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Abstract

The goal of achieving powerful problem solving capabilities leads to the “advice taker”
form of program and the associated problem of control. This proposal outlines an approach
to this problem based on the construction of problem solvers with advanced self-knowledge
and introspection capabilities.

1 The Problem of Control

Self-reverence, self-knowledge, self-control,
These three alone lead life to sovereign power.

Alfred, Lord Tennyson, OEnone

Know prudent cautious self-control is wisdom’s root.
Robert Burns, A Bard’s Epitath

The woman that deliberates is lost.
Joseph Addison, Cato

A major goal of Artificial Intelligence is to construct an “advice taker”,1 a program which
can be told new knowledge and advised about how that knowledge may be useful. Many of
the approaches towards this goal have proposed constructing additive formalisms for trans-
mitting knowledge to the problem solver.2 In spite of considerable work along these lines,
formalisms for advising problem solvers about the uses and properties of knowledge are rela-
tively undeveloped. As a consequence, the nondeterminism resulting from the uncontrolled
application of many independent pieces of knowledge leads to great inefficiencies. Just the
potential for nondeterminism requires organizations of problem solvers which are slower on
deterministic problems than the corresponding deterministically-tailored systems.3

1The term “advice taker” is from [McCarthy 1968].
2The most popular additive formalism is that of the predicate calculus, interpreted by a theorem proving

data base. (See [Green 1969], [Darlington 1969], [Fikes and Nilsson 1971], [Moore 1975], and [McDermott
1977a].) The additivity of such a representation stems from the celebrated Tarski [1944] definition of truth for
these languages, in which the addition of new truths cannot affect the validity of previous truths. Systems
violating this truth-preserving or monotonic property are called non-monotonic systems, and have been
studied practically and theoretically by Rescher [1964], Kripke [1975], Doyle [1978], and [McDermott and
Doyle 1978]. Several other formalisms including the Carnegie (e.g. [Rychener 1976]) and California (e.g.
[Davis 1976]) flavors of production systems and the logical programming languages [Kowalski 1973] are
touted as additive, but in practice these rarely are used in an purely additive fashion.

3Completely deterministic interpreters can be organized so that the execution of each action also sets up
the next action to be performed. Interpreters made non-deterministic through additivity must expend much
more effort in this regard. Since the set of successor actions is expandable, either considerable work must
be done to fetch the relevant successor actions, or considerable work must be done to integrate new actions
into the successor action table.
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To solve the advice taker control problem, we must develop methods for incorporating
diverse fragments of knowledge into efficient procedural forms.4 This necessitates
developing vocabularies5 for describing problem solver states, actions and histories, for
these are the ingredients of procedural knowledge.6 In particular, the mechanization of
this “knowledge-compilation” scheme requires an ability of the problem solver to introspect
on its own knowledge, structure and behavior. We must study the problem solver itself as
a domain for problem solving.7

2 Reflexive Interpreters

The approach investigated here is that of constructing self-modelling, self-conscious problem
solving interpreters. The simplest way to describe a problem solver to itself is in its own
terms.8 This means writing the command interpreter of the problem solver in the language
of descriptions and imperatives that it interprets. Such interpreters are called meta-circular
interpreters.9 The more expressive the language of the problem solver, the deeper is the
understanding of itself that can be realized. In fact, several self-models can be constructed,
each displaying differing levels of detail in specifying the structure of the interpreter.10

The self-model provided by a meta-circular specification of the interpreter gives the
interpreter a static self-knowledge.11 For the interpreter to understand its dynamical
behavior requires a form of self-consciousness; the ability to introspect on current goals and
activities. This ability typically requires some usage of the explict control techniques of
recording and reasoning about actions and goals in a blackboard data base. One important

4The necessity of integrating (compiling) general purpose knowledge into special purpose procedures has
been argued by Minsky [1965], Winograd [1972], Sussman [1975], and Hewitt [1975], who terms this “the
procedural embedding of knowledge”.

5McDermott [1977a,c], Rychener [1976], and Doyle [tbp] discuss the development of problem solving
vocabularies with specific examples.

6What makes procedures different from statements of fact? Usually it is some reference to a “state” of an
interpreter. Thus normal programming languages use lexical and syntactical devices to indicate modification
of the program counter, connections between names, etc. AI programming languages augment these devices
by ones relying on changes in contents of data bases, connections between data bases, references to the
current goals, and other descriptions of the state and state changes of the interpreter.

