
Reprinted from Proceedings of the DARPA Workshop on Innovative Approaches to Planning, Scheduling and Control, Novem-
ber, 1990, Katia P. Sycara, editor, San Mateo: Morgan Kaufmann Publishers, pp. 28-36.

Rational Distributed Reason Maintenance for Planning
and Replanning of Large-Scale Activities

(Preliminary Report)

Jon Doyle∗

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

doyle@zermatt.lcs.mit.edu

Michael P. Wellman

USAF Wright R&D Center
WRDC/TXI

Wright-Patterson AFB, OH 45433
wellman@wrdc.af.mil

Abstract

Efficiency dictates that plans for large-scale dis-
tributed activities be revised incrementally, with
parts of plans being revised only if the expected
utility of identifying and revising the subplans im-
prove on the expected utility of using the original
plan. The problems of identifying and reconsidering
the subplans affected by changed circumstances or
goals are closely related to the problems of revis-
ing beliefs as new or changed information is gained.
But the current techniques of reason maintenance—
the standard method for belief revision—choose re-
visions arbitrarily and enforce global notions of con-
sistency and groundedness which may mean recon-
sidering all beliefs or plan elements at each step.
We outline revision methods that revise only those
beliefs and plans worth revising, and that toler-
ate incoherence and ungroundedness when these are
judged less detrimental than a costly revision effort.

1 Introduction

Planning is necessary for the organization of large-scale
activities because decisions about actions to be taken in
the future have direct impact on what should be done
in the shorter term. But even if well-constructed, the
value of a plan decays as changing circumstances, re-
sources, information, or objectives render the original
course of action inappropriate. When changes occur be-
fore or during execution of the plan, it may be necessary
to construct a new plan by starting from scratch or by
revising a previous plan. In fact, replanning may be
worthwhile even when the new situation does not devi-
ate significantly from prior expectations. The original
plan may have been constructed to perform acceptably
over a wide range of possible circumstances, and know-
ing more about the particular situation encountered may

∗Jon Doyle is supported by National Institutes of Health
Grant No. R01 LM04493 from the National Library of
Medicine.

enable construction of strategies which are better suited
to the case at hand.

There are two central decisions surrounding the re-
planning process. First, given the information accrued
during plan execution, which remaining parts of the orig-
inal plan should be salvaged and in what ways should
other parts be changed? Incremental modification is
more efficient than wholesale replanning, but a restric-
tion to local changes can compromise the value of the
revised plan. Second, to what extent should the planner
attempt to avoid the need for replanning by anticipat-
ing contingencies and providing for them in the original
plan? Contingency planning improves the capacity for
response when replanning time is limited, but the return
on up-front investment rapidly diminishes as the likeli-
hood of particular contingencies decreases.

In the following, we describe an approach to replan-
ning which addresses the first question by applying
the decision-theoretic conception of rationality to the
plan revision tradeoff. Characterizing the computational
costs and performance of the revision process contributes
toward solutions to the second problem, development of
a contingency planning strategy. Our techniques center
on a reason maintenance system or RMS (also known as
TMS for “truth maintenance system” [de Kleer, 1986;
Doyle, 1979]), redesigned for more rational and flexible
control.

2 Rational replanning

To replan effectively in crisis situations, replanning must
be incremental , so that it modifies only the portions of
the plan actually affected by the changes. Incremental
replanning first involves localizing the potential changes
or conflicts by identifying the subset of the extant beliefs
and plans in which they occur. It then involves choos-
ing which of the identified beliefs and plans to keep and
which to change. For greatest efficiency, the choices of
what portion of the plan to revise and how to revise it
should be rational in the sense of decision theory. This
means that the replanner employs expectations about



and preferences among the consequences of different al-
ternatives to choose the best one.

2.1 Explicit and implicit rationality

According to decision theory, a choice is rational if it
is of maximal expected utility among all alternatives.
But planning and replanning involve at least two dif-
ferent sorts of decisions, and applying the standard of
rationality to each yields different notions. The funda-
mental distinction is that between result rationality and
process rationality. Rationality of result measures how
efficiently the plan achieves specified objectives. Com-
plementing this, rationality of process measures how ef-
ficiently the planner expends its efforts in constructing
the plan. While most investigations of planning have fo-
cused on one or the other, both elements are essential to
the overall rationality of the planning system.

Making any process rational is not easy, for straight-
forward mechanizations of decision-theoretic definitions
can require more information than is available and more
computation than is feasible to use that information.
Sophisticated mechanizations are more tractable, but
the main tool for achieving rationality in reasoning is
to distinguish between explicit and implicit rationality
in processes. Computational mechanisms may calculate
and compare expected utilities in order to make explic-
itly rational choices. Explicit rational choice promises
to be most useful in guiding some of the larger meta-
level decisions about whether to replan globally or in-
crementally, and in choosing which contingencies call for
planned responses. For the more numerous small deci-
sions that arise, however, explicitly representing and cal-
culating expected utilities may not be worth the cost. In-
stead, the more useful approach is to apply non-decision-
theoretic reasoning mechanisms whose results may be
justified as rational by separate decision-theoretic anal-
yses. Such mechanisms may be viewed as “compiling”
the results of explicit rational analysis into directly ap-
plicable forms. Each of these ways of implementing ra-
tionality is best in some circumstances, since compilation
is not always possible or worthwhile.

