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1 Introduction

Considerable progress has been made recently on the problem of machine
learning: as a practical technique for use in artificial intelligence systems,
as a predictive psychological theory [Rosenbloom et al. 1987], and as a formal
computational theory [Valiant 1984]. Many diverse types of learning have been
studied, and for each of these a great variety of techniques and processes have
been proposed. To some extent, this great diversity in types and techniques
of learning stems from the richness of the subject. But it also may indicate
the lack of some unifying notion that makes clear how the aims of these many
techniques relate to learning and to each other. Lack of a unifying concept will
not prevent progress from being made, but it can divert attention to topics of
little relevance or poor prospects for success.

This paper restates the problem of learning in terms of the notion of ra-
tionality. This formulation has several advantages over earlier conceptions: it
ties together several separate strands of research in a coherent view; it offers
an explicit formal conception of and approach to learning rather than infor-
mal definitions; and it illuminates the sometimes severe limitations of some
oft-studied techniques. We first present the rational conception of learning,
and then discuss the strengths and weaknesses of some current approaches to
similarity-based and explanation-based generalization from this perspective.
Finally, we employ results from the theory of rationality to address the ques-
tion of whether one can hope to uniformly mechanize the many approaches to
learning.

2 What is learning?

At first glance, it seems surprising that there should be confusion about what
learning is, as two good definitions are widely known. According to Simon
[1983], learning “denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the same
population more efficiently and more effectively the next time.” According
to Minsky [1986], learning “is making useful changes in the workings of our
minds.” One can quibble with each of these definitions, but the quibbles are
hard to pursue without making the definitions more precise.

These definitions notwithstanding, many studies in machine learning ap-
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pear to be based on very different conceptions of learning. Some authors
make no explicit statement of how the techniques they study constitute learn-
ing, while others seek more precise and specific definitions of learning than the
above, but wind up with very different notions. Michalski [1986], for exam-
ple, finds Simon’s and Minsky’s definitions too informal and promptly moves
to redefine learning as “constructing or modifying representations of what is
being experienced.” This conception of learning is very different from the first
two. Michalski tries to paper over the gulf between them, but does not really
succeed, mainly because the third definition is a profoundly mistaken defini-
tion of learning, as we see shortly. Fortunately, this definition does not rule
Michalski’s technical work on learning: see, for example [Stepp and Michalski
1986]. But the conception of learning as representation has been extremely
influential, both before and since Michalski articulated it, and characterizes
much more of the literature than its competitors.

We suggest that a more illuminating definition is that learning is interpret-

ing experience by making rational changes of mental state or operation. This
means rationally deciding how to interpret one’s sensory events as facts about
what is going on, and then rationally deciding whether to change one’s mental
state in light of this information, and if so, in what way. This definition is
still very general, but in this case precise, well-developed theories are available
for each of the elements in the definition. For the notion of rationality we
employ (for the moment) the standard notion from decision theory, according
to which an action is said to be rational for an agent at some instant if it is
of maximal expected utility according to the agent’s beliefs and preferences
about current and future events, where the agent’s preferences may be a func-
tion of its goals and plans. We will not repeat the formal theory here as good
expositions are readily available (e.g. [Jeffrey 1983]). The other element of
the definition is the agent’s fixed constitution or architecture, which sets out
the possible states and changes through which learning takes place. We do
not have space to elaborate any examples here. See, for example, [Minton
1988], which presents a system that knows enough about its own architec-
ture to allow it to make essentially rational changes in its search strategies
on the basis of its search experiences. In addition, precise definitions of many
other sorts of architectures are extant, ranging from automata theory and pro-
gramming languages to the more interesting conceptions of Bayesian agents
[Jeffrey 1983] and knowledge-level architectures (e.g. [Genesereth and Nilsson
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1987] and [Doyle 1988a]).

3 Memorization and generalization

To see the advantages besides precision offered by viewing learning in terms
of rationality, it helps to examine some of the learning techniques commonly
studied. We begin by considering the simple case of rote memorization of ex-
perience. This certainly counts as learning according to the representational
definition. But the plain fact is that most things are not worth memorizing.
For most things one experiences, such as the shape of the 20,000th tree leaf
one sees, rote memorization is irrational, simply wasting resources and clogging
memory. Similarly, memorization of the logical consequences of one’s knowl-
edge as they occur to one is also not genuine learning in most cases, because
most consequences are not worth remembering either, whether because they
are unlikely to ever be used, or because they are too easy to derive. That is, for
most logical consequences of what one knows, memorization offers at best no
utility (the memories do not help) and at worst negative utility (time and space
are consumed in memorizing them and in discarding them when retrieved).
The only cases in which remembering logical consequences is commonly con-
sidered learning is when the computational cost of deriving the consequence
is too high, so that making the conclusion explicit makes its use, retrieval, or
derivation economic. This is the motivation behind explanation-based learn-
ing (see below), and underlies some modern number-theoretic cryptographic
schemes. In these, knowledge of the coding method, of number theory, of the
language of the message, and of the coded message logically entails the identity
of the uncoded message. But carrying out this inference is too costly unless
the encryption key is known explicitly, so discovering the key is really learning
something.

