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Abstract: We examine some formalizations of the notion of similarity as it
appears in learning, and of the notion of conservatism as it appears in reason-
ing. We show that the underlying formalizations are closely related to each
other and to a central notion of the formal theory of rationality. These con-
nections indicate how the structures of similarity judgments and conservatism
can arise naturally in agents which rationally govern their own representation
and reasoning.
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1 Introduction

The subjects of learning and reasoning are often fairly distinct in artificial
intelligence, with learning focusing on acquiring new knowledge and reasoning
focusing on using old knowledge. Of course, learning may involve reasoning
(consider explanation-based generalization [Mitchell et al. 1986]), and reason-
ing may involve learning (consider SOAR’s chunking [Laird et al. 1987]). But
by and large, the different aims of learning and reasoning in the eyes of most
researchers have led to separate theories.

In this paper we attempt to connect the concept of similarity prominent
in many discussions of learning with the concept of conservatism prominent in
some theories of reasoning. The best examples within artificial intelligence of
the notion of similarity concern learning by analogy and clustering of data. In
making analogies, one considers two situations and identifies as similar some
of the objects and relationships present in one situation with objects and re-
lationships present in the other. There are always many such identifications
possible, and it is common to compare analogies, saying that one analogy
is better than another. For example, Winston [1975] described a distance
measure between analogies, with better analogies involving smaller distances,
and Carbonell [1983] employed such a measure to guide heuristic search for
analogies. In clustering data, one seeks to classify the differences between
items as either significant or insignificant, in order to group together all simi-
lar (insignificantly differing) items as instances of the same event or concept.
For example, [Michalski and Stepp 1983] cluster data by using neighborhood-
dependent distance functions on points. On the other hand, in conservative
reasoning, by which we mean conserving as much mental state as possible
over time, not political opinions or aversion to risk, each mental state of the
reasoner is similar to its predecessors, or more similar than alternative states.
Similarity and conservatism have previously been intimately connected in the
derivational analogy method of learning proposed by [Carbonell 1986], in which
the arguments for a new concept are chosen to be as similar as possible to the
arguments for an earlier concept. Here we view similarity and conservatism
formally, and indicate how they arise naturally from the more fundamental
notion of rationality.
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2 Similarity

Similarity has been studied in its own right more thoroughly in psychology
than in artificial intelligence. Tversky [1977], for example, summarizes a large
literature and introduces a formal theory of similarity. His idea is that judg-
ments of similarity are based on the differences in the sets of features of the
items under consideration. Thus if a and b are objects characterized respec-
tively by feature-sets A and B, the degree of similarity of a and b, written
s(a, b), is a function of the sets of shared and unshared features of a and b,
namely A ∩ B, A − B, and B − A. With such a function, one can compare
degrees of similarity, so that s(a, b) ≥ s(c, d) means that a is more similar
to b than c is to d, a comparison very familiar from Evan’s and Winston’s
treatments of analogies. This view of similarity recognizes the asymmetry of
some judgments, and also how common elements can sometimes outweigh dif-
ferences, or vice versa. However, Tversky’s axioms place strong requirements
on similarity judgments, requirements sufficient to guarantee the existence of
essentially unique continuous real-valued functions s for representing degrees
of similarity. In the following, we focus on a somewhat more general concep-
tion, concentrating on the central notion of comparison of similarities, whose
qualitative theory is simpler than Tversky’s strong numerical theory.

Studies of similarity also appear in philosophy in the analysis of counter-
factual statements such as “if it had not rained, the crops would have failed.”
For example, Lewis [1973] employs the notion of similarity to say that a coun-
terfactual is true if its conclusion is true in those possible worlds most similar
to the actual world, thus viewing counterfactuals as making analogies between
the actual world and “possible worlds” in which the hypothesis is true instead
of false. Of course, if the counterfactual is not an ordinary entailment, there
are always possible worlds in which the hypothesis is true but the conclusion
is false: hence the requirement that the alternative world be as similar as
possible to the actual one, in order to make the interpretation nontrivial.