Examples of implicitly rational procedures abound in
AI under the name of heuristics. For instance, the “sta-
tus quo optimality” heuristic [Wellman, 1990a, Section
6.4.1] constrains the set of possible revisions under the
assumption that the current plan is optimal. In par-
ticular, the replanner need only respond to the specific
changes. A related example is application of the basic
theorem of optimization that says that if the only change
is a tightening of constraints, the currently optimal plan
remains optimal if it remains feasible. Another example,
of somewhat different character, is provided by the as-
sumptions made by nonmonotonic reason maintenance
systems. The default rules or reasons justifying these
assumptions are important forms of heuristics, and the
RMS examines them to come up with a coherent set of
assumptions and logical conclusions. Though the algo-
rithms for determining these sets of conclusions do not

involve any explicit rationality calculations, the conclu-
sions drawn by the RMS can be shown to be Pareto op-
timal sets, that is, rational choices of conclusions when
the reasons are interpreted as preferences over states of
belief [Doyle, 1985]. Viewed this way, default rules or
reasons encode compiled preferences, and reason main-
tenance is an example of an implicitly rational choice
mechanism.

Thus one approach to the application of rationality
principles in planning and replanning is to identify the
principles and look for computational mechanisms that
implement them, preferably implicitly. Another is to de-
velop seemingly effective computational mechanisms and
then figure out under what conditions they are rational.
We are pursuing both approaches.

2.2 Rational guidance of replanning

Process rationality enters the task of planning in numer-
ous ways. For example, in the development of a plan,
contingency plans should be included only when the ex-
pected utility of preparing them is sufficiently great: if
the contingency is likely to occur and if the costs of devel-
oping it in advance are less than the costs of constructing
it under the tighter constraints existing while executing
the enclosing plan. Similarly, a portion of a large plan
should be revised only if, given the new information, the
expected costs and benefits of identifying which plan el-
ements need revising outweigh those expected for either
using the original portion or replanning from scratch.

Making these judgments requires information about
the likelihoods, costs, and benefits of different sorts of
contingencies and planning responses. This includes the
likelihood of specific contingencies arising, their impor-
tance if they do arise, and the costs of planning for them;
similarly, the likelihood of one part of the plan being af-
fected by changes in another, the importance of those
changes, and the costs of determining and effecting them.

While many of the likelihoods involved in planning
derive from the specifications of the task, the costs and
benefits of reasoning steps involved in planning are func-
tions of the underlying representational and reasoning
architecture. The theory of computation supplies some
abstract notions of computational costs, such as worst-
case time and space taken by Turing machines. However,
significant differences in reasoning time and space can
be lost in the translation to Turing machines, and the
worst case is not the only one of interest. Use of the the-
ory of rational decisions effectively in making judgments
about plan revision requires realistic measures of compu-
tational costs and benefits appropriate to the particular
architecture of the planner, as well as expectations ap-
propriate to the domain of planning. Our development
of the planning architecture attempts to make formal-
ization and estimation of these measures more direct.

Process rationality must be evaluated with respect to
the combined planning/replanning system. In our model
of the plan construction process, depicted in Figure 1,
the planner and replanner continually evaluate and re-

2



Agent World

Planner

Replanner

Executor

actions

observations
?

-
�

-
�

-

�

Figure 1: An integrated planning, replanning, and exe-
cution system.

vise the existing plan in light of what happens in the
world. The distinction between planning and replan-
ning is that the latter uses the existing plan to focus
attention on a restricted set of decisions about actions
to be performed. The tight coupling of the planning and
replanning modules is indicative of the strong interac-
tions between their designs. Knowledge about the capa-
bility of the replanner dictates where up-front planning
effort should be spent anticipating particular contingen-
cies. And the replanner requires access to the planner’s
reasons for adopting the current strategy in order to in-
telligently adapt it for changing situations.

To do this, the planning procedures routinely identify
the assumptions made during planning and connect plan
elements with these assumptions. In addition, to achieve
true flexibility in the sorts of changes the replanner can
accommodate, we permit any element of information to
change, including the problem specification, background
knowledge, and preferences. This allows the replanner
to benefit from knowledge of what other specifications,
beliefs, and preferences were adopted as consequences
or choices from the changed items. This also makes it
important that implicitly rational planning procedures
indicate the original expectations, preferences, and sub-
plans from which they were “compiled.”

3 Planning framework

Our approach combines a dominance-proving architec-
ture for planning [Wellman, 1990a] with a reason mainte-
nance facility for replanning. We start from a constraint-
posting view of the plan construction process. Plans
consist of a set of actions , which can be specified at
varying levels of detail. Constraints posted by the plan-
ner dictate the inclusion or exclusion of particular ac-
tions, and specify features of the actions included. For
example, unary constraints on an action may determine
the resources allocated to it, its spatiotemporal location,
or some other details about its implementation process.
Inter-activity constraints may identify shared objects or
establish temporal relations among actions. The class of
expressible constraints defines the plan construction lan-
guage. The planning language itself is a restricted subset
of this, limited by input requirements of the execution
module.

Each posted constraint represents a decision made by
the planner, choosing the class of plans satisfying the
constraint over those that do not. To support rationality
in planning, we require that every decision be associated
with a reason, of one of the following types:

1. Dominance reasons indicate decision-theoretic argu-
ments that plans violating the constraints are inad-
missible [Wellman, 1987].

