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1. WHAT IS ARTIFICIAL INTELLIGENCE?

The field of artificial intelligence (AI)
consists of long-standing intellectual
and technological efforts addressing
several interrelated scientific and prac-
tical aims:

—constructing intelligent machines,
whether or not these operate in the
same way as people do;

—formalizing knowledge and mechaniz-
ing reasoning, both commonsense and
refined expertise, in all areas of hu-
man endeavor;

—using computational models to under-
stand the psychology and behavior of
people, animals, and artificial agents;
and

—making working with computers as
easy and as helpful as working with
skilled, cooperative, and possibly ex-
pert people.

Even considering only the first two of
these aims, AI has perhaps the broadest
concerns of all areas of computing re-
search, covering investigations ranging
from the natural sciences to the social,
from engineering to economics, physics
to psychology. Its very nature forces AI
to grapple with the complexity of the
natural world as well as that of the
artificial systems that form the subject
matter of computing studies generally.
Its main theoretical questions stand as
peers of the deepest and most important
questions in any scientific field, and its
practical impact on living promises to
equal that of any known technology.

The aims of AI reflect ancient dreams
of using minds and hands to create be-
ings like ourselves. In centuries past,
pursuit of these dreams gave rise to
both mechanical automata and formal
theories of reasoning, eventually yield-
ing the spectacularly successful modern
artificial computers that, in calculating
and computing, replicate and surpass
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abilities that people of earlier times re-
garded as intellectual activities on a par
with writing letters and playing good
chess. Using these computers over the
past four decades, modern AI has built
on the best thinking in a number of
areas—especially computer systems,
logic, the mathematical theory of com-
putation, psychology, economics, control
theory, and mathematical problem solv-
ing—to construct concrete realizations
of devices that

—solve intellectual problems both theo-
retical and practical, common and es-
oteric;

—control robot motions through plan-
ning, sight, touch, and self-aware-
ness;

—interpret human language, both writ-
ten and spoken; and

—learn new skills and knowledge
through instruction, from experience,
and by analyzing other data.

Some of these realizations have proven
highly successful, others rudimentary
and incomplete, but each captures rec-
ognizable and significant elements of
human capabilities and provides a skel-
eton upon which future research may
enlarge.

One can divide present-day AI re-
search into the following primary and
(overlapping) areas.2

(1) knowledge representation and ar-
ticulation seeks to discover expres-
sive and efficient forms and meth-
ods for representing information
about all aspects of the world and
to use these methods to create and
compile explicit, formal, multipur-
pose catalogs of substantive knowl-
edge;

(2) learning and adaptation extends
statistical, analytical, and scien-

tific discovery techniques and hy-
pothesized neurophysiological mech-
anisms to procedures that extract a
wide range of general trends, facts,
and techniques from instruction,
experience, and collected data;

(3) deliberation, planning, and acting
concerns methods for making deci-
sions, constructing plans or de-
signs to achieve specified goals,
and monitoring, interpreting, diag-
nosing, and correcting the perfor-
mance of the plans and implemen-
tations of the designs;

(4) speech and language processing
seeks to create systems capable of
communicating in and translating
among natural written and spoken
languages;

(5) image understanding and synthesis
develops algorithms for analyzing
photographs, diagrams, and real-
time video image streams, as well
as techniques for the customized
presentation of quantitative and
structured information;

(6) manipulation and locomotion seeks
to replicate and surpass the abili-
ties of natural hands, arms, feet,
and bodies;

(7) autonomous agents and robots inte-
grates the other areas to create
robust, active entities capable of
independent, intelligent, real-time
interactions with an environment
over an extended period;

(8) multiagent systems identifies the
knowledge, representations, and
procedures needed by agents to
work together or around each oth-
er;

(9) cognitive modeling focuses on con-
tributing techniques and construct-
ing integrated architectures that
replicate structural or behavioral
features of human cognition; and

(10) mathematical foundations takes
the concepts and techniques of the
other areas as subjects for formal-
ization, distillation, analysis, and
reconceptualization.

2 The list of areas of AI and their descriptions
draws some text from the corresponding list ap-
pearing in Weld et al. [1995]. The borrowed text is
Copyright © 1995 American Association for Artifi-
cial Intelligence, and is reprinted with permission
from AAAI.
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These areas form but one categorization
of work in the field; other such lists
have been suggested in the past, and
categorizations will again change as
problems are solved and new ones are
identified. Consequently, no such list
constitutes a definition of AI. For that
matter, neither do other common misap-
prehensions, such as defining AI in
terms of the activities of a particular
group of people, or the use of a particu-
lar set of methods or programming lan-
guages, or as a label for computing re-
search that does not come under some
other heading. The first two of these
mistake accident for essence, and the
last incorrectly divides the computing
field. AI is not a list of areas or a
methodology, even less a group or a
catch-all label, but consists of work on
the enduring and intriguing aims of un-
derstanding intelligent beings and con-
structing intelligent systems.

2. PROBLEMS OF FORMULATION

AI has won its successes only with great
effort. In earlier times, researchers used
informal means to specify the problems
under investigation, and their work re-
vealed the great difficulty of formulat-
ing these problems in precise terms.
Solving these problems of formulation
[Minsky 1962] required considerable ex-
perimentation with and exploration of
alternative conceptualizations in order
to find appropriate ways of making
them amenable to technical investiga-
tion and solution. Although logic, game
theory, and other disciplines contrib-
uted formal approaches to specifying
these problems, their methods often
missed the mark in essential ways, es-
pecially by begging AI’s question
through presuming too much reasoning
power and coherence on the part of the
agent. In coming to new formulations,
AI has often advanced these other
fields, providing the first precise means
for addressing problems shared with
them.

Researchers in AI have traditionally
met problems of formulation joyfully,

courageously, and proudly, accepting
the severe risks ensuing from such ex-
ploratory work in pursuit of the propor-
tionately large gains that can result
from finding successful formulations.
The willingness to cultivate problems
lacking ready formalizations has also
engendered some disrespect for AI, as
observers focus on the failures rather
than on the successes. However, this
adventurousness has proven highly
fruitful, creating whole new subfields
for formal investigation. Though some
important problems still lack adequate
formalizations, for many others AI has
successfully provided formal founda-
tions supporting rich areas of technical
investigation.

