
Reset reproduction of MIT AI Lab TR-581 Dissertation submitted May 12, 1980

A Model for Deliberation,
Action, and Introspection

JON DOYLE

c©1980, 1994 Jon Doyle. All rights reserved. Reset 1994; Version of July 22, 1994

c© 1980, 1994 by Jon Doyle. All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without permission in writing from the author.

Jon Doyle
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
United States of America
Tel: 617-253-3512
Fax: 617-258-8682
Email: doyle@lcs.mit.edu
Web: http://medg.lcs.mit.edu/people/doyle/doyle.html

Note on the reprinting: This report reproduces a dissertation submitted on May 12, 1980 to the
Department of Electrical Engineering and Computer Science of the Massachusetts Institute of Tech-
nology in partial fulfillment of the requirements of the degree of doctor of philosophy.

This reprinting was set in LaTeX from copies of the original files kindly provided by Martin
Frost from Stanford University backup tapes and by Alan Bawden and Penelope Berman from MIT
backup tapes, and the author thanks Frost, Bawden, and Berman greatly for their help in recovering
these files. The conversion of the original R (a TJ6 descendant) to LaTeX was done manually with
the aid of GNU Emacs keyboard macros. Several of the diagrams have been reworked to present the
same information in a more pleasing form, but otherwise nothing has been changed in the text itself
apart from formatting except correction of a couple typos, correction of the citation for the quote
from Ezekiel, and the arrangement of the frontmatter material.

2

A Model for Deliberation, Action, and Introspection

by

Jon Doyle

B.S., University of Houston
(1974)

S.M., Massachusetts Institute of Technology (1977)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY IN ARTIFICIAL INTELLIGENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1980

Copyright Jon Doyle 1980

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis
document in whole or in part.

Signature of the Author
Department of Electrical Engineering and Computer Science

May 12, 1980

Certified by
Gerald Jay Sussman

Thesis Supervisor

Accepted by
Chairman, Departmental Graduate Committee

3

4

A Model for Deliberation, Action, and Introspection

by

Jon Doyle

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1980 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in
Artificial Intelligence

ABSTRACT

This thesis investigates the problem of controlling or directing the reasoning and actions of a
computer program. The basic approach explored is to view reasoning as a species of action, so
that a program might apply its reasoning powers to the task of deciding what inferences to make as
well as deciding what other actions to take. A design for the architecture of reasoning programs is
proposed. This architecture involves self-consciousness, intentional actions, deliberate adaptations,
and a form of decision-making based on dialectical argumentation. A program based on this ar-
chitecture inspects itself, describes aspects of itself to itself, and uses this self-reference and these
self-descriptions in making decisions and taking actions. The program’s mental life includes aware-
ness of its own concepts, beliefs, desires, intentions, inferences, actions, and skills. All of these are
represented by self-descriptions in a single sort of language, so that the program has access to all of
these aspects of itself, and can reason about them in the same terms.

Thesis Supervisor: Gerald Jay Sussman

Title: Associate Professor of Electrical Engineering

5

6

Contents

1 INTRODUCTION 19
1.1 The Fundamental Argument . 20

1.1.1 The Parable . 21
1.1.2 The Propositions . 22

1.2 Outline of the Approach . 23
1.3 Outline of the Thesis . 27
1.4 Sketches of these Ideas in Practice . 28

1.4.1 Decision-making . 28
1.4.2 Recollection . 28
1.4.3 Self-improvement . 29
1.4.4 Planning . 29
1.4.5 Conversation . 30

1.5 Status of the Implementation . 30
1.6 Sketch of a Computational Argument for the Approach 32

1.6.1 Why have the facts of the fundamental argument been overlooked? 32
1.6.1.1 Initial Programming Complexity 33
1.6.1.2 A Mathematician’s Outlook . 33

1.6.2 Consequences of the Inaccessibility of Control Information 33
1.6.2.1 The Inexplicability of Actions and Attitudes 34

1.6.2.1.1 The Chauvinism of Values 35
1.6.2.1.2 The Lack of Intentionality 36
1.6.2.1.3 Inextensibility . 37
1.6.2.1.4 Hubris . 37
1.6.2.1.5 Non-additivity . 37

1.6.2.2 Inexpressibility of Control Information 38
1.6.3 Hence Reasoning Applied to Control . 38

1.7 Relation to Other Works . 39
1.7.1 Major Influences and History . 39
1.7.2 Related Works . 43

1.7.2.1 Representation Theory . 43
1.7.2.2 The Nature of Reasoning . 44
1.7.2.3 The Theory of Intentional Action 45
1.7.2.4 The Fragmentation of Values 45
1.7.2.5 Decision-making . 45

7

1.7.2.6 Control of Reasoning . 46
1.7.2.7 Adaptive Changes of Mind . 46
1.7.2.8 Affect and Intellect . 47
1.7.2.9 Consciousness . 47
1.7.2.10 The Absurd . 48

2 THE REPRESENTATION OF STRUCTURE 49
2.1 Desiderata of the Representational System . 50
2.2 A Key Application . 52
2.3 SDL, a Structured Description Language . 52
2.4 How to use SDL . 57
2.5 Relations with other Representational Systems . 62
2.6 Advanced Applications . 63
2.7 Theories about Theories . 64

2.7.1 The THEORY Theory . 64
2.7.2 Theories of Specific Theories . 65
2.7.3 The VC Theory . 65
2.7.4 The PERSON Theory . 66
2.7.5 The Global Theory ME . 66

2.8 Concepts and Attitudes . 67

3 FOUNDATIONS OF THE THEORY OF REASONING 69
3.1 The Nature of Reasoning . 70
3.2 RMS, the Reason Maintenance System . 74
3.3 RMS Data-structures . 76
3.4 States of Belief . 77
3.5 Justifications . 77
3.6 Support-list Justifications . 78
3.7 Terminology of Dependency Relationships . 79
3.8 Conditional-proof Justifications . 81
3.9 Circular Arguments . 82
3.10 The Reason Maintenance Process . 83
3.11 Defeasible Reasons and Dialectical Argumentation 84