We next consider the problem of learning a concept from examples. This
problem has been widely studied by researchers in artificial intelligence and
theoretical computer scientists, not to mention mathematicians, psychologists,
and many others. We will consider two main approaches: similarity-based
generalization, and explanation-based generalization.
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3.1 Similarity-based generalization

In Valiant’s [1984] formulation of learning a concept from examples, one at-
tempts to find a boolean characteristic function for a concept by examining
a sample of the concept’s extension (small errors are allowed). Here the con-
cept’s extension is a fixed target, and the ideal result of learning is a small
boolean predicate that exactly characterizes the concept. This view of gen-
eralization is clearly representational learning, because it seeks to logically
represent the meaning of a concept. It is called similarity-based generalization
because the concept learned attempts to capture the similarities among the
observed instances.

Since merely memorizing the items of experience and their logical conse-
quences is not learning, concept learning must go beyond the agent’s current
information to make assumptions not entailed by current knowledge. The gen-
eralization itself may be such an assumption, or it may be derived as a logical
consequence from separate assumptions in conjunction with experience. Or-
dinarily the agent’s knowledge is incomplete, in which case there are many
possible completions and extensions of the knowledge consistent with the ev-
idence. Naturally, if one does not know whether P or ¬P holds, one might
assume either, but cannot consistently assume both. Generalization thus in-
volves a selection of which assumptions to make out of the many possible sets
of consistent assumptions. As Mitchell [1982] puts it, generalization is a search
process whose product is the right generalization.

In fact, taking a broader view, learning involves making many choices in
addition to selection of what conclusions to draw from the selected evidence.
It can involve selection of the subject about which things will be learned; of the
sources of evidence to be employed; of the criteria for determining relevance of
potential evidence; of which bits of evidence are true and which are noise; of
which differences among evidence are significant and which are insignificant;
of how much evidence to seek; and of when to stop. Because it ignores these
many choices, similarity-based generalization strikes many people outside the
field as sterile, having little relevance to generalizations as they appear in ev-
eryday life. Scientific generalizations provide a good example, especially those
appearing in debates about public policy. The most obvious fact about these
debates is that the generalizations made depend on the debater’s aims. In the
first place, the opposing parties may differ on what evidence is relevant to the
case. But even when they agree on the evidence, they may differ on how to in-

4



terpret it and on what extra assumptions to use in making generalizations. For
example, the same economic statistics and theories that incriminate President
Reagan’s economic policies in the arguments of Democrats may exonerate his
policies in the arguments of Republicans. (Bukharin, whose economic poli-
cies incriminated him in Stalin’s court and exonerated him in Gorbachev’s,
should have been so lucky.) In the scientific debates associated with these
policy debates, the parties may have aims other than to find the truth of the
matter. They may seek to smear reputations, to win elections, or to muddy
public opinion so much that a purely political decision can be made. In real-
life generalizations, what conclusions one draws can depend on one’s aims.
But perhaps work on aimless generalization in artificial intelligence should not
be faulted much. As Truesdell [1984] points out, most theories in the philos-
ophy of science are similarly aimless, and the ideas on learning in artificial
intelligence have been strongly shaped (sometimes unwittingly) by theories in
inductive logic and the philosophy of science. (See also [Grabiner 1986]).

In contrast to everyday generalizations, Valiant’s procedure is clearly not
rational, as it generalizes in a fixed way independent of the domain or context
in which the agent operates. The concept learned is independent of any con-
clusions the agent might desire to reach, and independent of any preferences
about assumptions the agent might entertain. It embodies a fixed criterion of
(or bias about) what the “right” conclusions are. In some cases this criterion
may match up with the agent’s preferences, so that its conclusions are rational,
but in other cases this obliviousness to the agent’s situation can prevent or
delay the agent from learning what it needs to know, since generalizations are
not always useful. For instance, most people who purchase a camera do not
want to know the principles by which it operates, merely the specifics of how
to use it. Determined salespeople or enthusiastic relatives who try to “ex-
plain” how to use the camera by explaining how cameras work are just asking
for trouble. “Forget the theory, just tell me how to work it” is an eminently
rational attitude for most people, for the generalization is irrelevant, merely
cluttering memory and slowing down learning now and use later.