AI has undergone a sea-change in the
general character of its research meth-
odology since about 1980, partly
through progress on its problems of for-
mulation, and partly through increasing
integration with related areas of com-
puting research and other fields. Specu-
lative exploratory work remains neces-
sary in investigations of many difficult
issues. In particular, the natural or use-
ful scope of the formalized knowledge
employed in an investigation does not
always admit simple formally satisfying
characterizations, so the field retains an
element of conceptual exploration. The
more typical research effort today, how-
ever, relies on formal, theoretically pre-
cise, and experimentally sophisticated
methods for investigation and technical
communication. Rigorous science, engi-
neering, and mathematics now over-
shadow other work in much of the liter-
ature. Recent AI also replaces the focus
of the early analytical studies on using
isolated “toy” domains with a focus on
using realistically broad and large-scale
problem domains, and concentrates
much more on integrating its ideas, sys-
tems, and techniques into standard
computing theory and practice. These
changes not only complement the in-
crease in precision and formality, but
demand additional rigor in order to en-
force the conventions and coherence

Artificial Intelligence • 655

ACM Computing Surveys, Vol. 28, No. 4, December 1996



necessary in scaling up and integrating
systems.

Accompanying this change in the
character of AI results and research,
accepted methods of educating students
in AI have changed to recognize many
prerequisites sometimes overlooked in
years past. To understand the literature
and make good in their own work, mod-
ern AI students must learn the basics of
a number of fields: logic, statistics, deci-
sion theory, stochastic processes, analy-
sis of algorithms, complexity theory,
concurrency, and computational geome-
try, to name but a few.

3. CONTRIBUTIONS

Some highlights of the major contribu-
tions of AI to computing, and to science
more generally, include artificial neural
networks, automated deduction, autono-
mous and semi-autonomous mobile ro-
bots, computational qualitative reason-
ing (about physical systems), constraint
programming, data-mining systems, de-
cision-tree learning methods, descrip-
tion logics (structured declarative repre-
sentations going beyond those structures
common in traditional logic), design and
configuration systems, evolutionary
computation, expert or knowledge-based
systems (based on corpora of explicit
mainly declarative knowledge), fuzzy
logic and control systems, graphical rep-
resentations of uncertain information
(Bayesian belief networks and others),
heuristic search, logic and rule-based
programming systems, mechanized
symbolic mathematical calculation, nat-
ural language understanding and gen-
eration systems, nonmonotonic logics (a
new category of logic formalizing as-
sumption making), planning and sched-
uling systems, program synthesis and
verification methods, real-time speaker-
independent speech understanding, rea-
son or truth maintenance systems (sys-
tematic recording and reuse of reasoning
steps), robotic assembly systems, text
processing and retrieval systems, and
visual classification and registration
systems.

One can appreciate the intellectual
productivity of AI through the subjects
it launched or has helped launch as
independent areas of research, includ-
ing artificial neural networks, auto-
mated deduction, constraint program-
ming, heuristic search, integrated
software development environments,
logic programming, object-oriented pro-
gramming, mechanized symbolic mathe-
matical calculation, and program syn-
thesis and verification methods. One
should also note the major contributions
AI has made to symbolic computing and
functional programming. Both have
been stimulated in fundamental ways
through the sustained development and
use of LISP and its relatives in AI re-
search. AI has made important contri-
butions to computational linguistics, to
the area of epistemic logics (especially
through nonmonotonic logics, theories
of belief revision, and the computational
applications now also heavily used in
the theory of distributed systems), and
to economics and operations research
(where AI methods of heuristic search,
especially stochastic heuristic search,
have caused something of a revolution).
AI has also served computing research
as a prime exporter to other scientific
fields of the notion of studying processes
in their own right. AI models of process
and information processing in language,
reasoning, and representation have
caused major shifts in linguistics, psy-
chology, philosophy, and organization
theory (e.g., with rule-based systems
and artificial neural networks providing
a “rehabilitation” of the impoverished
and formerly stagnating behavioristic
approach to psychology), and AI models
now figure prominently in each of these
fields. In addition to changing scientific
fields, some AI methodologies (especially
expert knowledge-based systems, artifi-
cial neural networks, and fuzzy sys-
tems) have changed the perspective of
many engineers, who now go beyond the
traditional concerns of algorithms and
data to capture the knowledge or exper-
tise underlying desired functionalities.

The manifold practical applications of
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AI continue to expand every year. The
following few examples give the flavor
of current successes, but one may find
many more in the proceedings of the
annual AAAI conference on Innovative
Applications of Artificial Intelligence, in
recent issues of Communications of the
ACM (e.g., the November 1995 and Jan-
uary, February, April, May, and August
1996 issues), and in other sources in the
literature. Probabilistic diagnostic sys-
tems, based on graphical uncertainty
representations, form a large class of
successful applications, including the
Intellipath pathology diagnosis system
approved by the American Medical As-
sociation [Heckerman 1991], the VISTA
monitoring and analysis system used by
NASA for space shuttle mission control
[Horvitz et al. 1992], and even the
printer diagnosis and “wizard” sub-
systems of Microsoft software [Hecker-
man et al. 1995]. Artificial neural net-
works also appear in many successful
systems, from automated Pap smear di-
agnosis to online handwriting recogni-
tion [Lyon and Yaeger 1996] and vehicle
navigation [Jochem and Pomerleau
1996]. Fuzzy logic systems have been
applied to many problems including
camera and appliance control. Design
and configuration systems form a large
class in everyday use, with the largest,
such as AT&T’s PROSE and QUESTAR
systems, processing orders worth bil-
lions of dollars [Wright et al. 1993]. Ex-
pert knowledge-based systems abound,
with applications from credit authoriza-
tion and detection of money laundering
[Senator et al. 1995] to highly skilled
simulations of helicopter pilots [Tambe
et al. 1995] and great numbers of
knowledgeable help-desk (customer ser-
vice) systems. The automatically syn-
thesized KTS (Kestrel Transportation
Scheduler) software has proven star-
tlingly efficient in large-scale schedul-
ing applications [Smith et al. 1996], and
knowledge-based planning and schedul-
ing systems now yield dramatic im-
provements in manufacturing efficiency
and productivity [Naj 1996]. Speech-un-
derstanding technology has begun to

have commercial impact, from control
aids for the manually impaired to the
replacement of telephone operators. Ma-
chine-vision systems now find routine
use in industrial inspection and assem-
bly processes and play increasingly im-
portant roles in the analysis of medical
imagery, from the analysis of radio-
graphs to helping surgeons operate on
the correct areas of the brain [Grimson
et al. 1996]. Clinical trials now in
progress seek to evaluate a wide range
of computer-aided surgical procedures,
including the use of surgical robotic de-
vices in hip replacement surgery. Appli-
cations in automatic vehicle control
have only reached the demonstration
stage (CMU’s RALPH vehicle drove
across the continental United States
with minimal human intervention [Jo-
chem and Pomerleau 1996]), but prom-
ise more widespread applications in the
near future. Machine-learning methods
have successfully automated the analy-
sis of astronomical data and found new
classifications for astronomical objects
[Goebel et al. 1989]. To these one must
add the “impractical” but impressive
success of game-playing systems, which
through systematic exploitation of AI
search techniques and special-purpose
hardware now hold the position of the
world’s best checkers player [Schaeffer
et al. 1992], have tied the world-cham-
pion backgammon player [Tesauro
1995], and seriously challenged the
world chess champion [Kasparov 1996].