4 DELIBERATE ACTION 87
4.1 Plan Generation, Execution, and Interpretation . 88
4.2 Plans and the Library of Procedures . 89
4.3 The Ambiguous “Goal” . 91
4.4 Desires and Intentions . 92
4.5 Policies . 98
4.6 Relationships Between Desires and Intentions . 99
4.7 The Hierarchical Structure of Plans . 104
4.8 Plan Specifications . 105
4.9 The Current State of Mind . 107
4.10 The History of Actions . 108

8

4.11 The Frontier . 110
4.12 A Careful, Meta-Circular Interpreter . 110

5 DELIBERATION 119
5.1 The Variety of Decisions and Ways of Making Them 120
5.2 Decision Intentions . 122
5.3 Deliberation Records . 122
5.4 Policy Execution . 124
5.5 Policy Applicability . 125
5.6 Policy Actions . 126
5.7 A Very General Deliberation Procedure . 127

5.7.1 The Deliberation Plans . 127
5.7.2 First-order Deliberation . 129
5.7.3 Second-order Deliberation . 130

5.7.3.1 Second-order Options . 131
5.7.3.2 Second-order Policies . 132
5.7.3.3 Second-order Decisions . 134

5.8 An Example Reworked . 135

6 DELIBERATE CHANGES OF MENTAL LIFE 137
6.1 Motivations for Change . 139

6.1.1 Belief . 139
6.1.2 Concepts . 140
6.1.3 Desires and Intentions . 141
6.1.4 Values . 141
6.1.5 Skills . 142

6.2 Mechanisms of Change . 143
6.2.1 Belief . 143
6.2.2 Concepts . 146
6.2.3 Desires and Intentions . 146
6.2.4 Values . 146
6.2.5 Skills . 146

7 DISCUSSION 151
7.1 Summary of the Key Ideas . 151
7.2 Summary of the Principal Contributions . 152
7.3 Directions for Future Research . 152
7.4 Affect, Intellect, and Complex Self-Descriptions 156
7.5 The Limits and Accuracy of Self-Knowledge . 159
7.6 The Limits of Reason and the Absurd . 161

9

10

List of Figures

1 The Overall Program Structure . 24
2 The Basic Cycle of Self-Interpretation . 25
3 Diagram of Mythical Influences . 40
4 Key to Influence Diagram Abbreviations . 41

5 Six Nodes and Seven Justifications . 80
6 Picture of Six Nodes and Seven Justifications . 80
7 Table of Dependency Relationships . 81

8 Progress Status Transitions . 95
9 Plan for Serving Dinner . 103
10 The TORPID Procedure . 112

11 Information Flow in Deliberations . 123
12 The Deliberation Procedure . 128

13 HACKER’s Debugging Flowchart . 150

11

12

This thesis is dedicated to
Joseph A. Schatz

friend, teacher, playmate

13

14

Acknowledgments

I thank Gerald Sussman, my thesis advisor, and my readers Peter Szolovits, Drew McDermott,
and Marvin Minsky for their constant encouragement, criticism, and advice.

I thank Johan de Kleer for serving as ade factoreader for this thesis, and for continually valuable
discussions on many topics. Many of the explanations in this thesis resulted from his comments.

I thank Joseph Schatz for more advice, stimulation, and pleasure than I can express, delivered
with gentle wit and style. I would not be where I am without his concern.

I thank my family, Leo Doyle, Marilyn Doyle, Paul Doyle, Lynn Doyle, and Peter Doyle for
teaching me how to live, to enjoy and excite, and to learn, and for moral and financial support
whose importance to me cannot be underestimated.

I thank my aunt Cloe Doyle, for early teaching me about negative numbers and other parts of
mathematics. It still comes in handy.

I thank Marcella Boffa, Kelly Martino, and John Baker for offering me the life I have forsaken.
I thank my friends who built my social interests: John and Sharon Cullen, Rebecca Schatz,

Michael Loui, Shelly Lieber, Donald Petersen, Ronald Pankiewicz, and Marilyn Matz.
I thank all those people with whom I have discussed matters of interest. I’m afraid that, unlike

my programs, I do not always recall where ideas came from, and I apologize to and cherish the
contributions of all those whose suggestions I have considered. I hope they take my adoption of (or
disagreement with) their ideas understandingly. In addition to the above, I especially thank Howard
Shrobe, David McAllester and Richard Weyhrauch.

I thank my colleagues and the staff at the MIT Artificial Intelligence Laboratory and the Labo-
ratory for Computer Science for their support in ideas, services, machines, and libraries.

I thank Daniel Carnese and Randall Davis for valuable comments on this thesis, and Gerald
Roylance for teaching me how to draw the diagrams.

I thank Doubleday and Company for their permission to reprint the excerpt fromThe Sot-Weed
Factorby John Barth, which is Copyright 1960, 1967 by John Barth.

Finally, I thank the Fannie and John Hertz Foundation for supporting me during my entire
graduate career with a graduate fellowship. It was invaluable.

15

16

He wishes for the cloths of heaven

by

W. B. Yeats

Had I the heavens’ embroidered cloths,
Enwrought with golden and silver light,
The blue and the dim and the dark cloths
Of night and light and the half-light,
I would spread the cloths under your feet:
But I, being poor, have only my dreams;
I have spread my dreams under your feet;
Tread softly because you tread on my dreams.

17

18

Chapter 1

INTRODUCTION

Self-reverence, self-knowledge, self-control,
These three alone lead life to sovereign power.

Alfred, Lord Tennyson,OEnone

Know prudent cautious self-control is wisdom’s root.
Robert Burns,A Bard’s Epitaph

The woman that deliberates is lost.
Joseph Addison,Cato

But a self-controlled man is of a different sort:
he follows right reason.