2. Feasibility reasons justify posting constraints because
they are required for plan executability. For example,
we must enforce preconditions of included actions.

3. Completeness reasons indicate the constraints are re-
quired to fill out plans so that they can be interpreted
by the execution module. For example, all shipment
actions must specify a source and destination. The
degree of incompleteness permitted depends on the re-
active capabilities of the executor.

4. Default reasons directly associate decisions with other
conditions on the planning situation. While all plan-
ning decisions are defeasible, we distinguish those not
based on explicit rationality arguments.

All reasons specify the beliefs, preferences, and other
planning decisions on which they depend. Because these
elements in turn are supported by reasons, the compos-
ite argument for a planning decision can include a vari-
ety of these justification types. For example, a decision
might be derived from a decision-theoretic dominance
proof with some premises representing default intentions
premised on some default intentions which in turn were
triggered by the need to complete an insufficiently spec-
ified action description.

The dominance-proving architecture offers several ad-
vantages as the basis for a rational replanning system.
Foremost, it accommodates use of decision-theoretic cri-
teria for choice among plans, which is the central basis of
result rationality. In addition, its dominance relation is
defined over abstract plan classes, so that these criteria
can be associated with isolated planning decisions (that
is, individual constraints). Attaching reasons to domi-
nance conditions generalizes the current architecture and
directs the replanner to the appropriate regions for mod-
ification when things change.

Though recording the reasons for plans is a first step
towards efficient incremental replanning, this alone is not
sufficient, as we see by a closer examination of reason
maintenance techniques.

4 Replanning and reason maintenance

The problem of revising plans to account for changed
conditions has much in common with backtracking and
the problem of revising beliefs in light of new informa-
tion. In both cases, one must determine which existing
beliefs or plans are in conflict with the new informa-
tion, what these existing beliefs or plans depend on, and
what gaps in plans or beliefs appear as the revisions or

3



updates are made. That is, one must localize the po-
tential changes or conflicts by identifying the subset of
the extant beliefs and plans in which they occur. Simi-
larly, both belief revision and plan revision involve choos-
ing which of the identified beliefs and plans to keep and
which to change. In addition, the problem of providing
for contingencies has much in common with the prob-
lem of choosing rules for reasoning by default, for both
involve setting up primary plans or beliefs and the sec-
ondary plans or beliefs to use when the primary ones are
not applicable. In both plan revision and belief revision,
we seek to make these choices of where and how to revise
rational in the sense of decision theory.

The standard approach to belief revision, backtrack-
ing, and default reasoning is to use a reason maintenance
system to connect original information with derived con-
clusions and assumptions. Reason maintenance may be
used in a similar way to revise plans as well as beliefs
by indicating the dependence of plans on beliefs and on
other plans, thus indicating the relevant portions for re-
vision and the conflicts between prior plans and new cir-
cumstances. This possibility was, in fact, one of the orig-
inal motivations for reason maintenance systems (see [de
Kleer et al., 1977]).

4.1 Rational reason maintenance

But the extant architectures for reason maintenance re-
quire reassessment. In the first place, essentially all the
choices made by current RMSs are irrational since they
are made without reference to any preferential informa-
tion about what choices are better than others. The
most obvious decisions concern backtracking: whether
observed conflicts warrant resolution and if so, which
assumption to retract in order to resolve them. Ap-
proaches to each of these decisions play prominent roles
in the design of different reason maintenance systems.
But if we are to achieve the efficiency required for revis-
ing large plans, reason maintenance must be redesigned
to make these choices rationally whenever possible. Ac-
cordingly, we have begun to develop formal foundations
for the theory of rational belief revision [Doyle, 1988;
Doyle, 1990], and are developing techniques for encod-
ing probabilistic and preferential information within the
RMS and methods by which the RMS can use this in-
formation to backtrack in a rational manner. In this,
we build on techniques for qualitative representation of
probabilistic information [Wellman, 1990b].

But to really make reason maintenance techniques effi-
cient, we must do more than choose rationally among as-
sumptions in backtracking. We must in addition under-
take a fundamental reconsideration and redesign of rea-
son maintenance systems to make them much more in-
cremental than extant architectures. Current algorithms
for revising beliefs are based on making unbounded (po-
tentially global) optimizing computations that in some
cases may reconsider the status of every item in the
plan and knowledge base, even though very few of these
statuses may change as the result of the revision. Put

another way, extant systems maintain global coherence
(propositions are believed if and only if there is a valid
argument for them) and global groundedness (all be-
lieved propositions have a well-founded argument from
premises). While these unbounded computations have
been manageable in the relatively small knowledge bases
explored to date, they would appear to be infeasible for
use in systems manipulating very large plans. Instead
of global computations, we need some way of controlling
how much effort is spent on revision. If reason main-
tenance is to be rational, the system must be able to
trade off coherence and groundedness for time or other
resources. Specifically, it must be able to decide whether
the benefits of updating some arguments or consequences
justify the costs of updating them.