4. DIRECTIONS

Predicting the results of the next gener-
ation of fundamental research requires
either bravery or foolishness. One need
not hazard such risks, however, to iden-
tify the core challenges facing the next
generation of AI systems, namely, ex-
hibiting robust operation in hostile en-
vironments, broad and deep knowledge
of large domains, the ability to interact
naturally with people, and a degree
of self-understanding and internal in-
tegrity.
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—The world, although not necessarily
malicious, provides a messy and hos-
tile environment with a structure that
cannot be completely anticipated.
Whether a robot moving through the
physical world, a “softbot” wandering
through cyberspace, or an intelligent
collaborative or analytical agent, the
system confronts problems, opportu-
nities, situations, and external (user
or collaborator) demands that change
over time. The system will surely fail
in its purpose unless it can quickly
learn from its experience and adapt to
changes in its environment.

—The system will require large
amounts of knowledge reflecting a
broad cross-section of the world. It
must capture or embody this knowl-
edge in a form suitable for use in
many different tasks, for tailoring
portions to achieve high performance
on specific tasks, and for acquiring
knowledge through its own problem-
solving experience and through col-
laboration with people and other
agents. Exploiting large bodies of
poorly structured information, such
as the World-Wide Web and older in-
formation systems, will demand effi-
ciency and dexterity in handling ex-
tremely large amounts of complex
information.

—To interact with its human collabora-
tors, the system must engage in ex-
tended dialogues that progressively
clarify and enrich the depth of under-
standing. Doing this requires using
natural languages and appropriate
visual displays and tactile modalities
to communicate, rather than simply
exchange single correct sentences, as
demanded by today’s limited systems.
Interacting with its artificial collabo-
rators calls for similar economy and
clarity and need not, but may, involve
the same languages as used for com-
munication with humans.

—The system must also understand it-
self as well as its collaborators and
the world around it, the better to inte-
grate its diverse components, facili-

tate their smooth interaction, main-
tain and improve its knowledge and
skills, and dynamically regulate the
use of its scarce resources.

Building systems with these charac-
teristics poses the same challenges that
have driven AI research throughout
its history, and each of the areas of
technical investigation introduced earli-
er—knowledge representation and ar-
ticulation, learning and adaptation, de-
liberation, planning and acting, speech
and language processing, image under-
standing and synthesis, manipulation
and locomotion, autonomous agents and
robots, multiagent systems, cognitive
modeling, and mathematical founda-
tions—supports a vigorous research ef-
fort contributing to meeting these chal-
lenges. This brief survey cannot present
a complete picture of all the important
directions of research in each of these
areas (see Weld et al. [1995] for a more
generous, though still abbreviated, sum-
mary, the challenging problems listed
by Selman et al. [1996], and the 1994
Turing Award lectures of Feigenbaum
[1996] and Reddy [1996] for other per-
spectives). Instead, the following sec-
tions sketch some broad directions—
spanning many of the narrower areas of
investigation—that characterize much
of the work in the field today and, in all
probability, for the next decade. These
directions consist of pursuing systemic
and intellectual integration, of which
building robots (both physical and com-
putational) and modeling rationality
(mainly in the sense of economics and
decision theory) form two broad special
cases; supporting collaboration; enhanc-
ing communication; obtaining the broad
reaches of knowledge needed for intelli-
gent action; and deepening the mathe-
matical foundations of the field. The
robot direction also constitutes a techni-
cal area, but a broad one that touches
on most of the other areas as well. The
remaining directions each make essen-
tial use of several of the technical areas
of investigation.
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4.1 Pursuing Integration

AI today vigorously pursues integration
along several dimensions: integrating
systems that support different capabili-
ties, combining theories and methodolo-
gies that concern different facets of in-
telligence, coordinating subfields within
AI, and reconciling, accommodating,
and exploiting ideas from other disci-
plines.

Making progress on hard problems
requires analysis, and AI has made sub-
stantial progress by isolating and un-
derstanding many of the important sub-
tasks and subsystems of intelligent
behavior in terms of knowledge repre-
sentation, learning, planning, vision,
and like subjects. Much current re-
search seeks to put the pieces back to-
gether by constructing integrated sys-
tems that incorporate major capabilities
drawn from several or all of these areas.
For example, natural language process-
ing systems now incorporate learning
techniques, recent planning systems in-
corporate methods for reasoning under
uncertainty, and “active” vision systems
combine planning control of robot mo-
tions with analysis of the resulting sen-
sor data. Integration offers a special
opportunity both to test the component
theories and also to constrain further
the requirements on them. Integration
takes special prominence in work on
building robots and supporting collabo-
ration, detailed in the following, and in
work on complete cognitive architec-
tures, such as SOAR [Rosenbloom et al.,
1993].

Apart from the engineering challenge
of building complex hybrid systems ca-
pable of accomplishing a wide range and
mixture of tasks, AI’s scientific challenge
consists of providing integrated computa-
tional theories that accommodate the
wide range of intellectual capabilities at-
tributed to humans and assumed neces-
sary for nonhuman intelligences. Many
efforts at theoretical integration occur
among the subfields of AI. Common logi-
cal underpinnings help integrate theories
of knowledge representation, planning,

problem solving, reasoning, and some as-
pects of natural language processing,
whereas economic concepts of rationality
and the mathematics of Markov decision
processes help unify recent theories of
probabilistic planning, fault diagnosis
and repair, reinforcement learning, robot
control, and aspects of speech recognition
and image processing. Of necessity, many
of these efforts at theoretical integration
cross disciplinary boundaries and lead to
integration with other fields. AI has
drawn on and contributed to logic, philos-
ophy, psychology, and linguistics for some
time. Integration with economics, deci-
sion theory, control theory, and opera-
tions research has served as a focus for
more recent efforts, detailed in the sec-
tion on rationality.