7The study of the problem solver as a domain for problem solving has other applications beyond those of
control. A well-understood model of the problem solver can also be used as the base of models of external
agents, and the actions of external agents can be understood in terms of the analogous case of the problem
solver “putting itself in their shoes”.

8McDermott [1977a] terms this way of describing device plans in the vocabulary of the problem solver as
a “machinomorphic” view of things.

9Meta-circular interpreters have been written for SCHEME (in great profusion in [Steele and Sussman
1978b]), first-order logic [Brown 1977], and LISP 1.5 [McCarthy, et al 1965].

10For example, one can write interpreters for a recursive language like SCHEME using the full recur-
sive power of the language (such as those described in [Steele and Sussman 1978b]), or which only use a
restricted form of the language (such as that presented in [Sussman and Steele 1975]). Given a logical
language for interpretation, the detail of the self-model can include descriptions like plan histories, purposes
and dependencies, and transformation rules between syntactic constructions. The latter might range from
simplification rules like “(CAR (CONS A B)) = A” to recursion elimination rules (such as those described by
Burstall and Darlington [1977]).

11Deep understanding of the operation of the interpreter requires a logical description and analysis of the
design of the interpreter, such as that produced by a plan verifier [Shrobe 1977].
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consequence of this dynamic self-consciousness is the ability for concurrent goals to influence
each others’ solutions.12 Another important consequence is the ability for the interpreter
to redescribe its activities to itself in higher level terms. This means that global patterns of
action (such as looping, making choices, committing errors, or acting inefficiently) can be
recognized to guide the primary activities of the problem solver. This ability, in conjunction
with the ability to modify the self-model and so the behavior, is crucial in learning skills
from experience.13

I propose to study the construction of such “reflexive” interpreters. My thesis is that
constructing a sophisticated self-conscious meta-circular problem solving interpreter is pos-
sible at this time.

The motivation for this study is that powerful advice about how to act is expressed in
terms of the domain knowledge, past behavior, and current plans. The ability to express
such advice is intimately connected to the ability to describe current behavior and to then
act on that description. Powerful advice (advice which takes into account as many of the
existing constraints as possible) is used by being very self-conscious about one’s actions
as they are selected and performed. The power of the advice depends crucially on the
availability of rich and explict self-description capabilities. This point has been argued
by McDermott and Hayes (see [Hayes 1977]) as the necessity for (in McDermott’s terms)
“shallow reasoning” and the impossibility of “deep reasoning”. To construct an advice taker,
one can use either a command language with little imperative content interpreted by an
“intelligent interpreter”, or one can use a rich language with many imperatives interpreted
by a “fixed capacity interpreter”. Although the former option is a possibility, it begs the
question of constructing the intelligent interpreter in the first place. This leads to the
approach of using an interpreter of limited operational complexity, in which the knowledge
that guides intelligent actions can be expressed. The key word here is “guides”, since
the experience of the early theorem proving efforts shows that just informing a limited
interpreter of the facts will not work. To be practical there must be ways of outlining
procedural information.

This approach to the problem of control leads to a certain view of the structure of
problem solving knowledge. This view refers to the McCarthy-Hayes [1969] distinction
between epistemological and heuristic problems. Epistemological problems are those of
determining the ontology of concepts in a domain, and then determining the knowledge
about those concepts that describes the domain. The related heuristic problem is that of how
to use this knowledge effectively. Epistemological problems, once solved, lead to heuristic

problems whose solutions in turn lead to further epistemological problems. Obtaining a
means of describing some body of knowledge leads to the problem of reasoning (effectively)
using these descriptions. This heuristic problem requires the solution of a further set of
epistemological problems arising in the task of reasoning about these descriptions. New

12McDermott [1977a] argues that many actions do not fit into the state-change model of states and actions.
Good examples of this are policies or constraints which serve to influence the execution of other actions.
These are actions which affect future possibilities rather than the current state. However, it might be valuable
to view these actions as affecting the “mental state” of the problem solver, and dealing with histories which
incorporate both world and mental actions.