To make the RMS amenable to rational control, we di-
vide the knowledge base into parts, each of which may be
revised or preserved separately. Each module of this dis-
tributed RMS contains its own set of beliefs and plans
(as well as other information) corresponding to differ-
ent elements and purposes of the overall plan or to dif-
ferent dimensions of structure (hierarchical abstraction,
overlapping views, spatial separation, temporal separa-
tion, flow of material and information, etc.). Decom-
position of knowledge in this way is a familiar element
of many representational schemes (e.g., those based on
Minsky’s [1975] original frame-systems idea). The use of
locality in planning is illustrated most explicitly by the
encapsulation mechanisms of Lansky’s [1988] gemplan

system.

4.2 Distributed reason maintenance

Along with the general benefits of decomposition, there
are several additional reasons for distributing reason
maintenance across different processors. In the first
place, the information and effort required may be too
great to store or perform on a single machine. In manag-
ing very large activities, for example, the most effective
representations may spread information across machines
or storage media of different speeds and access times
(e.g., disk storage, large spatial separations). Even when
the information resides on a single processor, the most
convenient representation may be a modular, distributed
organization as described above. But more generally, the
information and actions involved in some task may be
naturally distributed. For example, the necessary infor-
mation may come from geographically separated sensors
or databases. If communication is either unreliable or
costly, effective action may require on-site processing.
Similarly, there may be numerous people or devices car-
rying out parts of the task. For example, in the task
of operating a large manufacturing complex, plans are
executed by line or cell managers acting independently
except as coordinated by the plan. When changes occur,
at least some of the changes in plan must be determined
by the line or cell managers, since the complex manager
will not be able to keep track of all of the activities or
to respond quickly enough. Because authority is dele-

4



gated and distributed, reactions to deviations may be
completely decentralized and uncoordinated.

In addition, distributed reason maintenance may be
valuable because different beliefs and plans may serve
different purposes. These purposes may dictate careful
maintenance of some beliefs and more casual mainte-
nance of others. A common case of this arises when rea-
soning is accomplished by different modules operating at
different rates. Even if they share a common database,
it is often natural to view each module as having dis-
tinct inputs, outputs, and local state. In this setting,
different rates of inference or action in the modules call
for differing treatment of the information in computing
updates and checking support. For example, outputs
which change rapidly compared with how often they are
used as inputs need not demand reconsideration of con-
sequences each time they change. Instead, it may be
much more efficient to leave the consequences untouched
and to have the consuming module recheck the support
immediately prior to use—and then only if the risks of
unjustified action are great enough. In many cases, we
may expect that the success of the overall plan will not
be adversely affected if the beliefs of one module about
plans involving some distant module are mistaken.

For example, suppose one part of a manufacturing
plan calls for receiving parts from San Diego at Los An-
geles and then flying them to Detroit. If local difficulties
promise to delay the parts from San Diego, the origi-
nation portions of the plan might be revised to reroute
similar parts in San Francisco to Los Angeles. As long as
this plan patch attaches appropriate shipping orders for
the Los Angeles authorities, there is no need to notify
them in advance about the change in plans. Indeed, if
the origination plans change several times (say from San
Diego to San Francisco, back to San Diego, etc.), noti-
fying Los Angeles in advance just leads to wasted effort
in revising the latter portion of the plan.

4.3 The reason maintenance service

The extant RMS architectures make reason maintenance
the base-level stratum upon which all other reasoning
procedures are erected. To enable belief revision, one
must encode every bit of information that might change
in reasons and tell these reasons to the RMS (cf. [Rich,
1985; Vilain, 1985]). This can present an excessive bur-
den, as manifest by the observation that the RMSs sup-
plied in expert system shells all too often go unused.
If one must apply it to every step of reasoning, at every
level down to the smallest inference, reason maintenance
becomes a demanding duty rather than a flexible service
to use or ignore as appropriate. To integrate existing
application tools and systems that do not use reason
maintenance into AI systems that do, the RMS must be
able to use other databases and processes to effect its re-
visions. In particular, the RMS must be able to treat ex-
ternal databases as the authorities about certain beliefs,
and it must be able to operate even though other pro-
cesses may be changing these databases independently

of the RMS. This makes the RMS just one of a set of
distributed databases.

5 Rational distributed reason mainte-

nance

Putting these observations together, we seek to facilitate
revision of large plans by employing a rational distributed
reason maintenance service, or RDRMS. The purpose
of the RDRMS is to maintain a description of the overall
system’s state of belief that is as good as possible given
the reasoner’s purposes and resources. This description
may be approximate, partial, or imperfect, and it may
be improved by performing further computation as the
resources supplied to the RDRMS increase.

There are many motivations for using an RMS: as a
way of providing explanations, as a way of answering
hypothetical questions, and as a way of maintaining co-
herence, groundedness, and consistency. These also mo-
tivate the RDRMS, but its primary purpose is to en-
able the reuse of past computations in whole or in part
without having to repeat the possibly lengthy searches
that went into constructing their results. That is, we
view reasons as information about past computations
or conditions which may be used to reconstruct results
in changed circumstances, either exactly or in modified
form (as in derivational analogy [Carbonell, 1986] or
case-based reasoning). Treating reasons as aids to re-
computation is in marked contrast with the traditional
use of reasons in RMSs, where they are treated as rigid
requirements that belief states must satisfy instead of in-
formation which may be used or ignored as suits the rea-
soner’s purposes. Naturally, in this setting the RDRMS
is not expected to determine completely and accurately
what the system believes. Instead, it only offers a theory
of what the overall system believes—an “autoepistemic”
theory, in the sense of Moore [1985], but not necessarily
a complete or correct one.