The most novel case, but perhaps also
of the greatest immediate practical im-
portance, consists of integration with
related areas of computing research and
practice. Integration with these areas
has progressed steadily, but slower than
one might hope; the areas of tightest
integration include theory, databases,
and programming languages (especially
for logic and object-oriented program-
ming). No one in AI today views AI
systems as standing alone; instead,
most view AI techniques as supplying
components of complex computer sys-
tems, components that provide key ele-
ments of the capabilities, flexibility, and
cooperativeness of an overall system. To
realize their benefits fully, AI tech-
niques and the theories underlying
them must be integrated much more
completely into the warp and woof of
computing theory and practice. Repre-
sentative long-term goals for integra-
tion with related areas of computing
research include:

—dramatically change the nature of
programming so that, for most tasks
and applications, the programmer
works with a collaborative, knowl-
edge-based agent that provides direct
and extensive support for specifying,
designing, implementing, maintain-
ing, and re-engineering reliable, ro-
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bust, secure, efficient, and intelligible
hardware and software systems;

—remove artificial distinctions between
knowledge bases and databases,
which current systems treat sepa-
rately (the knowledge bases in the
running program, the comparatively
large databases in specialized serv-
ers). Construct efficient, uniformly
transparent mechanisms for repre-
senting large amounts of knowledge
and data, for translating among these
representations, and for applying
knowledge-based inference, learning,
and discovery mechanisms to infor-
mation appearing in a variety of
forms in extremely large-scale knowl-
edge and data repositories;

—better integrate reasoning systems
with traditional programs, making it
easy to mix computation and reason-
ing from knowledge to achieve desired
results. Integrate the corresponding
programming and specification tools
as well, removing artificial distinc-
tions between description logics and
object-oriented systems and between
logic programming, rule-based pro-
gramming, and traditional program-
ming systems;

—lessen the tension between speed and
quality of action by continuing adap-
tation and extension of knowledge-
based reasoning and learning tech-
niques to real-time operation and
control of complex real-world systems
that involve hard deadlines; and

—make computers easier to use: more
cooperative and customizable, with
interfaces that employ natural lan-
guages and other modalities to com-
municate in familiar and convenient
ways.

4.2 Building Robots (Physical and
Computational)

Building integrated agents that per-
ceive and act in extant complex and
dynamic environments requires inte-
grating a wide range of subfields of AI
and computing research. These environ-

ments include both physical environ-
ments and the “virtual” worlds of infor-
mation systems. By focusing on
everyday worlds of interest to people,
such as office buildings or the Internet,
researchers avoid the methodological
hazards of designing and simulating toy
worlds unwittingly tailored to the de-
signs they were supposed to validate.
They also avoid the opposite problem of
focusing on problems so hard even hu-
mans cannot solve them.

The term “robot” traditionally refers
to automated agents acting in physical
environments, with terms such as “soft-
bot” and “software agent” introduced to
refer to agents acting purely within in-
formation systems, but this distinction
promises to fade in importance as phys-
ical agents enter into electronic commu-
nication with each other and with on-
line information sources, and as
informational agents exploit perceptual
and motor mechanisms (such as inter-
pretation of graphical images and syn-
thesis of gestures and other anima-
tions). Accordingly, this report calls
both types of agents robots, returning to
the original sense of the word as an
artificial worker in Karel Čapek’s 1921
play R.U.R. (Rossum’s Universal Ro-
bots).

Many of the major areas of AI and
computing research play essential roles
in work on robots, from planning, sens-
ing, and learning to high-performance
numerical computing and interacting
with multiple databases across net-
works. Robots working in informational
environments require little investment
in additional expensive or unreliable ro-
botic hardware, since existing computer
systems and networks provide their
sensors and effectors. Robots with phys-
ical abilities, in contrast, require mech-
anization of various physical sensory
abilities, including vision, hearing,
touch, taste, smell, thermoreceptivity,
and mechanization of various physical
motor abilities, including manipulation
and locomotion. These areas comprise
some of the major efforts of AI and

660 • J. Doyle et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996



provide some of its most impressive suc-
cesses.

Recent work points toward new direc-
tions and applications in physical per-
ception and motor abilities. Maturing
work on vision as inverse graphics now
finds applications in medicine and in-
dustry, and research on vision for au-
tonomous robots now takes as its focus
less well understood approaches em-
ploying more qualitative and “purpo-
sive” analyses that select which por-
tions or aspects of images to look at
based on what the robot is trying to do.
Work on motor abilities now yields un-
expected applications in rational drug
design for traditional techniques such as
configuration-space planning, whereas
research on control of autonomous ro-
bots has shifted toward less detailed
representations that make simpler de-
mands on sensory and actuation sys-
tems. Other work actively seeks to
transfer the new representation tech-
niques to applications such as indus-
trial cleaning and ordnance disposal.

Scaling the operation of autonomous
robots to more complicated tasks, and to
natural environments in which the ro-
bots operate safely in the presence of
humans, requires further integration of
perception, action, and reasoning. High-
level reasoning about what to do re-
quires developing new perceptual sys-
tems that generate the kinds of data
needed by the reasoning system, but the
reasoning system in turn must make
realistic demands on perception. The
marriage of these abilities aims to pro-
duce robots that combine the high-level
programmability of traditional AI sys-
tems with the fault tolerance of current
autonomous robots.

The area of computer vision exhibits
increasing integration with other disci-
plines. The subfield of active vision, for
example, seeks to radically simplify the
process of information extraction by
closely coupling it to the control of ac-
tion for a particular task, thus exploit-
ing the practical constraints imposed by
the domain of operation. Other ap-
proaches exploit theoretical and techno-

logical integration. For example, in-
verse optics—roughly, the use of images
to build models like those used in com-
puter-aided design systems—now draws
on collaborations with computer graph-
ics, medical image processing, computa-
tional geometry, and multimedia.