Aristotle,Nichomachian Ethics

This thesis investigates the problem of controlling or directing the reasoning and actions of a
computer program.1 The basic approach explored is to view reasoning as a sort of action, and to
have the program apply its reasoning powers to the task of deciding what inferences to make as well
as deciding what other actions to take. This problem of controlling reasoning is important because
information is often communicated between man and man, and eventually, it can be expected, be-
tween man and machine, as facts which offer little guidance as to what inferences should be drawn
from them. Much experience and many theoretical studies have proven that the general problem
of drawing particular conclusions from purely factual information is hopelessly intractable.2 These
lessons show that inference cannot always be treated as an automatic procedure, but sometimes
must be accorded all the careful consideration given to other actions. To overcome this difficulty,
this thesis attempts to find ways of stating and using facts about how other facts should enter into
reasoning. The proposed solution, that of a program which reasons about its own reasoning, is of
considerable generality.

1Following current usage, this thesis uses the phrase “the program” to abbreviate some phrase resembling “the ma-
chine produced as a state-configuration of a LISP-implementing computer as described by the program text.” Several
writers, such as Fodor [1978], Putnam [1978], and Searle [1980] have pointed out that a program, a formal system, can-
not be said to have a psychology, in contrast to apparent claims made by some AI researchers. Some of this disagreement
might result from the unconscious use of an abbreviation of the above form on the part of some of the participants. We
do not attempt to adjudicate this debate, nor to make rigorous the sense of the above abbreviation. Those tasks are left for
others. (Brian Smith is engaged in such an enterprise.) In particular, this thesis avoids the problem of how the program is
to be equipped with sensors and effectors so as to perceive and have power over its environment.

2See for example [Green 1969] and [Rabin 1974].

19

DOYLE

This chapter consists of several sections. The first section presents what the fundamental argu-
ment for the approach, and this argument introduces the fundamental ideas of and constraints on the
proposed solution. The second and third sections of the chapter sketch the structure and operation
of the program described in the following chapters, and give a guide to reading those chapters. The
fourth section presents examples of the ideas in practice. The fifth section discusses the implemen-
tation. The sixth section attempts to motivate the approach with yet another argument, this time
by showing how one might be lead to the proposed approach purely from considerations of what
must be computed and what is necessary to allow its computation. The final section of the chapter
sketches the relation of this thesis to other works.

Readers concerned with how to use the techniques developed in this thesis are cautioned in two
ways. First, most of the techniques employed in traditional AI programs, such as problem reduction
problem solving, planning, searching, backtracking, learning, context switching, etc., occur only in
Chapter 6 as applications. The bulk of the thesis is devoted to foundational tools by which these
traditional techniques may be used deliberately, and consequently, may be explained by the program
itself. Second, the techniques apparently require an unusually large overhead in time, space, and
notation. Sections 1.5 and 1.6 explain why this overhead must be accepted to build intelligent
machines.

The reader will find that many of the techniques explained in the thesis bear a certain similarity
to mechanisms which some commonsense truisms ascribe to the workings of the human mind. This
similarity results solely from my use of these truisms together with informal personal introspection
to inform my development of the proposed techniques from primarily computational considerations.
I make no claim that the human mind employs similar mechanisms. I merely attempt to motivate
and explain these techniques with common ideas about human behavior, since humans are currently
the best-known concrete model of intelligent behavior. Specifically, I try to indicate how a number
of mechanisms originally developed for rather technical tasks, including the design, synthesis, and
analysis of electronic circuits and computer programs, can be combined and organized to capture
common-sense reasoning as well as highly specific technical problem-solving. I frequently motivate
my suggestions with common-sense examples, as they are significantly easier to convey, but I hope
it is clear that these mechanisms also suffice for the traditional technical tasks. Briefly put, I view
technical reasoning as a subcategory of general reasoning, and a more tractable one at that. But
though I try to capture a number of familiar human reasoning patterns, no claim should be inferred
that the mechanisms I propose are the only such mechanisms, or that they are those used by humans.

1.1 The Fundamental Argument

This section attempts to motivate the proposed approach through a series of propositions, loosely
called an argument, which express general criteria for judging proposed organizations for intelli-
gent machines. These propositions capture certain characteristics of intelligent existence, charac-
teristics which significantly constrain proposed organizations of intelligent machines. Because of
their generality, the propositions are presented with both motivation and morals. We first motivate
the argument with a parable in primitive human terms, and follow the parable with the propositions
of the fundamental argument, annotating each proposition with a moral about how intelligent ma-
chines should be organized. The paragraphs of the parable parallel the relevant propositions of the
argument.

20

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

1.1.1 The Parable

I always adapt. I put on skins in winter, follow the game as it migrates, and run from rolling rocks,
falling trees, and charging behemoths.

Sometimes I must change things, sometimes myself. As the years grow colder, I move towards
the south. As the land turns barren, I train myself to be forever alert to take advantage of the
fleeting, infrequent opportunities for food. Sometimes I must change both my surroundings and
myself. When the plains and plateau became infested with dangerous beasts, I moved to live in the
cliff, and trained myself to be a good and careful rock climber.

To avoid mistakes, I think carefully before acting. Normally I go unarmed, but if I thoughtlessly
walk unarmed into the forest, without first reflecting on what I am doing, I am likely later to meet an
unpleasant end with lions, tigers, or bears. When I decided to build a shelter on the ground without
first reflecting on the decisions that had to be made and the order in which they should have been
made, I wasted much of my own effort, and that of my sons as well that I asked to help, for I thought
about the various clays I know of and of where they can be found and how they might be carried,
before I turned to the question of where to build and realized that the best location was in the flood
plain, where our crops would be nourished, where we would spend two days a year waiting out
the flood uplands or in a tree, but where adobe would be a useless waste of effort compared with a
thatched hut. And when I tell my son what to do, I must think of what he knows of my plans for the
hut, lest I say things he does not understand, and of how to say the orders, for he is proud, easy to
anger, and I am not as strong as I once was.

I have so many decisions to make. The farm has done well, but now I grow old and must divide
it among my children. How should I do this? I can divide the lands in equal measures, some good
and bad land to each, or I can divide it into the better and poorer fields, or I can split some of the
larger fields into parts but not the smaller ones, or I can split them so that each has access to the
stream, or I can divide them as the children request me to do.