5.1 RDRMS Operations

The basic operation of the RDRMS is to record reasons
and other information, and, when so instructed, to revise
beliefs in accordance with the expectations and prefer-
ences supplied by the reasoner. Put another way, the
default operation of the RDRMS is to ignore the infor-
mation it records until it is told to revise beliefs, and
then to revise them only as far as can be justified by
purposes of the reasoner. We do not require that all
inference be rationally controlled. Some amount of au-
tomatic inference is acceptable if it represents strictly
bounded amounts of processing.

In the RDRMS, reasons are ordinarily partial. That
is, the reasoner need not register all inferences with the
RDRMS. The RDRMS will therefore be unable to track
all the consequences of all beliefs. Although knowledge
is usually preferable to ignorance, this incompleteness of
the beliefs of the RDRMS need not be detrimental since

5



the underlying knowledge and inferences of the reasoner
are incomplete anyway. Moreover, these consequences
may not influence the reasoner’s actions, in which case all
effort expended in recording them would be wasted. The
only discipline required of the reasoner is that any infer-
ences that will not be performed by some other agency
and that cannot be determined after the fact during
backtracking should be described to the RDRMS.

Correspondingly, reasons may be incorrect in the
RDRMS. That is, the reasoner may use a reason to
describe the result of a computation, but may leave out
some underlying assumptions. The result is a reason
that is valid when those unstated assumptions hold, but
which may be invalid otherwise. Incorrect reasons can
be very troublesome in a traditional RMS, since they
would be enforced as requirements on the state of be-
lief, but they need not cause special problems in the
RDRMS. Since the RDRMS may obey or ignore reasons
depending on its instructions and experience, all reasons
are implicitly defeasible. Thus incorrect reasons pose
no problems not already present in explicitly defeasible
nonmonotonic reasons.

Just as reasons may be incomplete, so may be the
theories of belief states constructed from them, since if
reasons are ignored, their consequences will not be be-
lieved. More generally, the RDRMS makes it possible
to vary how many conclusions are drawn from reasons.
For example, the system will ordinarily use reasons to
construct a single global set of beliefs, as in the original
RMS. But for some specific sets of reasons, say those
corresponding to a circumscribed problem, the RDRMS
may determine all consistent sets of beliefs as in the
ATMS [de Kleer, 1986]. Alternatively, only some consis-
tent interpretations may be constructed, such as those
maximal in some order (as in preferential nonmonotonic
logics [Shoham, 1988]). In general, the aim is to use
the recorded reasons to draw as many conclusions as the
reasoner needs.

Similarly, the revisions performed by the RDRMS may
be incomplete. In the absence of more specific instruc-
tions, the default revision is trivial, simply adding the
new reasons and their immediate conclusions to the be-
lief set. (In recognition of the partiality of reasons, the
RDRMS also accepts commands to simply believe some
proposition, independent of reasons. This corresponds
to the “revision” operation in philosophical treatments
of belief revision [Gärdenfors, 1988].) Specifically, with-
out explicit instructions, the RDRMS does not propa-
gate changes, does not ensure beliefs are grounded, and
does not automatically backtrack to remove inconsisten-
cies. To give some structure to these operations, we de-
fine revision instructions relative to the modules of the
knowledge base. These instructions may indicate that
changes should propagate within the module containing
the belief, or to its neighbors, or globally; or that all be-
liefs in the module should be grounded with respect to
the module, with respect to its neighbors, or globally; or
that backtracking should be confined to the module, or
should look further afield for assumptions to change.

5.2 RDRMS Behavior

One consequence of the incompleteness and incorrect-
ness of reasons is that beliefs of the system may be in-
consistent in routine operation. The overall set of be-
liefs may exhibit inconsistencies by including conflicting
beliefs from different modules. Ordinarily the special-
ized beliefs corresponding to specific problems or sub-
jects will be represented in modules that are internally
consistent, but the RDRMS need not be forced to keep
all these modules consistent with each other. In this
case, the locally coherent modules can be interpreted
as “microtheories” [Hewitt, 1986] (related to the idea of
“small worlds” in decision theory [Savage, 1972]). But
inconsistency can arise even within a module if too little
inference is specified.

Another consequence is that the beliefs of the sys-
tem may not be fully grounded. In the first place,
the set of beliefs may be so large as to make global
groundedness too costly. More fundamentally, large
sets of beliefs always contain interderivable sets of
propositions—alternative definitions provide the most
common example—and which of these sets to choose as
axioms can depend on the specific reasoning task being
addressed. For example, the standard definition of non-
planar graphs is best for some purposes (e.g., teaching
the concept), but Kuratowski’s characterization is best
for other purposes (e.g., recognition algorithms). Thus
lack of global groundedness need not be cause for alarm.
Ordinarily, however, specialized modules corresponding
to specific problems will be kept grounded in the axioms
formulating these problems. The system of beliefs can
thus be thought of as “islands” of groundedness floating
in a sea of ungrounded beliefs.