Representative long-term goals in this
direction include building robots that

—combine planning, learning, vision,
touch, speech, and other senses in
performing everyday tasks, for exam-
ple, housecleaning, cooking, shopping,
answering the telephone, making ap-
pointments, and negotiating or bar-
gaining with other agents (human or
otherwise) for commodities and infor-
mation;

—adaptively monitor, select, tailor, and
rewrite the contents of electronic in-
formation sources (TV, faxes, news-
wires, the World-Wide Web) to inform
one of news and events in accord with
one’s changing personal interests,
plans, and purposes;

—record, monitor, and analyze one’s
medical history and condition over
one’s entire lifetime, helping to ex-
plain and maintain treatment plans,
to detect physician mistakes, and to
guide interactions with healthcare
providers;

—perform tasks people cannot or do not
want to do, such as mining, firefight-
ing, handling hazardous material,
and planetary exploration;

—operate within large-scale distributed
systems to monitor and maintain the
overall system operation, learning
how to detect and defend against ma-
licious external (criminal or terrorist)
or internal (disgruntled or corrupt
employee) attacks.

4.3 Modeling Rationality

Formal and informal notions of ration-
ality from psychology (reasoning and ar-
gument) and logic (semantic consis-
tency, deductive closure) have served AI
well from its earliest days. They supply
concepts useful in mechanizing several
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forms of reasoning, and provide the
basis for major cognitive-modeling ex-
plorations of hypotheses about the psy-
chology of human ratiocination and its
integration with other mental faculties.
These large-scale, detailed cognitive
theories have already begun to change
the face of psychological theory, while
nonmonotonic, probabilistic, and new
modal logics continue to expand concep-
tions of logical rationality. The main
new direction here, however, seeks inte-
gration of rationality in the logical and
psychological senses with the economic
sense of rationality (maximum utility,
optimal allocation of resources). Ratio-
ality in the economic sense has made
only sporadic appearances in AI until
recently, even though it subsumes the
logical sense from a formal point of view
and provides explanations of important
aspects of rationality in the psychologi-
cal sense. Rationality in the economic
sense offers many attractions as an or-
ganizing principle for both intelligent
system construction and intellectual in-
tegration. It contributes to the system’s
coherence (in terms of explanation, jus-
tification, and verification), to its com-
petence (offering performance advan-
tages), and to its construction
methodology (design and development
advantages). Researchers in many areas
of AI have recognized these advantages
and begun work on exploiting rational-
ity in the economic sense. In conse-
quence, economic rationality promises
to permeate much of AI; indeed, this
work also promises to contribute to eco-
nomics as well, as AI and economics
work together on their shared problems.

Early work in AI largely rejected for-
mal economic models in favor of psycho-
logical ones because the standard eco-
nomic theory focuses on an idealization
in which rational agents suffer no limi-
tations of memory or time in coming to
decisions, and which, for these reasons
and others, may not be realizable in the
world. Economic approaches generally
presupposed possession of utility and
probability functions over all contingen-
cies, which did not help in AI’s need to

construct these functions at the outset.
Moreover, economics formalized prefer-
ence and probability information in
terms of very abstract representations
that, through a lack of much structure,
supported only very inefficient algo-
rithms for making rational choices. In
contrast, the psychological problem-
solving methodology quickly adopted in
AI starts with an easily realizable no-
tion of rationality that is much weaker
than the standard economic notion (one
sanctioned, moreover, by Herbert Si-
mon, an heretical economist founder of
AI). Rather than seeking to maximize
the numerical utility or expected utility
across all conceivable actions, problem-
solving rationality simply seeks to find
actions meeting less stringent aspira-
tions, such as satisfying designated con-
ditions (“goals”) on the resulting states.
Building on this approach, researchers
now work towards ideal rationality
through several means: by increasing
the sophistication of reasoning about
goals, by adopting explicit notions of
utility, and by performing tractable op-
timizations that take into account the
limited knowledge and abilities of the
decision maker.

As this approach to rationality sug-
gests, recent work in AI has drawn on
economic theory in many ways while
remaining cognizant of its limitations.
The first major exploitation came about
through partially solving the problem of
representing probabilistic information
that stymied early attempts to use deci-
sion-theoretic ideas directly. The popu-
lar graphical formalisms, especially
Bayesian networks and influence dia-
grams, now support great numbers of
successful applications, from sophisti-
cated medical reasoners to mundane
printer-diagnostic subsystems of per-
sonal computer operating systems. In-
deed, the decision-theoretic notions of
preference, utility, and expected utility
now play important roles in many areas
of AI research, as they help to shape
learning and adaptation, to guide the
plans and actions of autonomous agents
and robots, and to reconcile and inte-
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grate AI planning methods with those of
operations research. As interest in col-
laboration and multiagent systems has
increased, many AI researchers have
adopted the tools of game theory and
the theory of social choice to analyze
and design agent interaction protocols,
to understand computational decision-
making methods, and to analyze func-
tional decompositions of mental organi-
zation. In the most explicit borrowing
from economics, some work employs
computational market price systems to
allocate resources in a decentralized
manner, and uses theoretical analyses
of different economic systems to tailor
multiagent organizations to achieve
high efficiency in performing specific
tasks.

Just as AI has contributed to logic,
the intellectual trade with economics
flows both ways, though unequally at
present. Bayesian networks and other
AI methods have improved practice in
statistics. The anticipated but as yet
unrealized prize contribution, however,
lies in using the precise detailed models
of mental organization developed in AI
in formulating a realistic and useful
theory of the rationality of limited
agents (such as people) and organiza-
tions composed of such agents, some-
thing that has evaded economics
throughout its history. The AI theories
relating goals and preferences provide
one step in this direction, as they aug-
ment the traditional economic theories
of preference with new qualitative lan-
guages for modeling the incomplete and
conflicting desires of agents. Recent
work on control of deliberation, balanc-
ing the costs of further deliberation
against the expected benefits, also
points in this direction. More immedi-
ately, AI and computing research might
help economists get a handle on costs
and value of information, computation,
and communication, factors too often
neglected in economics.

Representative long-term goals in this
direction include:

—continued development of efficient
representations and algorithms for
rational decision and action that inte-
grate, extend, and improve on current
structured representations for proba-
bilities, preferences, decisions, and
(game-theoretic) games;

—construction of effective computa-
tional techniques that allow trading
amounts of computational commodi-
ties—such as time, memory, or infor-
mation—for gains in the value of com-
puted results.

—understanding the relationship be-
tween the rationality of the design of
a system (problem formulation, knowl-
edge representation, computational
resources) and the rationality of the
resulting system; and

—extending the application of theories
of rationality to learning and adapta-
tion, especially in situations where
the learning process must both use
and learn preference and utility infor-
mation.