There are so many complications. If I leave some of the good land and some of the bad land to
each, then that will be fairest. But if some of them do poorly on their own, the lot of their brothers
may not be sufficient to tide everyone over. But if I give the easiest lands to the weakest, the others
will drive them out when I am gone, and they will have nothing. But even if I am fair, the eldest and
the strongest will demand the largest and best lands. Perhaps I can give them just enough more to
keep them from attacking the others. But I already promised the apple tree to the first daughter, and
I must give extra land to the second son, who will care for my mate. But the strongest should be on
the perimeter, to ward off invaders. What should I do? Should I do what is fair? What is safest from
the whims of nature? What is most likely to be respected by the children? What I have promised
each I would do? What will provide for my mate, as my mate provided for me? What is safest from
enemies?

Woe, woe, sometimes I just can’t help things. The invaders came, and now we are their slaves.
Our women they took as mates. The mate of my first son, who had come from afar and spoke
of gods and laws, would not submit to them, and they killed her. My daughters, whom she had
convinced of these gods, instead of following her renounced the laws and went with the invaders,
so they still live.

I hate this slavery. Why should the invaders rule? They are no better than us, and if we had
invaded them first with similar surprise, we would be the masters and they the slaves. Why did this
happen to us, and not to the other neighbors of the invaders? The dead one said that the gods put us

21

DOYLE

here, but why should they do that? Why do the gods exist to torment us so? But if they do not exist,
then the dead one is no more, not in this marvelous land she talked of. Does that await me too?

1.1.2 The Propositions

1. The world continually changes, so to survive, we must always adapt.

Intelligent machines should adapt to newly acquired information and to new demands placed
on their operation by their users or co-workers.

2. To adapt, we must act either to change our surroundings or ourselves.

Intelligent machines should be able to modify their own organization and behavior as well as
take physical actions.

3. To act effectively, we must think about what to do, including thinking itself, so that we plan
and reflect on our inferences as well as other actions.

Intelligent machines should reason about their own organization and reasoning, as well as
“external” domains, and plan complex “internal” activities (such as difficult decisions, com-
prehensive database searches, etc.) as well as complex external activities. Even parallel
computations, however useful they might be in some ways, cannot relieve the need to make
some consequential decisions serially.

4. The most difficult problem in thinking about what to do is deciding between the many possible
courses of action.

Intelligent machines should when necessary explicitly consider decisions about which infer-
ence rule or procedure to apply next, where to look for some fact in the database, etc. so as to
avoid combinatorially explosive searches.

5. Decision-making, in turn, is dominated by the many incomparable sorts of reasons for or
values of possible actions, which stem from a sectioning of the world into many subdomains,
each with its own concerns and values. These incomparable reasons make decision-making
a question of right (in one subdomain) vs. right (in another subdomain), not right vs. wrong.

Intelligent machines should reason about their reasons for taking actions, to see if these rea-
sons are of comparable types, or if they have exceptions in the current situation. Intelligent
machines should not use decision-making techniques which force all reasons into a total or-
der, as do most numerical weighting schemes.

6. Further, our abilities are limited, which sometimes prevents our adapting by conserving or
otherwise controlling our surroundings, so we must either always be able and ready to change
any aspect of ourselves, or be willing to accept injury when we do not change.

Intelligent machines should be able to deliberately change any of their database facts, proce-
dures, etc., whether “built-in” or not.

7. (The great joke is that though we need both self-consciousness and self-adaptiveness to sur-
vive, in combination these abilities shock us with realizations of both our own absurdity (why
should we exist?) and the possibility of our own death (we might not exist!).)

22

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Intelligent machines should matter to themselves. They should have values initially built in
so that they do not lightly change themselves into non-existence. They should choose their
actions with responsibility for their own survival or other conditions that they are charged
with maintaining.

1.2 Outline of the Approach

I think that many philosophers secretly harbor the view that there is something deeply
(i.e., conceptually) wrong with psychology, but that a philosopher with a little training
in the techniques of linguistic analysis and a free afternoon could straighten it out.

Jerry Fodor,Psychological Explanation

There’s no art to find the mind’s construction in the face.
William Shakespeare,Macbeth

Good Lord, what is man! for as simple he looks,
Do but try to develop his hooks and his crooks,
With his depths and his shallows, his good and his evil,
All in all, he’s a problem must puzzle the devil.

Robert Burns,Sketch: inscribed to C. J. Fox

Motivated by the preceding ideas, this thesis sketches the basic computational structure of a
conscious, adaptive reasoning program which we call SEAN. The program inspects itself, describes
aspects of itself to itself, and uses these self-references and self-descriptions in making decisions and
taking actions. The program’s mental life includes awareness of its own concepts, beliefs, desires,
intentions, inferences, values, past actions, and skills. These are realized by self-descriptions in a
single sort of language, so that through self-reference the program has access to all of these aspects
of itself, and can reason about them in their own language.3

Theconceptsof the program are each realized as (roughly) a named set of axioms in a formal
logical language. The language is a variant of the first-order predicate calculus, but that detail
is inessential. The key property of this representation is that the logical theories can themselves be
referred to by other theories. This allows the program to employ statements about, for example, how
its concepthorseis related to its conceptanimal. In fact, the program itself is such a logical theory,
and its language includes a name for itself. This allows the program to employ other statements that,
for example, use the program’s name for itself to refer to properties of the program as a whole, such
as whether some possible belief is consistent with all of its current beliefs. This meta-theoretical
approach allows some classical problems of representation to be attacked in effective ways, and
allows reasoning about concepts in hierarchical levels of detail. Since the concepts are themselves
objects to which the program can refer, the program can reason about whether or not to pursue
the internal structure of a concept’s subconcepts during information retrieval. This means that the
program can ignore unnecessary details of its concepts when desired, and that the reasoner can be
self-applied to the database retrieval task when necessary to avoid blind searches.