The aim of the RDRMS is to make all of its choices
as rationally as possible. These include the choices of
which reasons to use in reconstructing results, whether to
propagate changes, whether to ground a conclusion, and
whether to backtrack. Since reasons merely record some
of the inferential history of the reasoner, they do not by
themselves determine whether consequences are updated
or supports are checked. Instead, to make these deci-
sions the RDRMS uses annotations supplied by the rea-
soner which give instructions, expectations, and prefer-
ences about alternative courses of action. These include
specification of the conditions under which the RDRMS
should pursue consequences and check support. For ex-
ample, local propagation may be expressed as processing
changes within the module containing the changed be-
lief, but not externally. Alternatively, changes might be
communicated to neighboring modules (with or without
local propagation). Other regimes are possible too, in-
cluding the extreme of propagating the change globally.
Similarly, the annotations may indicate to persist in be-
lieving the proposition without reevaluating the support-
ing reason, to check that the reason is not invalidated by
beliefs within the containing module, or to check validity
with respect to external beliefs.

It is this limited scope, along with the variety and

6



fine grain of RDRMS operations, that makes the service
amenable to rational control. For decisions about up-
dating consequences and checking support, it is impor-
tant that the individual operations be well-characterized
computationally. Domain knowledge of probabilities and
preferences should also be reflected in the revision poli-
cies. Because such information is not always available,
the architecture provides default choices for each of these
classes of decisions. Each domain may override these
with other defaults that are more appropriate in its spe-
cific area. These default choices are then used whenever
there is no evidence that a decision requires special treat-
ment.

In addition to these decisions within the RDRMS,
there are choices about whether to record specific rea-
sons and about which propositions to adopt or aban-
don as premises of different modules. At present, the
RDRMS embodies the same approach as do traditional
RMSs, namely that these decisions are the responsibil-
ity of the external system (or systems). But since these
decisions sometimes can depend on what reasons have al-
ready been recorded, we are investigating techniques by
which the RDRMS can make some of these decisions for
the external reasoner when the external reasoner informs
the RDRMS of its purposes. Of course, these decisions
may also depend on other facts, such as how hard it was
for the reasoner to discover the belief, so we cannot ex-
pect the RDRMS to make all such decisions on its own.

6 Comparison with other work

Reason maintenance is the standard approach to belief
revision, backtracking, and default reasoning [de Kleer
et al., 1977; Doyle, 1979; Goodwin, 1987]. Morris [1988]
has shown that a standard RMS can support planning
and dependency-directed replanning within the classical
planning framework. But developing an architecture for
reason maintenance and replanning subject to rational
control will require significant modification of existing
techniques.

As mentioned above, we use the RDRMS to extend the
dominance-proving architecture for planning with par-
tially satisfiable goals [Wellman, 1990a]. This decision-
theoretic approach fits well with our goal of rational
planning. We also make use of the methods, currently
under active investigation, for decision-theoretic control
of reasoning, in which the reasoner explicitly estimates
and compares the expected utilities of individual search
or inference steps [Dean, 1990; Horvitz et al., 1989;
Russell and Wefald, 1989]. These are very important in
making some of the larger, nonroutine decisions arising
in the planning and belief revision tasks. But our aim
is to identify implicitly rational decision-making proce-
dures whenever possible by separate, off-line decision-
theoretic analyses based on the computational tradeoffs
associated with RDRMS operations.

In the traditional, generative approach to planning,
the planner takes an initial state and a goal, and con-

structs a sequence (or partially ordered set) of ac-
tions to achieve the goal. Most work on generative
planning has concentrated on planning from scratch,
though the replanning task has been studied off and
on over the years [Fikes et al., 1972; McDermott, 1978;
Wilkins, 1988] with some success. But generative
planning has focused—with a few recent exceptions—
on planning without probability or utility information.
Many of these techniques therefore require some rework-
ing before they can be said to produce rational plans,
and the issue of rational control of the planning pro-
cess is just now beginning to be studied [Dean, 1990;
Smith, 1988].

Another approach is the “reactive” approach to plan-
ning and action, which seeks to avoid execution-time
planning by “compiling” all necessary behaviors into di-
rectly applicable forms [Brooks, 1986; Georgeff and Lan-
sky, 1987; Rosenschein and Kaelbling, 1986; Schoppers,
1987]. Our approach fits well with such compilation,
since we seek to develop implicitly rational planning and
decision-making procedures. More specifically, decision-
theoretic analyses of planning and replanning apply also
to the tradeoff between planning and reacting. Since
providing a compiled response for every contingency is
usually not feasible, our approach is to provide explicit
contingency procedures only when they increase the ex-
pected utility of the overall plan, taking both planning
effort and execution-time utilities into account. In addi-
tion, our assumption of distributed execution authorities
and replanners explicitly accounts for the reactive abili-
ties of the distributed execution modules.

The constraint-based approach to scheduling [Fox,
1987] complements the generative planning approach in
many ways, as it does focus on issues of utility and op-
timization. At the same time, it has somewhat lower
aspirations, since the focus is on scheduling activities
within the confines of an overall plan, rather than on
selecting the activities in the first place. In addition,
it has generally not addressed issues of probability, and
its concepts of preference are not directly translatable to
expected utility. But many of the fundamental optimiza-
tion techniques have been refined and integrated with AI
reasoning techniques in this area, and we will draw on
these in constructing methods for rational control of the
planning process and construction of rational plans.