13Sussman’s [1975] HACKER debugged the programs it wrote by analyzing patterns of actions to deter-
mine the patterns of programs leading to these actions. This process of “anti-interpretation” was then used
to pinpoint the erroneous parts of the programs being interpreted.
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heuristic problems arise as one discovers new interactions between descriptions, and as
new frequencies and importances develop in the uses of these descriptions. Mathematical
logic, for example, presents a partial solution to the epistemological problem of statements
and their calculus. It provides a recursive enumeration of the provable statements. This
leads to the heuristic problem of using this enumeration to describe the world. This leads
to epistemological problems of distinguishing objects like goals, axioms and proofs. This
leads to the heuristic problem of reasoning about goals and proofs. This leads to the
epistemological problems of states of the reasoning process and properties of proofs.

3 Architecture

The basic loop of a serial interpreter repeats these steps:

1. Find the applicable actions,

2. Choose one, and

3. Execute it.

Each of these steps has a wide range of realizations. Step 1 can range from that of looking
at the action pointed to by the program counter, to that of fetching methods with satisfied
patterns of applicability, to that of recursively invoking the problem solver to determine the
current possibilities. Step 2 can range from random selection, to conflict resolution filtering
strategies, to preference lists, to choice protocols which invoke the full recursive power of
the problem solver. Step 3 can range from only handling primitive operators, to handling
actions which must be recursively interpreted, to treating problem solving operations which
require problem reduction rather than immediate execution. Each of these spectrums can
be viewed as passing from locally efficient immediate operations to operations which though
locally inefficient allow for globally efficient behavior. There is no problem in constructing
an interpreter which captures all of these options, as long as interface conventions are defined
and respected.14

There are several important refinements of this structure; descriptions, plans and com-
pilation. There must be a clear structure to the descriptions maintained in the data base.
The primary requirement of this structure is the ability to treat descriptions and parts
of descriptions as objects to be manipulated and analyzed.15 This requirement follows
from the need to be able to state properties of descriptions (such as completeness) and
relationships between descriptions (such as sharing, copying or equivalence). The type of

14The AMORD interpreter [de Kleer, et al 1978] displays this multi-level operation, as procedures can
be mediated by the data base, interpreted by the MacLISP interpreter, or executed as compiled machine
procedures. These levels need not be in a linear hierarchy, for there may be several interpreters all written
in a base language, and a higher level interpreter written in terms of several of these. An earlier version of
AMORD written in SCHEME displayed this organization. Such an organization is also expected of systems
composed of many independent sub-interpreters, such as Tinbergen ethologies [Tinbergen 1951] and the
society model of Minsky and Papert [Minsky 1977].

15The basic types of descriptions in LISP are those of CONS cells, which have their CARs and their
CDRs, and atomic symbols with their print names, value cells, and property lists. More general types of
descriptive objects have been developed by Fahlman [1977], Smith [1978], and Martin [1978]. These types
of descriptions are discussed [Doyle 1977].
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description most important to the interpreter is that of plan structures. Since most problem
solving situations involve incomplete information (or at least a temporary lack of complete
explicit information), much of the preparatory work for problem solving actions involves
the piecemeal construction of partially specified programs - that is, plans. The incremental
construction and execution of plans allows parts of plans to influence each other’s execu-
tion. The structure of plans describing aspects of interpreter states (such as goals, results,
actions like choosing or finding, and histories) must be part of the interpreter architecture.
The self-conscious architecture of the interpreter is intimately connected with this process
of plan construction and execution, for one of the major components of self-consciousness
is in widely-accessible knowledge of goals and purposes as well as actions. However, to
resort to plan construction and execution to accomplish every task is very inefficient, so the
use and construction of compiled, special-purpose plans must be possible. Compilation of
a plan involves taking the plan and some incidental information (such as past experience,
or a restricted class of inputs) and producing a plan incorporating this additional infor-
mation exhibiting less indeterminacy and inefficiency.16 When ultimately reduced, the
plan becomes a fully specified primitive program. The interface and use of interpretive and
compiled programs must be part of the interpreter architecture and vocabulary.

4 Language

Part of the problem of specifying the architecture is that of language. Although the ontology
of the architecture determines the important aspects of the language, this ontology must
include the language constructs themselves as objects.17 The interpreter must be able to
discuss sentences of the language and their structure to interpret and construct them.