These concepts are then used in other logical theories to realize the mental attitudes ofbeliefs,
desires, andintentions. These attitudes use a concept as their “propositional content.” They are more
than just the concepts embodying their propositional content, for they also include information used

3Figure 1 presents the overall program structure as described below.

23

DOYLE

Self-concept

6

?

Beliefs

Desires

Reasons

Intentions

6666

Policies

Feasible
Intentions

66

Concepts

6

Procedures

Reason Maintenance System

Structured Description
Language

Current Mental State
Interpreters

Deliberation Procedures

6666

Figure 1: The Overall Program Structure

24

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Reflect Act--

Figure 2: The Basic Cycle of Self-Interpretation

by the program in treating them as attitudes. These attitudes are also logical theories, but ones which
are treated in special ways by the program, namely as beliefs, desires, and intentions.

The most important auxiliary information included by the program in attitudes over their con-
tent concerns the reasons for the attitudes. The program records its actions by adding statements
describing them to itself. Inferences are sorts of actions, and hence are also recorded. Each atti-
tude includes mention of these recorded inference steps, which we call thereasonsfor the attitude.
Common usage normally uses the term “reason” to refer to an antecedent attitude acted on in an
inference step, as in “P is my reason for Q because I inferred Q from P.” We corrupt the tongue to
mean instead the inference step itself, so that if the program infers Q from P, not P but the record of
that inference is called a reason for Q.

The importance of these reasons lies not in just the historical and explanatory information they
provide, but in that the program uses the current set of reasons to determine the current set of actual
attitudes. Thus some potential belief may have several reasons recorded for it, but if none of these
reasons isvalid, that is, refers back to current beliefs as antecedents, the belief in question will not
be an actual, but merely a potential belief.

Reasons are recorded for all types of inferences, not just deductive inferences of one belief from
other beliefs. Reasons record the inference of desires from other desires, intentions, and beliefs, and
the inference of intentions from desires, beliefs, and values in decision-making.

An important property of these reasons is that they aredefeasible. That is, after an inference has
been made, it can be reflected on. If reflection determines that the reason was mistaken because,
for example, the inference was made in exceptional or special-case circumstances in which it was
not strictly valid, the program can defeat the reason by providing a defeating reason. This defeating
reason may in turn be defeated by other reasons. The defeasibility of reasons allow the program to
change any of its attitudes, for each attitude is held only because of some reason, and can be rejected
by defeating all of its reasons.

The current sets of concepts, reasons, beliefs, desires, and intentions comprise the program’s
current state of mind. In fact, the program is a single concept “containing” all other concepts and
attitudes, including itself. The procedures of the program are also concepts. Some of these make
up the action-taking part of the program, called theinterpreter, which reflects on the current state
of mind and then acts on the basis of what it sees. (See Figure 2.)

The program often takes actions and inferences by executingprimitive procedures, and it records
these actions as statements. All primitive procedures are treated as attitudes as well, so when proce-
dures make inferences, they record these actions as reasons, and include themselves in the reasons.
Primitive procedures with external effects are recorded in somewhat different form, but that will be
described later.

In addition to primitive procedures, the program embodies some of its skills inplans, which
are concepts describing (roughly) patterns of desires and intentions. The program carries out its

25

DOYLE

intentions either by executing a primitive program, or by reducing the intention to a plan, that is,
by embracing or inferring the new desires and intentions specified by the plan. These plans and the
desires and intentions they produce are reflected on by the program as a means towards controlling
its actions. They form the self-conscious “tip of the iceberg” which controls the vast majority of
computational steps taken unconsciously by primitives.

The program’s skills involve not only procedures but also statements about when these proce-
dures are useful. Eachmethod statementexpresses that some procedure is relevant to carrying out
some desire or intention.

Method statements about procedures and the aims of desires and intentions comprise just one
special sort of information that the program may have about a procedure. More generally, the
program employs statements of other properties of the procedure in other cases of reasoning. For
example, one sort of property is that of input-output behavior. These are modal statements of the
form “If P holds before the action, then Q holds after it.” Other sorts of statements express properties
concerning complexity or intermediate states of execution of the procedure. We will not often use or
pursue such more general action properties in the following. However, one key type of information
about plans is that of the relationships between plans. This information is expressed as statements
relating one plan concept with another, such as that one plan is a refinement of another.

The program forms some intentions not by reducing an intention to a plan but by deliberation, by
deciding what desire or intention to pursue or how to carry out some intention. These deliberations
make use ofpolicies. Policies are intentions which embody the values of the program, and are
carried out by reasoning in decision-making. Policies are used inreasoned deliberationto indicate
new options to consider and to give reasons for or against the options. Policies effect values by
constructing reasons for and against other reasons so as to influence which option the program
acts on by influencing which reasons are held to be valid grounds for action. The typical case of
deliberation involves policies creating some options and conflicting reasons for what to do, and other
policies reflecting on these reasons to apply the values of the program by defeating a lesser reason
in terms of a stronger. These values are not expressed numerically, as is traditional, but rather
as explicit statements that one particular sort of reason, in some particular set of circumstances,
overrides some particular application of another reason. This approach to decision-making allows
conflicting values to be settled or reconciled in a case by case manner, since the defeasibility of
reasons means that any particular application of a value may be overridden if special circumstances
so warrant. This approach also allows for the occurrence of dilemmas, for two types of values may
be incomparable to the program.

Reasoned deliberation is used in many ways in the program. The most basic use is in deciding
what to do next, in which the program reflects on which desire or intention to pursue and then on how
to pursue it. But deliberation also guides the program’s actions in other ways, the most important
ways being deliberate changes in the program’s set of concepts, beliefs, desires, intentions, values,
and skills.