Lewis formalized the notion of similarity in a comparative similarity relation
over possible worlds. In essence, this is a ternary relation between worlds A,
B, and C, written B �

A

C, which states that B is more similar to A than

C is to A. (The corresponding notion in Tversky’s theory is expressed by
s(A, B) ≥ s(A, C).) Formally, if U is the set of all possible worlds (including
the actual world), then for all A, B, C, D ∈ U ,

2



1. A �
A

B,

2. B �
A

B, and

3. If B �
A

D and D �
A

C, then B �
A

C.

The first of these conditions says that the most similar world to a world is
itself. The second and third conditions say that for each world A, the relation
�
A

is a reflexive and transitive relation, that is, a quasi-order over U . Lewis’s

notion is actually more involved than just these three axioms, but his extra
conditions are not important here.

To use comparative similarity relations for describing analogies, let M be
the class of all sets of items and relations, that is, of all model-theoretic struc-
tures over some universe. Let U be the class of all analogies between elements
of M , that is, the class of all homomorphic mappings of structures in M . Then
comparison of analogies can be captured as a comparative similarity relation
over U . We pretend that M ⊆ U by identifying each A ∈ M with its iden-
tity mapping idA ∈ U . We then write B �

A

C just in case B : A → A′ and

C : A → A′′ are two analogies starting from A and B is a better analogy than
C.

Note that these comparisons need not be complete, in that neither B �
A

C

nor C �
A

B need hold. This means that this formulation is more general than

using a single numerical function to measure degree of similarity. In that case,
we would define B �

A

C iff s(A, B) ≤ s(A, C). We say that a measure function

s is compatible with � iff s(A, B) ≤ s(A, C) whenever B �
A

C. The possible

incompleteness of � means that in general, many different measures s will be

compatible with the comparative similarity relation. Incomplete orders arise
when distances can be measured along several distinct dimensions, so that
one must compare vectors of dimensions rather than a single number. Most
practical systems, however, have been required to offer complete judgments.
Thus in Carbonell’s [1983] multidimensional comparison of analogies, and in
Michalski and Stepp’s [1983] clustering of points in a multidimensional space,
the need to make overall comparisons leads to combining all the different
dimensions into a single function, as in Tversky’s treatment of similarity.
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3 Conservatism

[Doyle 1983] developed a formal notion of conservatism identical to the for-
malization of similarity considered above to describe the programs for reason
maintenance (RMS) and dependency-directed backtracking (DDB) described
(under the name TMS) in [Doyle 1979], using a comparative similarity relation
to compare states of the reasoner. In RMS, changing assumptions requires
updating their consequences. Though RMS recorded and traced reasons to
perform the update, its intent is better described as seeking to revise as few
conclusions as possible. In DDB, contradictions are resolved by tracing rea-
sons as well, but again the intent is better expressed as removing contradictions
with as few consequences as possible.

In formalizing RMS, we view states as sets of nodes (representing proposi-
tions or reasons) drawn from a universal set D. We write I to mean the set of
all states of the agent, so that S ⊆ D for each S ∈ I. The operation of reason
maintenance can then be viewed as starting with a state S and a “kernel” set
K of new assumptions and then moving to a new state S ′ which contains the
new assumptions, that is, K ⊆ S ′. Define I(K) = {X ∈ I | K ⊆ X}, and
define S ′ �

S

S ′′ to hold iff S 4 S ′ ⊆ S 4 S ′′, where X 4 Y is the symmetric

difference of X and Y , that is (X − Y ) ∪ (Y − X). Since the aim of reason
maintenance is to make as small a change as possible, we pick S ′ ∈ I(K) so
that S ′ �

S

S ′′ for every S ′′ ∈ I(K), thus minimizing the set of changed ele-

ments. For reasons that are not relevant here, RMS failed to reliably achieve
this ideal, but it is nevertheless a natural way to view its operation.