16One way for a compiler to increase the efficiency of a program is to introduce as much linearity into the
program steps as possible. Such sequencing of steps allows efficient retrieval of successive actions. Unfor-
tunately, experience with new problems may show that some of these introduced orderings between steps
cause program failure. One cannot then simply compile the program further with the added constraint, for
the new constraint contradicts a previous ordering. Instead, the program must be debugged by determining
the conflicting ordering and changing it. This is the approach used by HACKER [Sussman 1975].

17While sentences must be objects so that other sentences can mention them, this does not means that
there need be objects designated as the “meanings” of the sentences. In this I find myself in agreement
with a substantial school of thought which holds that there are only sentences, and all operations are on
sentences. (See [Tarski 1944], [Davidson 1967], and [Quine 1970].)

I do not wish, however, to introduce a hierarchy of languages, such that the sentences of each language
are objects of the next higher level of language. The use of such a hierarchy seems to be a carry-over
from an avoidance of postulating objects external to the interpreter. While there may be reasons for this
conservatism, there seems to be no reason to avoid referring to objects internal to the interpreter, such as
sentences. Thus, rather than adopt an explicit hierarchy of language types such as that used by Weyhrauch
in his proof checker and Tarski in his definition of truth, I favor using a single language with an implicit
hierarchy of language levels determined by language use.

The major problem encountered in using a system of language types is that knowledge expressed in one
language may not be easily accessible to processes using other language levels. This problem can be avoided
by mapping one language into a sublanguage of another, but this translation may take time that could be
better spent elsewhere. There are also more theoretical reasons for prefering hierarchies induced by language
use rather than forced by language types. Some of these considerations are discussed by Backus [1973], Scott
[1973] and Kripke [1975].

This same criticism applies to the “meta-levels” control system advocated by Davis [1976].
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It is true that somewhat different vocabularies will be useful for describing the interpreter
and for describing external domains. Indeed, Minsky [1965] suggests that the mind-body
distinction drawn from introspection originates in this difference in vocabularies. Although
this might be seen to indicate that different languages are appropriate for describing the
structure and behavior of the interpreter and for describing external domains, several con-
siderations argue for embedding all of these vocabularies in a single language.18 The
operation of a sophisticated interpreter is potentially as complicated as the behavior of
agents and objects external to the interpreter. Thus a language adequate for describing
external domains to sufficient accuracy should also suffice as a language for describing the
behavior of the interpreter, and vice versa. This argues that there be just one language by
virtue of sufficiency of a single language for the task. Another argument is that much of the
reasoning useful in problem solving, debugging and learning must make reference to both
descriptions of the interpreter’s behavior as well as descriptions of the external world. In
particular, rules expressing relevancy conditions frequently mention both the state of the
problem solver and conditions in the domain model of the problem being examined. That
the interpreter must be able to consider itself as a domain in this way further demonstrates
that either a mulplicity of languages must be used with interfaces and translations (which
themselves must be described somehow) or that one language be used which is sufficient for
discussing all of these areas of knowledge.

5 Reflexive Reasoning Examples

The use of the explict control techniques encouraged by a reflexive interpreter allows many
sophisticated behaviors. Occasional summarizations of actions by compiled routines can be
used to trigger interrupts detecting dangerous or fruitless behaviors. For example, although
when stuck on a problem it is frequently possible to reformulate the problem so as to allow
progress, it is normally fruitless to try to reformulate the task of reformulation if no such
rephrasing information is apparent. A rule to this effect is used in McDermott’s [1977a]
NASL. Other abilities can also be indicated by making observations about the state of the
problem solver. For example, when provided with the capability to recognize situations in
which choices between alternatives are necessary, a rule might be written to say “if more
than five options are available, try to reorganize the data base to make more discriminating
relevancy checks.” Note that such advice does not concern which option to choose (which
is something else to reason about), but rather concerns what to do based on properties
of the choice situation. Alternatively, conclusions like “one of the assumptions leading to
having to make this choice is wrong” or “you are in a state of mind called confusion”
might have been made. NASL uses built-in advice of this form to enter the “choice” and
“rephrasing” protocols. Recognizing aspects of the problem solver state is also involved in,
for example, using goals to suggest methods for solution, or in avoiding conditions in the
reasoning process like “be very careful if you discover a contradiction” or “find a legal way
of getting rich quick”.