The case-based approach to planning [Collins et al.,
1989; Hammond, 1986; Minton et al., 1989] shares with
ours the aim of incremental construction and repair of
plans. Some case-based reasoners make significant use of
recorded reasons for beliefs and plans, for example Car-
bonell’s [1986] method of derivational analogy. By and
large, however, most work on case-based reasoning fo-
cuses on issues of conceptual organization and retrieval
rather than reason maintenance. In addition, it is not
too inaccurate to say that research on case-based rea-
soning has largely ignored issues of rationality. Work
in this area has generally aimed to make all planning
operations habitual, so that plans are constructed sim-
ply by remembering old plans or plan fragments, along

7



with patches that should be applied to these plans for
specific circumstances. We also aim to develop habit-
ual rules for plan construction whenever possible (for
example, default plans and default decisions in guiding
planning), but to produce and apply these rules in a
principled way amenable to formal analysis and directed
improvement. In particular, we use the same probabili-
ties that guide decision-making in novel circumstances to
also guide the formation and memorization of habitual
rules, remembering and forgetting rules and past plans
based on estimates of their incremental expected utility.
We believe our approach will make it easier to combine
techniques from the case-based literature with the more
formal techniques developed in the generative planning
and constraint-based scheduling literatures.

Most work on distributed AI has not addressed issues
of belief or plan revision, focusing instead on distribut-
ing the effort involved in ordinary reasoning and plan-
ning [Bond and Glasser, 1988]. Very recently, however,
some distributed RMSs have been developed. While
these represent important first steps, they are not at
present suitable bases for rational plan revision. For ex-
ample, the distributed nonmonotonic TMS of Bridgeland
and Huhns [1990] ensures global consistency among dif-
ferent agents about the information they share. Main-
taining this degree of coherence is not always feasible
in large databases, nor even desirable in cases in which
the various agents have different information sources and
perspectives. Another relevant work is the distributed
ATMS of Mason and Johnson [1989]. This system per-
mits a large degree of inconsistency among the differ-
ent knowledge-bases, and so is closer to the aims of the
RDRMS. But their system also does not address the
issue of rationality, and limits the representation of rea-
sons to monotonic implications.

7 Conclusion

Reason maintenance promises to play an important role
in replanning, but to prove useful for large-scale activi-
ties, the techniques must be capable of incremental appli-
cation that does not incur the costs of global reconsider-
ation. Furthermore, reasons must reflect likelihoods and
preferences about events related to the activity, and revi-
sion policies must be sensitive to computational tradeoffs
inherent in the process of modifying plans and beliefs.

To support this behavior, we extend traditional reason
maintenance techniques to make use of instructions, ex-
pectations, and preferences in deciding how to establish
and revise beliefs and plan elements. In our concep-
tion, the rational distributed reason maintenance service
maintains only as much coherence and grounded support
as is called for by the planner’s purposes. In essence, the
fundamental operations of finding supporting arguments
and pursuing consequences become flexible rather than
routine, with different sorts of reasons indicating differ-
ent sorts of processing during revisions.

Together with the dominance-oriented approach to

decision-theoretic planning, the RDRMS represents a
general architecture for reasoned replanning of large-
scale activities. Although much remains to be worked
out, the RDRMS concept provides both a tool for inves-
tigating representational issues in belief and preference
specification and an analytical framework for studying
computational issues in revising beliefs and plans. Be-
cause the issues of rationality highlighted by this ap-
proach are generally not even expressible within stan-
dard RMSs and classical models of planning, we expect
this line of research to yield some new insights into the
dynamics of the planning and replanning process.

References

[Bond and Glasser, 1988] Alan Bond and Les Glasser,
editors. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1988.

[Bridgeland and Huhns, 1990] David Murray Bridge-
land and Michael N. Huhns. Distributed truth main-
tenance. In Proceedings of the National Conference on
Artificial Intelligence. AAAI, 1990.

[Brooks, 1986] Rodney A. Brooks. A robust layered
control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2:14–23, 1986.

[Carbonell, 1986] Jaime G. Carbonell. Derivational
analogy: A theory of reconstructive problem solving
and expertise acquisition. In Ryszard S. Michalski,
Jaime G. Carbonell, and Tom M. Mitchell, editors,
Machine Learning 2. Morgan Kaufmann, 1986.

[Collins et al., 1989] Gregg Collins, Lawrence Birn-
baum, and Bruce Krulwich. An adaptive model of
decision-making in planning. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 511–516, 1989.

[de Kleer, 1986] Johan de Kleer. An assumption-based
TMS. Artificial Intelligence, 28:127–162, 1986.

[de Kleer et al., 1977] Johan de Kleer, Jon Doyle,
Guy L. Steele Jr., et al. Amord: Explicit control
of reasoning. In Proceedings of the ACM Sympo-
sium on Artificial Intelligence and Programming Lan-
guages, pages 116–125, 1977.

[Dean, 1990] Thomas Dean. Decision-theoretic control
of inference for time-critical applications. Technical
Report CS-90-44, Department of Computer Science,
Brown University, Providence, RI, 1990.

[Doyle, 1979] Jon Doyle. A truth maintenance system.
Artificial Intelligence, 12(2):231–272, 1979.