The specific sort of state-similarity appearing in RMS’s conservatism has
close connections with the basic notions of Tversky’s theory of similarity. As
described earlier, in that theory similarity judgments are mediated through
comparisons of sets of features, just as conservatism compares states of mind
by viewing them as sets of mental elements. But more interestingly, the “mono-
tonicity” condition Tversky places on similarity measures is reflected in RMS’s
conservatism as well. Specifically, Tversky requires that s(a, b) ≥ s(a, c) when-
ever

1. A ∩ B ⊇ A ∩ C,

2. A − B ⊆ A − C, and

3. B − A ⊆ C − A.
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But since A4B = (A−B)∪ (B −A), we see that Tversky’s three conditions
imply that A 4 B ⊆ A 4 C, so that s(a, b) ≥ s(a, c) implies B �

A

C under

RMS’s definition of conservatism.
Though DDB actually removed contradictions by tracing reasons and re-

moving “maximal” assumptions, we can use comparative similarity relations
to capture its intent as well in the following way. If we write I+ to mean
the set of contradiction-free states in I, DDB seeks to conservatively remove
contradictions from a contradictory state S by picking a state S ′ ∈ I+ such
that S ′ �

S

S ′′ for every S ′′ ∈ I+.

4 Rationality

We have seen that the notion of comparative similarity relation appears nat-
urally in similarity and conservatism comparisons in learning and reasoning.
The abstractness of the notion of comparative similarity relation seems jus-
tified because in some cases there are many plausible candidates for such re-
lations. For example, RMS might be just as interesting if it minimized the
number of changed elements than the set of changed elements. But it seems
natural to ask if some sorts of comparisons have better motivation than others.
To answer that question, we must know more about where these comparisons
come from. We propose to view comparative similarity relations as stemming
from the notion of rationality. For the notion of rationality we employ the
standard notion from decision theory, according to which an action is said to
be rational for an agent at some instant if it is of maximal expected utility ac-
cording to the agent’s beliefs and preferences about current and future events,
where the agent’s preferences may be a function of its goals and plans. (See,
for example, [Jeffrey 1983]).

The central notion of decision theory is that the agent may order its alter-
natives according to their expected utility. Expected utility is usually thought
of as a numerical assessment of states, but this need not be so. One may
also develop the theory in a “behavioristic” fashion from the choices a rational
agent would make among different alternatives. Developed this way, the the-
ory begins with a set of preferences among alternatives rather than probability
and utility functions. If we let U stand for the set of all alternatives at an
instant, then the agent’s preferences are comparisons of the form a < b for
a, b ∈ U , such that the combined preference relation < satisfies certain axioms
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of rationality, for example that preference is transitive. If we write a ∼ b

to mean that the agent does not prefer either alternative to the other, that
is, that a 6< b and b 6< a, then the equivalence classes induced in U by ∼
can be identified as degrees of expected utility, and can be represented with a
numerical measure of expected utility.

We propose to understand the quasi-orders appearing in similarity and
conservatism in terms of the preference and indifference relations < and ∼. In
essence, we view s(a, b) ≥ s(a, c) as meaning that choosing b is preferred or
equivalent to choosing c when the decision is one of selecting the most similar
alternative to a, that is, that c < b or b ∼ c when these choices refer to a.
Correspondingly, we view S ′ �

S

S ′′ as meaning that in state S choosing to

move to state S ′ is preferred or equivalent to choosing to move to state S ′′,
that is, that S ′′ < S ′ or S ′ ∼ S ′′ in state S.