3.2 Explanation-based generalization

Explanation-based generalization differs significantly from similarity-based gen-
eralization by using knowledge to reduce the number of examples that must
be examined. For concreteness we will refer to the EBG procedure of [Mitchell
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et al. 1986], which uses domain knowledge to transform a “non-operational”
target concept definition into an “operational” subconcept definition. To do
this, it uses examples of the concept to find the specific knowledge relevant to
the transformation, and uses a formal criterion of “operationality” of concepts
to tell when it has completed the transformation. In brief, EBG constructs
finds a proof from operational items of knowledge that the example satisfies
the target concept, and then combines and generalizes the hypotheses of the
proof to yield an operational definition of a subconcept.

Like Valiant’s procedure, EBG does not learn rationally. It does not ad-
dress the question of how the agent selects what to learn, and likewise assumes
a fixed target concept which it never abandons. Instead, it limits its explana-
tions to deductive proofs, which make the learned concepts logical subconcepts
of the target. This means that EBG cannot handle exceptional instances that
lead people to change their definitions (e.g. egg-laying mammals). This is not
an essential limitation of EBG, but the fact is that deductive proof is too nar-
row a conception of explanation for general use, since replacement of concepts
can be justified or rationalized as rational calculations, even if not as deduc-
tive proofs. In this regard EBG is sometimes even less rational than Valiant’s
procedure, since approximations to concepts can sometimes be more useful
than the exact definition.

Even when one limits attention to learning subconcepts of the target, EBG
does not learn rationally. EBG’s central concern is using a notion of opera-
tionality as a guide to learning. EBG offers no theory of how to choose oper-
ationality criteria, only a requirement that such criteria express properties of
the linguistic or representational form of the concepts. Unfortunately, there
is no operationality criterion which expresses rationality, since rationality is a
substantial condition applying to the new definition as a whole, not a formal
one applying to the particles of the definition. Consider, for example, the
case of visual learning. An example image of a cup might be reduced to mil-
lions of operational bit-predicates on a retina, but the resultant definition of
“cup,” with its millions of conjuncts, can hardly be called operational. More-
over, even if a simpler operational definition was possible, EBG has no way to
choose between them.

EBG is an important procedure, but to perform well its inputs must be
selected rationally and its outputs must be evaluated rationally. In fact, De-
Jong’s [1983] original criteria for explanation-based learning concerned utility
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of the result much more than operationality of the definition’s elements. Keller
[1987] also recognizes the limitations of formal operational criteria and pro-
poses to redefine operationality to be usability plus utility (by which he seems
to mean expected utility), with both usability and utility continuously variable
in degree and dynamically changing. This is a step in the right direction. But
it seems odd to call this combination “operationality.” It would seem more
natural to separate the apparently always binary but possibly changing notion
of usability from the potentially changing and continuous notion of utility,
calling the first a condition of operationality and the second a condition of
rationality.

In addition to limitations stemming from using only deductive explana-
tions and formal criteria of operationality, EBG also has no way to handle
incomplete or inconsistent domain knowledge. EBG’s authors recognize these
limitations, and since they intend EBG to be a truly general procedure for
learning, they suggest ways in which it might be extended to overcome them.
These directions are worth pursuing, but we indicate in section 5 how han-
dling incomplete and inconsistent knowledge poses profound problems that
may forever limit the generality of EBG and other learning procedures.

4 Judging rationality

While it is easy to criticize some sorts of memorization and generalization
as irrational, it is not always so easy to judge whether some form of mental
reorganization is rational or not. The difficulty arises because judgments of
rationality are very sensitive to the perspective of the judgment.

In the first place, even a nominally irrational learning method may be
appropriate in the context of systems designed for specific purposes. Even if a
learning method is irrational in the sense that it ignores the agent’s preferences,
it can nevertheless be rational for us to employ it as a part of the system’s
design if we expect that the agent will serve our purposes as well using it as
using any other method, even methods more rational according to the agent’s
perspective. For example, there is a perspective (one which ignores certain
computational costs) from which the chunking method of [Rosenbloom et al.
1987] is rational, in that systems employing it move along a demonstrated
learning curve. Chunking itself, however, is an entirely mindless operation
parasitic on a supposedly rational reasoner.
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Secondly, the rationality of an action depends on the time frame over which
we evaluate it. It is commonplace that actions rational in the short run may be
irrational in the long run, and vice versa. In overall judgments of rationality,
the agent must amortize its costs and benefits, taking into account the present
value of future consequences of its actions. How this is done depends crucially
on the agent’s time preferences, on how much the agent prefers satisfying its
goals now to satisfying them at different times in the future.

Thirdly, the basic theory of rationality involves only the notions of expec-
tations and utilities, and ignores the familiar notions of goals and plans. As
noted above, an agent’s preferences may depend on its goals and plans, so that
actions rational in the context of one set of goals may be irrational in another.
For example, improving one’s performance of routine actions is usually rational
and so an aim of learning. But if the agent is under threats contingent upon
completion of the actions, improving one’s performance is no longer rational.
Recall how Penelope slowed her weaving when her suitors demanded she admit
Ulysses dead.