After making inferences, making observations, or taking actions, the program sometimes dis-
covers a conflict between some of its beliefs. The normal path to follow in these cases is for it to
discard some of its beliefs and assumptions to restore harmony. But belief revision always involves
ambiguity, in that there are always many possible changes in the set of beliefs which will restore
consistency. To decide which revision should be made, the program deliberates about the possible
revisions and reasons for them. Formulating the possible revisions involves tracing through the rea-
sons for the conflicting beliefs to find the underlying beliefs causing the conflict. The values of the

26

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

program enter this deliberation by preferring one possible revision to another, effectively determin-
ing the tenacity with which the program clings to one set of beliefs rather than another. The program
normally carries out this intention by defeating the justifications for the beliefs to be discarded and
perhaps by justifying the opposite beliefs.

The program modifies its set of skills in a related way. If it determines that some skill does not
live up to its intended specifications, the program will adopt an intention to decide how to modify
the procedure, or the set of skills, so as to realize the intended specifications. To do this, the skill
modification procedures employ deliberation to decide what sort of change is necessary, to decide
what particular plan to fault for the problem, and to decide how to patch the plan to remove the
problem. Determining what the possible changes in the set of skills are and how to make them
is more complex than just examining existing reasons as sufficed in belief revision. Instead the
program must often introspect into its primitive procedures to find the explanation of their behavior
in terms of underlying plans. After it does this, it uses these plans in symbolically executing the
primitive to see exactly how the problem occurs. It then analyzes the reasons for the problem in
terms of the beliefs, intentions, and actions of the primitive in this symbolic execution to classify
the problem into one of a number of problem types. It then deliberates on how to modify the
procedure so as to avoid the problem. Once it has decided to make some particular modification, it
modifies the plans involved in the procedure’s construction, and compiles these plans back into the
form of a procedure.

Skill modification plays a crucial role in the efficient operation of the program. For efficiency,
most steps of most actions must be taken unconsciously, and skill modification techniques are the
means for producing such unconscious skills from the prior conscious plans and experience with
their use.

1.3 Outline of the Thesis

Chapter 2 describes SDL,4 the language in which concepts and attitudes are phrased. Chapter 3
introduces RMS,5 the underlying subsystem which implements the theory of reasoning. Chapter
4 describes the hierarchical library of plans and the interpreter, the action-describing and action-
taking parts of the program. Chapter 5 explains how these techniques are combined in reasoned
deliberation. Chapter 6 explores the application of these techniques in deliberate changes of the
program’s concepts, beliefs, desires, intentions, values, and skills. Chapter 7, the final chapter, dis-
cusses incompletenesses in this work, related directions for future research, and speculative topics.

4This acronym stands forStructured Description Language.
5RMS is a revised and renamed version of TMS [Doyle 1979]. The acronym stands forReason Maintenance System.

I am changing the name for two reasons. First, TMS, theTruth Maintenance System, has nothing to do with truth, and
this misnomer has apparently annoyed some who took it more seriously than was intended. Second, as discussed in more
detail in the last chapter, RMS maintains reasons for several sorts of attitudes, such as beliefs, desires, and intentions, so
that it seemed prudent to name it after the reasons being recorded than after one of the attitudes (such as belief) being
derived from these reasons.

27

DOYLE

1.4 Sketches of these Ideas in Practice

To illustrate how these sorts of techniques might be applied, we present several motivating sketches
of reasoning in common situations involving decision-making, recollection, self-improvement,
planning, and conversing.

1.4.1 Decision-making

Suppose that Robbie is a male robot. As Robbie is opening a closed door with the intention of
walking through it, he detects an approaching object. He identifies the object as a woman (or
perhaps a female-appearing robot), and considers what, if anything, to do about her. He thinks of
two possible courses of action, (1) holding the door for the woman, and (2) ignoring her, thereby
letting her open the door on her own. Robbie first forms a reason (a) for option (1), that chivalry
demands a gentleman hold the door for a lady. Robbie continues to think and realizes that the
modern woman finds chivalry an insult to her humanity, which constitutes a reason (b) against the
first reason, that is, a reason not to act for reason (a). At this point Robbie still has no reason for
action, since reason (a) has been defeated by reason (b), so he thinks further that he should hold the
door by reason (c) of general politeness towards one’s peers. At this point Robbie stops deliberating
on what to do about the woman, and since option (1) has a good reason for it and (2) does not,
Robbie decides to act on reason (c) and hold the door for the woman.6

Robbie next thinks about how he should go about holding the door for the woman. He considers
the possibilities, the first of which is his standard method, that of (3) holding the door after he has
passed through just long enough for the woman to reach the door and hold it herself. But he then
recognizes the woman as a friend whom he has not seen for some while, and considers the second
possibility of (4) holding the door until she has passed through, following her through, and offering
greetings as she passes. In this case, option (3) is his default door-holding method, and has a reason
for it that is valid if there are no other options with good reasons for them. But Robbie also has the
good reason of renewing a friendship for option (4), so the default reason for (3) is defeated. Thus
Robbie decides on (4), holds the door, and says hello.

Although this example is informal, exactly the same techniques are important in highly con-
strained technical domains (not to imply that social behavior is not also highly constrained). For
example, when writing a program one has a decision of how to implement some function. One possi-
bility might be simple, another complex. One might have a reason for the first in its maintainability,
but defeat that because of its inefficiency. One might defeat the reason of inefficiency because the
program will receive only limited use. Then one might defeat the reason of maintainability because
the simple method actually runs quickly on the cases of interest. Whatever the problem, one still
has to somehow combine different sorts of values and exceptional cases in decision-making.

1.4.2 Recollection

We often would like the program to explain its actions, and normally it can do this by examining
its records of its actions for the action in question, and then explaining the action in terms of the

6If Robbie instead had been a time traveller to the early part of the twentieth century, he might have, unless he was
very dull, realized that he had a reason (d) against reason (b), namely that the different time period made his original
objection invalid. In this case, Robbie could have acted on reason (a) alone, for reason (d) being valid would make reason
(b) invalid, thus allowing a good reason (a).