4.4 Supporting Collaboration

Quite apart from the research collabora-
tions within and without AI just de-
scribed, the subject matter of collabora-
tion and coordination of multiple agents
(human or artificial) forms one of the
main directions for AI research in com-
ing years [Grosz 1996]. To prove useful
as assistants, AI systems must inter-
pret the words and deeds of people to
model the desires, intentions, capabili-
ties, and limitations of those people,
and then use these models to choose the
most appropriate or helpful actions of
their own. Making these interpretations
often means relying on statistical prop-
erties of past behavior, and choosing
how to cooperate often means assessing
or negotiating the preferences and
tradeoffs held by the various partici-
pants.

Studies of collaboration have a long
history in sociology, economics, politics,
linguistics, and philosophy. AI has stud-
ied collaboration issues in four primary
contexts: understanding dialogue, con-
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structing intelligent assistants, sup-
porting collaborative and group work,
and designing “artificial societies.” In
the longest-studied of these contexts,
understanding dialogue, the normal
rules of conversational implicature pre-
suppose cooperative intent on the part
of the listener. Asking a computer “Can
I see the accounts receivable summary?”
should yield either presentation of the
summary or an explanation of the rea-
son for its unavailability, not a less-
than-helpful “yes” or “no.” Aggravation
with the stupidity of computers will
never cease without such cooperative
interpretation of requests and state-
ments.

In the more recent context of design-
ing intelligent assistants, the assistant
systems must seek to understand and
support the aims of the user. These
systems go beyond mere decision sup-
port by attempting to anticipate and
satisfy the needs of the user whenever
possible and appropriate. The ARPA/
Rome Laboratory Planning Initiative
[Fowler et al. 1995] and NASA’s VISTA
ground-control support system [Horvitz
et al. 1992] provide good examples of
such assistants.

In a broader context, AI research con-
tributes to providing supportive envi-
ronments for collaboration and group-
cooperative work. As in understanding
discourse and designing intelligent as-
sistants, these supportive environments
must model processes and plans, but
they must also supply methods that rea-
son from these models to coordinate
projects, manage workflow constraints,
filter and broker information, answer
questions, notify participants as appro-
priate, translate “utterances” between
different interface modalities, and gen-
erate summaries to quickly bring offline
participants up to date.

The newest context, designing artifi-
cial societies, introduces a design per-
spective into economics by seeking to
tailor the preferences of agents, the pro-
tocols of interaction, and the environ-
mental constraints so as to automati-
cally yield collaboration, noninterference,

and other desirable properties of group
behavior.

Research on collaborative systems
draws together many of the research
areas of AI, especially planning, multi-
agent learning, speech and language,
and image understanding and presenta-
tion, and involves fundamental issues of
modeling commitment, communication
requirements, constraints and tradeoffs,
negotiation methods, and methods for
resolving conflicts among the intentions
of collaborating agents. Collaborative
systems also provide an interesting en-
vironment for attacking a core problem
of knowledge representation, that of
amassing enough knowledge about a
broad domain, including many applica-
tion tasks, to improve performance sig-
nificantly. Situating people and artifi-
cial agents in a common environment
with a shared domain model, even a
rudimentary one, creates the opportu-
nity for large numbers of collaborators
to convey their knowledge to and share
their discoveries with one another and
with the artificial agents, and for each
participant to learn from the collabora-
tive experience.

Representative long-term goals in this
direction include:

—construct DWIM (do what I mean)
capabilities for household, educa-
tional, commercial, and industrial ap-
pliances, yielding machines that infer
the desires and intentions of the users
and cooperate with them in achieving
their aims;

—construct intelligence “amplifiers” or
“prostheses” that act with a person to
overcome limitations of knowledge,
memory, or speed in achieving the
person’s aims; and

—construct societies of human and arti-
ficial agents that collaborate in effi-
cient ways to achieve complex ends.

4.5 Enhancing Communication

Efficient and natural communication
holds the key to many of the promises of
computers, given that relying on com-
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mand languages, menus, textual dis-
play, and other traditional media sty-
mies many potential applications.3 The
activities these applications support
normally rely on many different com-
munication modalities, such as spoken
utterances, written texts, and the ges-
tures that accompany them, and effec-
tive participation in these activities re-
quires the ability to understand and
generate communications in these mo-
dalities. In addition, the ability to read
would greatly simplify the task of im-
parting knowledge to artificial agents,
considering the vast amount of human
knowledge encoded in written form. AI
has long addressed these issues, and
has contributed to great progress in re-
alizing linguistic and visual communi-
cation mechanisms involving multiple
modalities, including natural language,
gestures, and graphics. The most gen-
eral form of these abilities, however,
lies far beyond current scientific under-
standing and computing technology.

Ambiguity, intent, and thinking while
speaking form some of the main obsta-
cles to achieving the desired communi-
cation. Human languages all use a
small set of resources (such as words,
structures, intonations, and gestures) to
convey an exceedingly wide, rich, and
varied set of meanings. Speakers often
use the same word, structure, or gesture
in many different ways, even in the
same sentence or episode. Although peo-
ple rarely notice such ambiguities, their
identification and resolution challenge
current speech- and language-process-
ing systems. Intent, or the difference
between what people say (or write) and
what they actually mean, arises because
people rely on their audience to infer
many things left unsaid or unwritten
from context and common knowledge.
Furthermore, people often begin to

speak or write before thinking through
their ideas completely, using the formu-
lation of utterances as a step in under-
standing their own partially formed
ideas. Both practices result in partial
and imperfect evidence for what people
really mean to communicate.

Recent developments include the use
of statistical models, typically gener-
ated automatically, to predict with good
accuracy simple grammatical features
of utterances such as the part of speech
of a word, as well as semantic proper-
ties such as the word sense most likely
in a given context. These models thus
reduce problems caused by ambiguities
in the grammatical and semantic prop-
erties of words. In other work, idealized
models of purposive communicative ac-
tion support improved discourse model-
ing.

