, together with online versions of some
of the printed Surveys articles. The editors intend that articles published in the
online sections share the same quality and reviewing standards as articles pub-
lished in the printed issues, and may be cited in comparable ways (see, for
example, the ACM guidelines for citation of online articles, published at http:/
www.acm.org/pubs/citations.html). The table of contents of this issue lists the
articles appearing in Volume 28, Number (4es) (December 1996).

ACKNOWLEDGMENTS

The Strategic Directions workshop, from which these reports derive, received
major financial support from ACM, the Computing Research Association, the
National Science Foundation, and the Office of Naval Research, as well as
important logistical help from Brown University and the MIT Laboratory for
Computer Science. We especially thank Katrina Avery for her editorial help, John
Bazik and Scott Lewandowski for their technical help, and Michael Dertouzous,
Bob Donahue, Dina Goldin, Heather Grove, Jennifer Kratochwill, Phillip Le,
Michael Littman, Lissa Natkin, and Anne Wailes for their help in making the
meeting a success.

The reports published here reflect much hard work by the chairs of the Strategic
Directions working groups, who selected their group members and organized the
writing (and rewriting) of their reports, as well as reviewing and acting as
subeditors for the personal statements published in the online section. We thank
them deeply for their efforts. We are also grateful to those who helped in reviewing
and commenting on group reports. We thank Chris Hankin, Peter Denning, and
Larry Rudolph for their work here. Finally, we thank the authors of position
statements, both for their help in formulating the group reports and for their

ACM Computing Surveys, Vol. 28, No. 4, December 1996



574 ° Editorial

patience in preparing the contributions to the new online section of volume 28,
Number 4.

REFERENCES

HArTMANIS, J. AND LIN, H. EDITORS. Computing the Future: A Broader Agenda for Computer Science
and Engineering. National Academy Press, 1992.

ACM Computing Surveys, Vol. 28, No. 4, December 1996