18This embedding of multiple vocabularies into a single language might be taken to account for the deep
confusions encountered by attempts to discuss concepts which are shared by both “mental” and “physical”
domains. On the other hand, this may lead to anthropomorphic views which allow fruitful reasoning and an
economical representation of knowledge. (Cf. [Minsky 1965, 1977].)
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Reasoning about available knowledge has many uses also. These include ways of using
facts, such as “use this implication as consequent method for proving its consequent”, and
ways of making decisions, such as “Assume that P is true if you cannot prove otherwise”,
“Could object X be identified with object Y as far as I know?”, or “Could I compute (or
prove) P if I had to? How much effort would be involved?”. This last question might involve
using proof methods not available to the computation (such as using induction), or might
simply use efficiency information attached to methods as commentary to the procedures
involved.

One of the most important activities requiring self-reflection is that of compilation. This
depends on the ability to reason about the structure of the interpreter and language, the
existing plans, and any extra constraining information available (such as case restrictions
or usage patterns). The following section discusses plan compilation in more detail.

6 Plan Compilation

Self-conscious interpreters employing explicit control techniques as their only control mecha-
nism are too slow. It is impossibly inefficient to continually check for all relevant information
before acting, and to have to record all intermediate results in a form which allows potential
interactions to be realized. The only way efficient operation can be realized is to be able
to avoid these checks for relevancy and interaction, either by ruling out cases as currently
impossible, or (more frequently) by ignoring them with the justification that such igno-
rance will allow many problems to be solved in practical times.19 This is the task of plan
compilation.

Compilation introduces locality.20 In a globally interacting system (such as a predicate
calculus based system), there is no locality; any piece of information can be used by any
other; all information is globally visible. However, a particular set of knowledge may be
analyzed to show that certain interactions are impossible, or that certain information is used
only in a restricted way by a definite set of users, or that certain information is cheaply
recomputed. This analysis can then be used to reorganize the set of knowledge so that
procedural primitives are used in the cases where restrictions are possible. A good example
is that of procedure integration. If one procedure asserts a call into the data base on
another procedure, and if the data base can be shown to only have that single procedure as
a possibility for answering the call, then the body of that other procedure can be inserted
into the calling procedure to replace the call. This removes the frequently expensive data
base operations of asserting a new call and fetching all potentially relevant candidates.

Plans are incompletely specified but heavily annotated programs. Thus they are com-
posed of a nonlinear network of tasks or goals, along with the logical dependencies relating

19Procedures compiled in ignorance of later-discovered special cases can produce errors. The system
should be designed so as not to be flustered by errors and contradictions, but rather able to analyze these
malfunctions to correct their sources. (See [McDermott 1974], [Fahlman 1974], [Sussman 1975], [Goldstein
1974], [Brown 1976], [Stallman and Sussman 1977], and [Doyle 1978].)

20The type of locality I mean here is not that discussed by Sussman [1975, p. 5]. His locality is the
locality or modularity of pieces of knowledge added to the store of general knowledge. The locality I refer to
is locality of the internal structure of a procedural representation of some non-modular slice of the knowledge
in the data base. Such slices representing expert procedures might be viewed as frames, with the network
of assumptions involved in their invocation representing a frame-system. [Minsky 1974]
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these goals. The fewer the restrictions between the parts of a plan, the more general the
plan. Planning systems like Sacerdoti’s [1975] NOAH system attempt to produce the most
general plan possible to solve a problem. These general plans are likely to be the building
blocks of a library of plans providing general techniques for solving problems in many do-
mains. The more important or more frequently used plans should be compiled somewhat
differently. Some of the inefficiency involved in executing a non-linear plan can be elimi-
nated by imposing arbitrary orderings on the unordered components. This allows plan step
setup work to be done in a predetermined fashion, and may also allow many other decisions
(such as resource use) to be made at compile time. This strategy, used by Sussman’s [1975]
HACKER, produces more efficient but less general plans.

The reflexive nature of the reasoning involved in plan compilation is unavoidable. To
attempt to compile some plan into a more refined plan requires that the interpreter and cur-
rent set of knowledge be treated as objects for analysis. The current knowledge (including
the history) provides the incidental constraints, and the interpreter model provides the in-
formation necessary for code expansion and symbolic evaluation. The incidental constraints
must be checked during code expansion to help restrict the interpretation of the plan con-
structs. The knowledge of the structure of the interpreter is also important in deciding the
level to which compilation will progress; whether the result of the compilation is still some
level of plan (if uncertainties still exist), or an interpretable procedure (if debugging is still
in progress), or a primitive procedure.