The nominal rationality of the comparative similarity relation is most ap-
parent in the case of conservatively updating the agent’s state. Simply min-
imizing the set of changes made, as RMS does, is not always reasonable, for
this criterion does not distinguish between guesses and gospel. Thus RMS
can in some cases discard fundamental laws and keep trivial hypotheses. To
avoid such senseless revisions, conservatism needs to be rational conservatism,
rationally selecting the update of maximal expected utility with, for example,
frequently employed fundamental beliefs counting much more than ephemeral
assumptions. Russell and Grosof [1987] propose to use this sort of rational
revision for the case of shift of bias in learning, but it is an idea applying to
all updates, not just shift of bias. Similarly, DDB’s choice of a “maximal”
assumption to remove or replace in order to restore consistency is made with
the expectation that this choice will lead RMS to find a consistent conservative
revision. A better way of proceeding is to choose the assumption rationally so
that the expected payoff is highest among all possible choices of assumptions
to remove. Thus RMS and DDB achieve only weak approximations to rational
conservatism and rational backtracking.

Viewing similarity as stemming from rationality can be tricky. While it is
easy to admit to having preferences about what to believe, it is less natural to
think of observed similarities between objects as having anything to do with
rationality. To view similarity as arising from rationality, we must step back
and recognize that the rational agent thinks rationally as well as acts ratio-
nally. That is, the rational agent economizes on its mental resources. Every
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representation of information entails costs in memory and time: the memory
needed to store the information, and the time needed to use it. There are
well known tradeoffs between the succinctness of axiomatizations and lengths
of proofs, and between expressiveness of languages and difficulty of finding
proofs. These economic tradeoffs motivate different organizations for repre-
sentation and reasoning, among them organizations of concepts according to
similarity. In fact, Lakoff [1987] argues that many of the associations among
concepts exhibited in human languages do not result from any fundamental
connection of meaning as much as from the conceptual convenience these as-
sociations offer, and it is natural to interpret “conceptual convenience” as
another phrase for rational choice of representation and clustering.

Consider, for example, the case of prototypes in taxonomic hierarchies.
Tversky defines good prototypes to be those which (roughly speaking) maxi-
mize average similarity to the class of instances. But viewed more generally,
this is just a special case of (or approximation to) maximization of expected
storage costs. Hierarchies, of course, compress lots of data into simple descrip-
tions and so offer dramatic (often exponential) economies of storage space.
Some sorts of hierarchies are purely logical, with subconcepts entailing super-
concepts, but in general the use of prototypes stem from economical rather
than logical concerns. For example, say a prototypical concept is defined by
a set or conjunction of n properties or aspects, and that objects satisfying
any n − 1 of these properties are counted as instances of the concept, albeit
exceptional ones. Suppose further that we wish to describe n + 1 individuals,
one of which satisfies the concept perfectly, and n exceptional instances repre-
senting every possible exception. To describe these individuals in a system of
prototypes and exceptions requires only 3n + 1 statements: n to describe the
prototype, a typing or IS-A statement for each instance (n+1 all together) and
a statement of the exceptional property for each of the exceptional instances
(n of these). But to make the same descriptions using the ordinary logical
connectives and implication requires n2 + n + 1 statements: n for the proto-
type, one implication for the perfect instance, and n statements, variations of
the prototype’s definition, to describe each of the exceptional cases, n2 in all.
Thus the nonlogical system of prototypes can be much more efficient than a
strictly logical representation. Of course this example considers only storage
costs and does not take into account either limits on storage resources or ex-
pectations about what sorts of questions will be asked during retrieval, or with
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what frequency. These may greatly change the form of rational representation,
but that is a topic we cannot pursue here.

5 Conclusion

We have seen how similarity, an important notion in the theory of learning,
is closely related at the formal level to conservatism, an important notion
in the theory of reasoning. Each of these topics deserves attention in its
own right, but both may be naturally interpreted as arising directly from the
agent’s rational choices about how to represent information and how to reason
with it. Recognizing this sort of rational self-government, moreover, helps to
understand and connect numerous other aspects of thinking which, through
the global character of rationality, can influence judgments of similarity and
the practice of conservatism. (See [Doyle 1988a, 1988b] for further discussions.)
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