[Doyle, 1985] Jon Doyle. Reasoned assumptions and
Pareto optimality. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence,
pages 87–90, 1985.

[Doyle, 1988] Jon Doyle. Artificial intelligence and ra-
tional self-government. Technical Report CS-88-124,

8



Carnegie-Mellon University Computer Science De-
partment, 1988.

[Doyle, 1990] Jon Doyle. Rational belief revision. In
Proceedings of the Third International Workshop on
Nonmonotonic Reasoning, Stanford Sierra Camp, CA,
June 1990.

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence, 3:251–288, 1972.

[Fox, 1987] Mark S. Fox. Constraint-Directed Search: A
Case Study of Job-Shop Scheduling. Pitman and Mor-
gan Kaufmann, 1987.

[Gärdenfors, 1988] Peter Gärdenfors. Knowledge in
Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, MA, 1988.

[Georgeff and Lansky, 1987] Michael P. Georgeff and
Amy L. Lansky. Reactive reasoning and planning. In
Proceedings of the National Conference on Artificial
Intelligence, pages 677–682, 1987.

[Goodwin, 1987] James W. Goodwin. A theory and
system for non-monotonic reasoning. PhD the-
sis, Department of Computer and Information Sci-
ence, Linköping University, Linköping, Sweden, 1987.
Linköping Studies in Science and Technology, No. 165.

[Hammond, 1986] Kristian Hammond. Case-based Plan-
ning: An Integrated Theory of Planning, Learning and
Memory. PhD thesis, Yale University, 1986.

[Hewitt, 1986] Carl Hewitt. Offices are open systems.
ACM Transactions on Office Information Systems,
4:271–287, 1986.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F.
Cooper, and David E. Heckerman. Reflection and ac-
tion under scarce resources: Theoretical principles and
empirical study. In Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence,
pages 1121–1127, 1989.

[Lansky, 1988] Amy L. Lansky. Localized event-based
reasoning for multiagent domains. Computational In-
telligence, 4:319–340, 1988.

[Mason and Johnson, 1989] Cindy L. Mason and
Roland R. Johnson. DATMS: A framework for dis-
tributed assumption based reasoning. In Les Gasser
and Michael N. Huhns, editors, Distributed Artificial
Intelligence, chapter 13, pages 293–317. Morgan Kauf-
mann, San Mateo, CA, 1989.

[McDermott, 1978] Drew McDermott. Planning and
acting. Cognitive Science, 2:71–109, 1978.

[Minsky, 1975] Marvin Minsky. A framework for repre-
senting knowledge. In Patrick Henry Winston, editor,
The Psychology of Computer Vision, chapter 6, pages
211–277. McGraw-Hill, 1975.

[Minton et al., 1989] Steven Minton, Jaime Carbonell,
Craig Knoblock, et al. Explanation-based learning:
A problem-solving perspective. Artificial Intelligence,
40:63–118, 1989.

[Moore, 1985] Robert C. Moore. Semantical considera-
tions on nonmonotonic logic. Artificial Intelligence,
25:75–94, 1985.

[Morris, 1988] Paul Morris. Truth maintenance-based
planning with error recovery. In Proceedings of the
Rochester Planning Workshop, pages 18–19, 1988. Ex-
tended Abstract.

[Rich, 1985] Charles Rich. The layered architecture of
a system for reasoning about programs. In Proceed-
ings of the Ninth International Joint Conference on
Artificial Intelligence, 1985.

[Rosenschein and Kaelbling, 1986] Stanley J. Rosen-
schein and Leslie Pack Kaelbling. The synthesis of
digital machines with provable epistemic properties.
In Joseph Y. Halpern, editor, Theoretical Aspects of
Reasoning About Knowledge: Proceedings of the 1986
Conference, pages 83–98. Morgan Kaufmann, 1986.

[Russell and Wefald, 1989] Stuart Russell and Eric We-
fald. Principles of metareasoning. In First Interna-
tional Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 400–411, 1989.

[Savage, 1972] Leonard J. Savage. The Foundations of
Statistics. Dover Publications, New York, second edi-
tion, 1972.

[Schoppers, 1987] M. J. Schoppers. Universal plans for
reactive robots in unpredictable environments. In Pro-
ceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 1039–1046, 1987.

[Shoham, 1988] Yoav Shoham. Reasoning about Change:
Time and Causation from the Standpoint of Artificial
Intelligence. MIT Press, 1988.

[Smith, 1988] David E. Smith. A decision theoretic ap-
proach to the control of planning search. Technical
Report LOGIC-87-11, Department of Computer Sci-
ence, Stanford University, 1988.

[Vilain, 1985] Marc B. Vilain. The restricted language
architecture of a hybrid representation system. In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 547–551, 1985.

[Wellman, 1987] Michael P. Wellman. Dominance and
subsumption in constraint-posting planning. In Pro-
ceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 884–890, 1987.

[Wellman, 1990a] Michael P. Wellman. Formulation of
Tradeoffs in Planning Under Uncertainty. Pitman and
Morgan Kaufmann, 1990.

[Wellman, 1990b] Michael P. Wellman. Fundamental
concepts of qualitative probabilistic networks. Arti-
ficial Intelligence, 1990.

[Wilkins, 1988] David E. Wilkins. Practical Planning.
Morgan Kaufmann, Los Altos, CA, 1988.

9