All the traditional compilation techniques, plus some extras, fit into the plan compi-
lation process. Code expansion, as mentioned, is done through reference to a self-model.
Procedure reduction occurs through the presence of multiple self-models (alternative defi-
nitions) and incidental information about their relative efficiencies. Procedure integration
applies as described above, and constant folding and dead code elimination take similar
forms. Other advanced techniques are possible as well. Local data structures and variables
can be introduced to improve efficiency. Just as a traditional compiler might stack-allocate
procedure parameters rather than making them visible to interpreted code, a plan compiler
might set up procedures to pass packets of specialized data structures to their continuations,
rather than transmitting their results in general form in the global data base. For example,
the most standard plans might use global variables to communicate inputs, outputs, and
intermediate results. (Cf. [Minsky 1977]) The self-conscious architecture also lends itself to
more advanced techniques like automatic subroutinization.

Reasoning about the available information is very important in compilation, for such
reasoning can be used to reduce the power of the methods remaining in the compiled
procedure. For example, a procedure may contain information about default assumption,
choices, or backtracking to be performed during execution. If these choices are normally
correct, then substantial efficiency might be gained in routine cases by transforming the
procedure so that all assumptions and choices are predetermined or partially tested with
primitives, and backtracking is ignored. The new procedure can then be used under the
assumption that it is applicable to the case at hand. An error signals that one of the
assumptions that was lumped into the assumption of applicability is wrong, and that a
more general method (perhaps the uncompiled procedure) must be used instead. Too high
a frequency of failure of the procedure indicates that new information gathering (via history
analysis or other means) and recompilation is necessary.
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A more complex example of reasoning about the knowledge available is shown in the
following. Manna and Waldinger [1977a,b] present a system for synthesizing recursive LISP
programs from specifications. The system expands reduces goals to subgoals via a collection
of tranformation rules. These transformation rules may have conditions of applicability. In
such conditional cases, either the application condition must be proven, or a conditional test
must be introduced. Similarly, recursion is introduced when a goal is seen to be an instance
of the top level goal and the applicability conditions (the specifications) of the program are
satisfied by proof or conditional introduction.

Unfortunately, the conditional introduction rule used in this system is to introduce a
test whenever the desired condition cannot be proven. This confuses several cases which
might lead to this failure of proof; in particular, those of conditions independent of the
specifications, and true conditions which cannot be proven due to incompletenesses in the
proof techniques. Distinguishing between these cases sometimes pays off in a more effi-
cient program. For example, Manna and Waldinger [1977a] use the following example of a
program to compute the maximum element of a list.

(DEFUN MAXL (X)

(COND ((NULL (CDR X)) (CAR X))

((> (MAXL (CDR X)) (CAR X)) (MAXL (CDR X)))

(T (CAR X))))

The entry condition to the program is that the list is nonempty. The recursive call of the
program on the tail of the list is introduced after a check to see if the tail is non-empty.
In this case, the conditional was introduced because the non-empty list specification to be
met by the recursive calls was not provable. However, it is provable that the specification
is not provable, since lists of length one and two are models of the two distinguishing cases.
Here, however, the confusion between provably unprovable and lack of proof methods does
not create an inefficient program (although the program is inefficient for other reasons).

Now consider writing an evaluator for a LISP-like language. We will not give the spec-
ification or the exact details of such a process, but instead present three different such
evaluator fragments and indicate how different reasoning strategies would have produced
the differences.

First of all, we have the least complicated version of the major function EVAL. This
function takes an expression and an environment, and returns the evaluation of the ex-
pression in the environment. If the expression is an atom, its value is looked up in the
environment. If the expression is non-atomic, then the function position of the expression
is checked to see what type of combination is indicated. If the function position is either
atomic or a random form, it is evaluated and applied to the list of evaluated arguments. If
the function is a lambda expression, however, it is applied directly to the list of evaluated
arguments. One can easily imagine how the simple conjunction and recursion introduction
rules used by Manna and Waldinger could produce the something like the following function.