Finally, the definition of rationality mentions only the results of the action
taken, not how it came to be taken. Thus rational learning does not mean that
the agent must calculate what is rational to do. Of course, mechanization of
rational learning can involve calculation of how to change the agent’s mental
state. This is the natural way to view the long-studied hill-climbing methods.
It also serves as a basis for the bucket-brigade algorithm [Holland 1986] and
for Minton’s [1988] strategy learning system, which collects statistics to esti-
mate expected utilities. Explicit rationality of learning is also reflected in the
goal-dependent preference order on generalizations employed by [Stepp and
Michalski 1986], in the similarity order on analogies employed by [Carbonell
1983, 1986], and in the preferences guiding shift of bias employed by [Rus-
sell and Grosof 1987]. (See [Doyle 1988c] for more on the relation between
rationality, similarity, and shift of bias.)

5 Mechanizing rational learning

Since decision theory is a general theory intended to cover all sorts of rational
choices, it is natural to ask if it provides a uniform way of mechanizing learning.
That is, instead of having different procedures for each type of learning, can
we instead use a single procedure which makes rational changes in all aspects
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of mental organization? Unfortunately, this appears to be impossible because
practical systems must make do with both more and less information than
decision theory requires.

The lesser of these problems is that the agents we construct do not have
all the information the theory of rationality requires. This incompleteness ap-
pears in both expectations and utilities. As informants, we often do not know
what probabilities to assign to weird events, nor do we know the true costs of
many actions. In particular, we often do not know in all cases how to assign
value to time, and so cannot amortize costs and benefits. In practice, how-
ever, a number of techniques are available for ameliorating the consequences
of incomplete information, including search, defaults, and adaptive estimation
techniques.

The more serious difficulty faced in mechanizing rational learning is in-
consistency, the occurrence of conflicts among the preferences that the agent
must use to select its assumptions and changes. The most obvious examples
of such conflicts are manifest in the general maxims which scientists claim to
use as guides to formulating theories, maxims like “seek as simple a theory as
possible,” “seek as general a theory as possible,” and “seek as powerful a the-
ory as possible.” These maxims are mutually incompatible. The most general
theories may not be very powerful, and powerful theories often are not very
simple. In each circumstance the theorist must choose which criteria to favor
and which to downplay. These choices in turn can depend on the theorist’s
aims. For example, scientists studying some subject are apt to aim for the
most general theory, while engineers studying the same subject are apt to aim
for the most powerful theory.

Conflicts among a few general maxims may not be too hard to deal with,
but multitudes of conflicting preferences arise naturally in coping with in-
complete information. To make a long story short (see [Doyle 1988b] for a
fuller treatment), it is quite rational to make routine assumptions by means of
stereotypes or default rules. These rules save time and effort in common situ-
ations, so most artificial intelligence systems employ hundreds of such rules in
representing their knowledge. It is natural to interpret these default rules as
preferences of the agent about what assumptions to make, preferences of ex-
actly the same kind appearing in learning about what generalizations to make.
However, the cost of making reasoning more efficient in common situations is
that stereotypes and default rules can conflict in uncommon situations. Thus
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conflicting defaults represent conflicting preferences about assumptions.
The prevalence and individual rationality of these conflicting rules has se-

rious implications for mechanizing rational learning. Each particular method
for making assumptions (or for learning) based on default rules thus represents
a way of resolving conflicts among preferences. But it is a standard result of
decision theory and economics (called Arrow’s theorem) that no single method
of resolving conflicts can be completely rational without being unreasonable
in a certain sense. The upshot is that there is a multitude of ways of proceed-
ing in such cases, and each way has advantages and disadvantages in different
circumstances. The literature on political economy has analyzed a number of
these, but only a fraction of the possible methods (see [Mueller 1979]). Ap-
plied to the case of rational learning, these considerations indicate that there is
no universal or general learning procedure. Every specific method of learning
will either be irrational in some way, or will have built-in biases which it will
exhibit in the choices it makes. Conflicts among different possible biases are
real, reflecting a “clash of intuitions” (in the phrase of [Touretzky et al. 1987])
about what should be learned from experience.

6 Conclusion

Viewing learning as rational interpretation of experience captures many of our
central intuitions about what learning is. Indeed, something like this view
of learning may be close to the psychological truth about human learning,
for according to Gazzaniga [1985], the central function of our conscious mind
is to compulsively interpret and explain experience. In addition, this view
provides a precise unifying framework that explains, justifies, or criticizes many
important structures and techniques employed in extant learning systems, and
illuminates some of the inescapable limitations all learning systems must face.
Though these limitations may leave little hope for finding a good general or
universal method of learning, there is nonetheless much room for improving
the rationality of methods for learning.
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