28

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

intention that led to the action, and then in terms of the beliefs, plans, and decisions that led to
the formation of that intention. But what if the action in question cannot be found in the history
of actions? The program then reasons about whether it took the action or not. It might possess
information about its procedures (either through introspective analysis or design) sufficient to tell
whether the action in question might have been taken unconsciously by some primitive. For exam-
ple, the program might record its action of moving one block to a new location, but if the primitive
it used to carry this out first moved some other block to clear the top of the target block without
noting this subsidiary action, the program would miss this action in its history. However, if it knew
that the block movement primitive could be invoked by primitives as well as through intentions, it
could admit that it might have taken the action, but not consciously. If it knew even more about
how the primitive might be called, the program might be able to infer that it must have been called
and why it was called. The program might also try to recognize the action as emerging from the
larger pattern of the actions it does recall. For example, the program might move some block around
on a table until the block rests again in its original position. However, it might have to infer from
its recollection of each of the separate actions that it took the action of leaving the block in place.
Finally, the program might believe that the only way the action in question could have been taken
was deliberately through an intention, and infer from this and the absence of any record of the action
that it did not take the action.

1.4.3 Self-improvement

How pleasant it is, at the end of the day, no follies to have to repent;
But reflect on the past, and be able to say, that my time has been properly spent.

Jane Taylor,Rhymes for the Nursery. The Way to be Happy.

In addition to reflecting on its actions to explain them, as in the previous sketch, the program
might also reflect on its recent actions to see if they signal any changes that should be made in the
procedures used in taking these actions. I, for example, reflect on the day’s events each night before
going to sleep. I also reflect on recent actions when I get annoyed with something, to see if I can
think of some way of avoiding similar annoyances in the future. In recent times I recall several
discoveries I made in this way which I then put to use in improving my future performance. For
example, I used to shave after showering. Having to wash my face after shaving eventually annoyed
me enough so that I realized that I wouldn’t have to wash my face a second time if I shaved prior
to showering. So I switched my routine. However, I later became annoyed with the stiffness of my
beard, which on reflection I attributed to the lack of shower softening, so I switched back, now the
wiser about toilet techniques. In the same way, an intelligent program might be fruitfully organized
to reflect on the efficiency of its past actions both when problems arise, and as a regular matter (once
per day as the nursery rhyme goes, or during conversationally idle periods).

1.4.4 Planning

Regular review of one’s plans often results in their modification, for example, by realizing their
incoherence, their inappropriateness, or their importance. For example, the program might decide to
carry out two of its intentions by means of plans. Unless it then reflects on these plans, it might never
discover that together the plans have substeps calling for simultaneously unrealizable or needlessly
repetitive actions. The program can correct these problems by carefully ordering the steps, or by

29

DOYLE

discarding one, or by inserting new steps to mitigate the interference between the separate plans.7

The program might also notice that a great many of its intentions turn on some decision it intends to
make. In this case the program might explicitly state the importance of the decision, and adopt the
intention to be very careful in making the decision, that is, to use a careful deliberation procedure
rather than to decide quickly.

1.4.5 Conversation

In addition to reasoning about its own actions and attitudes, engaging in conversations requires that
the program reason about the actions and attitudes of others as well. Intentions to inform can be
analyzed as intentions to have the other participants in a conversation believe some fact. Intentions
to request something of someone can be analyzed as intentions to inform that person that one has a
certain desire whose satisfaction involves their cooperation. Furthermore, an intention to persuade
can be analyzed as an intention that the other person adopt a certain desire.

In all these cases, to plan one’s utterances one needs to reason not only about one’s own attitudes
and actions, but also about the other person’s attitudes, his attitudes about one’ own attitudes, and
the beliefs and skills in common to both participants in the conversation.8

To perform this sort of reasoning, the program might make copies of its own mental structure,
interpreter, library of procedures, etc. to represent each other participant, and then simulate and
interrogate these models to predict what the effects of its own conversational actions will be.

1.5 Status of the Implementation

Can these bones live?
Ezekiel 37:3

No complete, working, fully tested version of the program exists at the present writing. This
section explains both what has been implemented, and forseeable difficulties in completing the
implementation. All of the parts I have implemented are written in LISP for the MIT Lisp Machines.

Several versions of many parts of the program have been implemented and experimented with
to varying degrees by various people. SDL is based on a modest extension of the ideas used in FOL
[Weyhrauch 1978]. An implementation of FOL by Weyhrauch and others has been working for
some time and applied to several projects. SDL has been implemented several times, but never as
completely as its description in Chapter 2 indicates. RMS is a modification of TMS [Doyle 1979].
TMS has been used extensively in many programs. RMS itself has not been fully implemented or
tested. The interpreter is an extension of the “task network” interpreter used in NASL [McDermott
1978]. NASL is a working, tested program. Charniak has recently reimplemented a subset of
NASL as well. My interpreter has gone through several versions, each of which was tested on small
problems, although none of these versions has all the complexity of the one described in Chapter
4. Similarly, the deliberation techniques in Chapter 5 have received an initial implementation and
testing through their use in the interpreter. Some of the techniques of Chapter 6 have been tested,

7Sacerdoti’s [1977] NOAH is an example of ways in which such reflection and action might be done.
8Speech-act approaches to discourse have been attracting increasing attention recently. For background and current

proposals, see [Austin 1962], [Searle 1969], [Grice 1969], [Cohen 1978], [Grosz 1979], [Perrault, et al. 1978], and [Wilks
and Bien 1979].

30

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

others are completely untested, and still others form the content of other works, such as those of
Winston [1975], Sacerdoti [1977], and Sussman [1975].

The major reasons for the lack of a complete implementation are three: a lack of time on my
part, my confusion about how to implement databases, and inadequate computing resources. This
thesis synthesizes a large number of ideas, making it impossible to treat them in greater detail within
a reasonable period.

Hierarchical databases, of the sort used in SDL, have received considerable attention by many
authors, and many implementations exist. However, I had none of these readily available to me, had
my own peculiar requirements for extensions to them, and continually procrastinated on the task of
reimplementing one for my own use. There are many subtle problems involved in the exact details
of these databases, and although I have substantial interests in these questions, they were not the
questions I wished to pursue in this thesis, so I exerted little effort on resolving them. The basic
ideas of Chapter 2 I have known for some while, and have taken much of the actual detail of the
structure of theories directly from Weyhrauch’s system.