(DEFUN EVAL (X ENV)

(COND ((ATOM X) (LOOKUP X ENV))

((ATOM (CAR X))

(APPLY (EVAL (CAR X) ENV) (EVLIS (CDR X) ENV)))

9
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((EQ (CAAR X) ’LAMBDA)

(APPLY (CAR X) (EVLIS (CDR X) ENV)))

(T (APPLY (EVAL (CAR X) ENV) (EVLIS (CDR X) ENV)))))

Thus, direct recursions are introduced in the fourth and seventh lines of the program.
Note, however, that in the fourth line one additional constraint on the argument to the
recursive call is known that is not present for the call on the function in general. That is,
the argument is known to be atomic, and so the recursion can be replaced by that particular
case of the specifications, namely by a simple lookup. This produces the following program.

(DEFUN EVAL (X ENV)

(COND ((ATOM X) (LOOKUP X ENV))

((ATOM (CAR X))

(APPLY (LOOKUP (CAR X) ENV) (EVLIS (CDR X) ENV)))

((EQ (CAAR X) ’LAMBDA)

(APPLY (CAR X) (EVLIS (CDR X) ENV)))

(T (APPLY (EVAL (CAR X) ENV) (EVLIS (CDR X) ENV)))))

This is not all that can be done, however. In the seventh line, the function position
is already known to be non-atomic, so the atom test that is performed in the recursive
invocation is wasted. Noticing this allows the function to be made more efficient by rewriting
it as two functions as follows.

(DEFUN EVAL (X ENV)

(COND ((ATOM X) (LOOKUP X ENV))

(T (EVAL1 X ENV))))

(DEFUN EVAL1 (X ENV)

(COND ((ATOM (CAR X))

(APPLY (LOOKUP (CAR X) ENV) (EVLIS (CDR X) ENV)))

((EQ (CAAR X) ’LAMBDA)

(APPLY (CAR X) (EVLIS (CDR X) ENV)))

(T (APPLY (EVAL1 (CAR X) ENV) (EVLIS (CDR X) ENV)))))

In this version, the extra atom test is avoided.

7 Research Directions

I have alluded to many very difficult problems in this paper, too many for a thesis. However,
there are several projects I hope to pursue in investigating the topics of reflexive interpreters
and plan compilers. One task is to write a compiler which takes as input a meta-circular
interpreter and a program, and then symbolically evaluates21 the actions of the interpreter
on the program to produce a compiled version of the program. The benefit of this would be
that small modifications to the interpreter could easily be accomodated without extensive

21For the simpler languages, the process of symbolic evaluation can be made more like that employed in
[Doyle 1976] rather than the more complex methods employed by [Rich and Shrobe 1976].
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changes to the compiler. The compiler could then be used to compile itself for a particular
interpreter, producing a compiler which has only an implicit model of the interpreter.22

This study can be carried out using a small language such as a subset of SCHEME.23

Another task is to write a compiler for a rule-based language, such as AMORD or
NASL. This would involve describing three types of function calling disciplines, one for
explicit calls mediated by the data base, one for interpreted code, and one for primitive
compiled functions. This would also require settling on a representation for plans and the
history of the interpreter in symbolically executing these plans. With these, the next step
would be to use the meta-circular techniques of the first project to produce a reflexive
interpreter and plan compiler.

These projects would be followed by increasing the sophistication of the interpreters
involved. This means developing a more expressive and wide ranging vocabulary for talking
about control actions, interpreter states, and interpreter histories. This would also include
developing a library of plans for the action of the interpreter. The only plans that could
be developed to any depth would be those strictly concerned with the operation of the
interpreter proper, such as language analysis and compilation strategy plans. For example,
program transformation techniques of the form discussed by Burstall and Darlington [1977]
might be formalized as compilation strategies and interpreter plans.

8 Overview of Related Work

This research builds on many foundations. Minsky [1965] presented an early description of
problems of self-modelling interpreters. He develops the theses that the mind-body distinc-
tion derives from the different vocabularies used in discussing mental and physical activities,
and that the concept of free will derives from incomplete analyses of our internal self-models.
Other questions concerning the structure and use of these self-models (descriptions of be-
havior and control in particular) are discussed in [Minsky 1962].

The construction of meta-circular interpreters has been studied in great detail by Steele
and Sussman [1978b]. Related studies in the foundations of self-descriptive language sys-
tems have been carried out by Backus [1973], Brown [1977], Scott [1973], Smullyan [1957],
Montague [1963] and Kripke [1975].