Much of the success of current natu-
ral language processing technology
stems from a long and tedious process of
incremental improvement in existing
approaches. Extracting the best possible
performance from known techniques
requires more work of this kind, but
exploration of new and combined ap-
proaches supplies additional opportuni-
ties. For example, although statistical
and machine-learning techniques in
natural language processing offer broad
(but shallow) coverage and robustness
with respect to noise and errors, gram-
matical and logical techniques offer
deeper analyses of meaning, purpose,
and discourse structure. These two
types of techniques could complement
one another, with the symbolic tech-
niques serving to specify a space of in-
terpretation possibilities and the statis-
tical techniques serving to evaluate
efficiently the evidence for alternative
interpretations. The results of such in-
tegration should prove of value to all
natural language processing applica-
tions, from information extraction and
machine translation to collaborative in-
terfaces. Another opportunity involves
determining the most effective combina-
tion of natural language processing
technology with other technologies to

3 Much of the text in the section on enhancing
communication was taken directly from sections
of Weld et al. [1995], with some revisions. The
borrowed text is Copyright © 1995 American Asso-
ciation for Artificial Intelligence, and is reprinted
with permission from AAAI.
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forge effective multimodal user inter-
faces.

Representative long-term goals in this
direction include:

—provide spoken and gestural control
for common appliances (lighting,
heating, air conditioning, computers,
televisions, automobiles, etc.) in many
settings: the smart house, office, fac-
tory, and the like;

—automate the formalization of knowl-
edge from books and other texts;

—provide simultaneous translation be-
tween languages, automatic transla-
tions of written texts, and natural
spoken renditions of written or elec-
tronic texts; and

—permit the use of natural spoken or
written languages in interacting with
large-scale databases and sources of
knowledge: automate telephone oper-
ators, librarians, travel agents, and
other services.

4.6 Obtaining Knowledge

The most widespread benefit so far of
putting AI into practice consists of the
bodies of human knowledge formalized
with an eye to mechanizing reasoning.
Though the idea of writing down expert
knowledge in explicit form goes back at
least to the code of Hammurabi, if not to
the earlier Egyptian and Babylonian in-
ventors of geometry and arithmetic, the
knowledge formalized and codified
through AI methods has a very different
character and purpose. AI compilations
go beyond mere books by representing
not just the “factual” knowledge about
the subject but also the reasoning pro-
cesses appropriate to specific uses of the
knowledge. Authors of books focus on
conveying propositional knowledge, nor-
mally leaving it up to the reader to
learn how to apply and interpret the
knowledge. Authors of traditional com-
puter programs focus on representing
processes, necessarily leaving it to the
documentation (if any) to convey the
facts used or presupposed in the design
or operation of the programs. The effi-

cient mechanization, maintenance, and
explication of expertise requires ex-
pressing both types of knowledge in de-
clarative representations. Reasoning
systems may then manipulate these
representations in a variety of ways to
support explanation, guidance, mainte-
nance, and learning. The novel opportu-
nities created by capturing reasoning
processes as well as factual knowledge
have stimulated great effort in this
area, and construction of knowledge-
based systems today goes on in hun-
dreds if not thousands of sites. Most of
this work stays invisible, as businesses
and organizations view these bodies of
articulated expertise as trade secrets
and competitive advantages they do not
wish to see their competitors replicate.

The problem of formalizing knowledge
remains one of the principal challenges
to AI research. Current successful
knowledge-based systems rely on care-
fully limiting the scope and domain of
the formalized knowledge, in order to
make it tractable to collect, codify, and
correct this knowledge. The experience
of AI shows two key lessons about this
task: formalizing knowledge is difficult,
and adequate formalizations are feasi-
ble. The current formalizations, al-
though adequate to the specific tasks
addressed so far, fail to support the
integration aims of AI research in sev-
eral ways, and overcoming these limita-
tions forms a major task for AI research
that forces consideration of many funda-
mental issues in knowledge representa-
tion.

First, current formalizations do not
cover the broad scope of knowledge
needed for intelligent activity outside of
carefully circumscribed circumstances,
in particular, the knowledge needed by
integrated systems acting in everyday
household, social, workplace, or medical
situations; nor do current formaliza-
tions fit together smoothly, since the
conceptualizations adequate to one do-
main rarely do justice to the concepts
from peripheral domains. Addressing
these problems calls for constructing
formal “ontologies” or conceptual orga-
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nizations adequate to the broad scope of
human knowledge that include proposi-
tional, uncertain, and algorithmic and
procedural knowledge; finding ways for
efficiently structuring, indexing, and re-
trieving large-scale bodies of knowledge;
reasoning across multiple domains, and
across the same knowledge represented
for different purposes; and efficiently
representing the contexts or foci of at-
tention that form the specific portions of
the large bodies of interest in episodes
of reasoning. To prove useful in prac-
tice, the structures and methods devel-
oped here will require (and benefit
from) smooth integration with extant
databases and database organizations,
as well as a closer integration between
declarative knowledge about formalized
procedures and the use of typical proce-
dural programming languages.

Second, most extant bodies of formal-
ized knowledge presuppose, but avoid
formalizing, the commonsense knowl-
edge so characteristic of people. Al-
though expert performance often does
not depend on common sense (as any
number of jokes about experts illus-
trate), commonsense knowledge and
reasoning appear crucial, both for tying
together domains of expert knowledge
and for recognizing the boundaries of
specialized expertise in order to avoid
acting inappropriately. Thus construct-
ing broadly knowledgeable and capable
systems requires formalizing and mech-
anizing commonsense reasoning. The
amount of knowledge needed for intelli-
gent action across the broad range of
human activity promises to dwarf even
the large body developed in the long-
running CYC project [Lenat 1995].

Third, current methods for construct-
ing bodies of formalized knowledge re-
quire much (often heroic) human labor
on the part of the best (and least avail-
able) people knowledgable in each area,
as does their maintenance or adjust-
ment as circumstances change. Though
some applications may command the
resources these methods demand, real-
izing the benefits of knowledge-based
systems in the broad spectrum of appli-

cations requires developing methods in
which the necessary mass of knowledge
accumulates through many small con-
tributions made by a range of people,
both the ordinary many and the expert
few, and through the exploitation of ma-
chine labor.

The goal of enabling people to make
incremental contributions to knowledge
bases motivates research on simplifying
and streamlining the process of updat-
ing and maintaining the system’s
knowledge and abilities. Performing the
primary tasks—identifying gaps in
knowledge, expressing the knowledge
needed to fill those gaps, and checking
new knowledge against old—requires
knowledge about the system’s own
knowledge and operation. Accordingly,
methods for these tasks rely on declara-
tive formalizations of both the processes
for carrying out each of these steps and
of the structure and function of each
part of the knowledge base, rather than
on the mainly procedural representa-
tions found in most programming lan-
guages. Such formalizations, and meth-
ods for using them, form the basis of the
extensively investigated KADS method-
ology and library [Schreiber et al. 1993].
Automating these methods as part of
the system’s own reasoning permits the
system to exhibit limited forms of self-
understanding, and makes the pro-
cesses of reasoning and acquisition
quite synergistic.