Hayes has long advocated careful formalization of the control processes of problem solv-
ing systems. Towards this end, he has been working for several years on the GOLUX system,
a self-descriptive theorem prover, and on related representational problems. [Hayes 1970,
1971a, 1971b, 1973, 1974, 1977] There seem to be few details on this system, which Hayes
has indicated (in his 1977 IJCAI lecture) is still unimplemented.

22The technique of symbolically evaluating a meta-circular interpreter for a language as a compiler does
not seem to have been investigated. Instead, related efforts have concentrated on using separate fixed
languages to describe the language and machine for which the compiler is being developed. Thus compiler-
compilers are typically seen as accepting a description of the language being compiled, producing a syntax
analyzer and compiler-proper for the language, and then accepting a machine description and producing a
code generator for the machine. (See for compiler-compilers [McKeeman, Horning and Wortman 1970], for
code generator generators [Fraser 1977] and [Cattell 1978], for language description languages [Cleaveland
and Uzgalis 1977], and for machine description languages [Bell and Newell 1971].

23Many small interpreters for SCHEME subsets are presented in [Steele and Sussman 1978b]. The reference
description of SCHEME is [Sussman and Steele 1978a].
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McDermott [1977a, 1977b, 1977c, 1978] has constructed NASL, a self-conscious pro-
gram for designing electronic circuits. NASL is an interpreter of hierarchically organized
plans which it constructs in a predicate-calculus theorem-proving data base. NASL is a
single-level system (everything goes through the data base - there is no provision for com-
pilation) which uses only a fragmentary self-model and an undeveloped representation of
the history of the interpreter’s actions. This leads to several inadequacies in the power and
performance of the program. One of McDermott’s major developments is a demonstration
of the expressibility of control information in the extended predicate calculus. He has de-
veloped a vocabulary for discussing tasks, task states (pending, active, finished, blocked,
enabled, reduced, unreduced, and others), task actions and methods, relations between
tasks (successor, subtask, maintasks, scope, sequencing, iteration, and others), and actions
for controlling the interpreter (infer, find, continue, finish, rephrasing, choosing, etc.) I
hope to use much of this vocabulary, and much of my thought about reflexive interpreters
has used NASL as a model.

Rychener [1976] has also developed a vocabulary of control contructs. He uses these to
implement a version of GPS as a production system.

Weyhrauch [personal communication] has developed a proof checking system for a first-
order logic of programs which can explain and reason about its own operation. Proofs and
related concepts are among its ontology, and it can explain any of the actions it takes in
checking a proof. It is not a problem solver, and thus has a very restricted set of actions
for description. It is based on a rigid hierarchy of language types, such that statements in
one level of the hierarchy refer to objects representing statements at the next lower level
of the type structure. It uses no concept of hierarchy of action types or of hierarchical
descriptions.

Milner and his colleagues have a proof checker based on an extended lambda-calculus,
augmented by a simple vocabulary for constructing tactics for guiding the proof checking.
[Gordon, et al 1977]

The work of myself and my collaborators has involved studies of the representation and
manipulation of hierarchical proofs and programs suitable for self-conscious interpreters.
The major topics investigated have been the description of rules for using explicit control
assertions [de Kleer, et al 1977], recording and maintaining program and proof histories
[Doyle 1978], and search and control methods employing these techniques [Doyle 1978,
Stallman and Sussman 1977].

Sussman [1975] investigated the problem of compilation of procedures for the use of
knowledge. The major topics developed in his study were the processes of automatic sub-
routinization and the debugging or modification of overconstrained compiled programs.
Other topics in the compilation of procedures from general knowledge have also been stud-
ied by Sandewall [1976], Manna and Waldinger [1977b], Clark and Sickel [1977], and Brown
[1978].

There are many subtopics involved in the study of sophisticated reflexive interpreters.
The description and use of non-linear and hierarchical plans of actions have been studied
in many ways by Sacerdoti [1975], Tate [1976], Barstow [1977], Rich and Shrobe [1976],
and McDermott [1977a]. Problems of reasoning about knowledge and actions has been
studied by Hintikka [1962], Rescher [1964], Mackie [1965], McCarthy and Hayes [1969],
Hayes [1971a,b], Moore [1975, 1977], McCarthy [1977], Doyle [1978], Pratt [1976], and

12
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Harel [1978]. The particular problems of representing hierarchical and other structures of
knowledge have been studied by Fahlman [1977], Martin [1978], Smith [1978], and Sussman
[1977].
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