Of course, people do not always pos-
sess the knowledge they need, and even
with automated help may still find it
extremely hard to articulate the knowl-
edge they do have. Work on machine
learning and discovery techniques
bridges the gap in many cases. This
work builds on statistical methods and
“connectionist” models inspired by neu-
rophysiology, but extends them to cover
a much richer class of models and to
combine symbolic and numerical meth-
ods in useful ways. Current methods
can capture some expert behavior, but
often do so in a way that does not pro-
vide useful explanations of the behav-
ior. Using these bits of embodied exper-
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tise in many cases requires further
analysis to transform the knowledge
(e.g., “turn to the right if E . 0” for
some complex numerical expression E)
into a more explicit and sensible form
(“turn to the right if the road turns
right”). For example, one important new
area uses Bayesian networks to summa-
rize prior knowledge in an understand-
able way, Bayesian inference to combine
prior knowledge with new data, and
techniques of compositional representa-
tion to learn (construct) new networks
when the prior network fails to accom-
modate the new data adequately. An-
other new area, knowledge discovery in
databases (or “data mining”), finds reg-
ularities and patterns in extremely
large data sets by integrating tech-
niques from machine learning and sta-
tistics with modern database technol-
ogy.

Representative long-term goals in this
direction include:

—construct evolving formal encyclope-
dias of knowledge and methods and
techniques for tailoring them to par-
ticular ends, starting with the most
commonly used and sharable catego-
ries but ultimately covering all hu-
man knowledge and methods;

—determine the most effective ways to
represent information for different
purposes, together with means for
combining representations of differ-
ent types of knowledge and for trans-
lating among these;

—develop automated tutors that use
formal encyclopedias to help educate
humans in all topics and at all levels
(within the scope of the encyclope-
dias), that use questions and observa-
tions of the student to model the stu-
dent’s knowledge, abilities, and learn-
ing style, and that use the model to
tailor construction of successive les-
sons or exercises to the particular
needs of the student;

—design organizations and factories
that improve themselves, automati-
cally analyzing experience to learn

hidden efficiencies and inefficiencies;
and

—automate the more routine and data-
intensive areas of commercial, indus-
trial, statistical, and scientific re-
search.

4.7 Deepening Foundations

Mathematical work in AI has long
swum in the same waters as the theory
of computation, logic, and mathematical
economics. Early mathematical work fo-
cused on the theory of search and the
power of statistical and neural-net mod-
els of recognition, but later work has
added deep and rich theories of nonmono-
tonic reasoning; of the expressiveness, in-
ferential complexity, and learnability of
structured description languages; and of
stochastic search techniques. Some of
this work employs notions taken from or
developed in concert with the theory of
computation, such as time-space classi-
fications of computational complexity
and epistemic theories of distributed
systems. AI theories must consider
richer classifications of systems, how-
ever, since the properties distinguishing
minds (belief, desire, intent, rationality,
consciousness, sensory and motor facul-
ties, etc.) constitute a larger and more
puzzling set than those distinguishing
computations. Although reasonable for-
malizations exist for some of these dis-
tinguishing properties, others remain
problems for formulation. AI shares
some of these problems with the mathe-
matical sides of logic, economics, phys-
ics, and the theory of computation, but
alone among the disciplines aims to
characterize the full range of possible
psychological organizations for minds,
from the trivial to the superhuman.
Since conceptual analysis flourishes
best in the context of solving specific
problems, the concrete complex systems
developed in AI research bestow an ad-
vantage on AI over its relatives, which
typically lack nontrivial yet tractable
examples to study. These concrete com-
plex examples continue to attract the
attention of workers in other disci-
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plines, and this comparative advantage
promises a stream of AI contributions to
these other fields.

Representative long-term goals in this
direction include:

—identify realistic yet theoretically
comprehensible and tractable theories
of rationality appropriate to agents of
limited knowledge and abilities;

—properly formalize all aspects of psy-
chological theories: not just reasoning
and decision-making, but habit, mem-
ory, emotion, motivation, and other
aspects as well; and

—find appropriate common mathemati-
cal forms that reconcile theories of
informational (computational, cogni-
tive, economic) and material (physi-
cal) agents.

5. CONCLUSION

These studies are an impetus to
youth, and a delight to age; they are
an adornment to good fortune, ref-
uge and relief in trouble; they en-
rich private and do not hamper pub-
lic life; they are with us by night,
they are with us on long journeys,
they are with us in the depths of the
country.

Cicero, Pro Archia, VII.xvi

By addressing both the underlying na-
ture of intelligence and the development
of theories, algorithms, and engineering
techniques necessary to reproduce reli-
able, if rudimentary, machine intelli-
gence, AI research makes numerous,
large, and growing contributions to com-
puting research and to the evolving so-
cial and industrial information infra-
structure. Some contributions come
through study of the deep scientific is-
sues that concern our understanding of
computation, intelligence, and the hu-
man mind. Others come through practi-
cal applications that help make com-
puter systems easier and more natural
to use and more capable of acting as
independent intelligent workers and
collaborators. Continued progress re-

quires pursuing both types of contribu-
tions. The practical applications alone
offer some of the strongest motivations
for pursuing the scientific studies, as
achieving the practical benefits seems
hopeless without obtaining a deeper sci-
entific understanding of many issues.
At the same time, success in many of
the scientific investigations calls for de-
veloping broad bodies of knowledge and
methods—and practical applications
provide the most natural context for
developing these bodies of intelligence.

AI researchers retain enthusiasm
about their field, both about the prob-
lems it addresses and about the ongoing
progress on these problems, even as it
has matured into a field of substantial
content and depth. AI has needs that
intersect with all areas of computing
research, and a corresponding interest
in partnerships with these areas in ad-
vancing knowledge and technique on
these shared problems. It offers tech-
niques and theories providing leverage
on hard problems and also offers large
important problems that might well
serve as target applications for much of
computing research. Only a few of these
have been described in this short sum-
mary, and many opportunities remain
for joint exploration with other areas of
computing. As a field, AI embarks on
the next fifty years excited about the
prospects for progress, eager to work
with other disciplines, and confident of
its contributions, relevance, and cen-
trality to computing research.

Write the vision; make it plain upon
tablets, so he may run who reads it.

Habakkuk 2:2, RSV
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