Straightforward techniques for implementing reasoning programs along the lines described
above require a substantial overhead in time, space, and notation. At first glance, the techniques re-
quire recording semi-permanently many sorts of information that traditional programs either never
consider or only record very sketchily and then discard quickly. This increases the constant factors
of the complexity of the program on the order of 100 times over the space requirements of traditional
programs. (100 is just an off-hand, possibly pessimistic guess, and depends on the implementation
techniques used.)

I have not been overly concerned with this overhead, for a key point of my methodology has
been that it is too expensivenot to record and use this information. I repeat: It is too expensive
not to record and use this information.9 The standard approaches suffer unavoidable combinatorial
explosions in searching because they discard the very information that might be used in bypassing
these fruitless searches. I accept large increases in the constant factors to gain the ability to kill the
exponential terms of the program’s complexity, and to instead achieve a program complexity which
grows roughly linearly with the complexity of the problem. The issue is not my skill at program-
ming. Instead, the issue is to analyze what information is necessary or at least useful in steering
the program clear of these searches, and then to develop ways of recording and using this informa-
tion.10 I concentrate on the asymptotic complexity of the techniques involved, on the fundamental
concepts involved in control. This is important, for it means that as the problems become larger and
more complex, a linear time program remains feasible even if its constant factors are very large,
whereas an exponentially expensive program is always useless, no matter how efficient it was on
small problems. Combinatorial searches cannot be the basis for intelligence. They will never be fast
enough. The problems always get harder to quickly. The unfortunate consequence of attacking the
fundamental problems of reasoning is that current computers are too slow and too small to permit
debugging of programs. It is nearly impossible to make progress debugging a program which takes
several hours of interactive operation to manifest each new error and which must be started from
scratch after each patch (as programs under initial development require). However, this is just what

9I here repeat a statement made by G. J. Sussman [Latombe 1978, p. 364].
10For example, the technique of dependency-directed backtracking developed by Stallman and Sussman [1977] was an

effort to use a fixed overhead of extra records of dependence of results on assumptions to avoid the needless combinatorial
searches required by traditional chronological backtracking. A similar motivation gave rise to the separation of database
and control information in CONNIVER [Sussman and McDermott 1972].

31

DOYLE

happens. I have written programs to solve unremarkable problems that represent exactly the infor-
mation that seems necessary, that make only the inferences which must be made (i.e. no wasted
searches), but which on absolutely trivial problem instances spend a quarter-hour of CPU time (and
hours of real time) exhausting the address space of MIT’s DEC KA-10. MIT Lisp Machines provide
a faster interpreter and a larger address space, but quickly become disk-bound, and then spend most
of their time paging, just like the KA-10.

The key factors in the debuggability of these programs is the speed of the machine, and the
size of real memory. The sort of program described in this thesis can, I expect, reasonably be
implemented and tested only on machines a thousand times larger (and perhaps faster) than the
computers mentioned above. Such machines may exist affordably within the next decade, and we
must forego hope of true intelligent machines until then.

What can be done meanwhile? I believe we should work on problems towards that day when
suitable machines exist. It is not enough to concentrate only on problems whose techniques can be
implemented on current computers. For many important problems, those techniques are sure to be
unsatisfactory, substituting searches for intelligence. Science progresses not by building programs
which initially run “efficiently” but cannot in principle run fast enough, but rather by building pro-
grams which are feasible in principle, even if we must build new computers to run them. Imagine
the result if Beethoven had tried to compose his Ninth Symphony for solo voice and pianoforte. I
have no doubt he would have produced something, but it wouldn’t have been the Ninth Symphony,
and would not have “solved the problem” or said the same thing that the Ninth Symphony did.

1.6 Sketch of a Computational Argument for the Approach

All reformers are bachelors.
George Moore,The Bending of the Bough

The standard view in AI research has been quite different from the conscious, adaptive, reason-
ing approach outlined above. This section hypothesizes a strawman view to stand for the traditional
AI approaches, and speculates on how it came to be adopted. It then attempts to give some insight
into the computational motivations for the proposed approach by means of computational criticisms
of this strawman view. This argument is made indirect for two reasons. First, those familiar with
the traditional approach will see the main limitations of that approach. Second, these criticisms will
suggest how realizations of those limitations might lead to the view proposed here.

1.6.1 Why have the facts of the fundamental argument been overlooked?

It seems clear that most AI research misses the above ideas completely. Judging from almost any
volume of conference proceedings or journal issue, one sees the overwhelming emphasis on either
designing a black box algorithm for some problem, or for designing a formal language for writing
down the axiomatization of some particular domain or class of domains.11 Of course, such studies
are often necessary precursors of continued progress, but the question remains of why control,
consciousness, and adaptiveness have received so little attention. The following subsections suggest
two possible answers to this question.

11See [Brachman and Smith 1980, p. 3], who conclude that “far more people claim to represent the world than claim
to represent knowledge.”

32

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

1.6.1.1 Initial Programming Complexity

The simplest answer is the large overhead required by the techniques described here, and the con-
sequential undebuggability of programs based on these techniques. This makes problems admitting
more immediately testable solutions more attractive in some ways.

1.6.1.2 A Mathematician’s Outlook

I think a deeper reason why the fundamental argument above has been overlooked has to do with
the way of thinking implicit in the traditional approach. The standard view seems characterized
by an obliviousness to change, a blindness to the need for the program to continually adapt itself
to changing environments, tasks, and patterns of use. AI has tended to view the problem of rep-
resenting information about the world as that of defining several basically fixed (logical) theories,
and using a single basically fixed set of programs for reasoning about these representations. If new
theories or reasoning procedures are required, the AI researcher writes a new program, rather than
helping the program to change its old ones. Perhaps I am being unfair to mathematicians, but this
seems to result from sharing the typical mathematician’s outlook on knowledge. Mathematicians
discover concepts, theories, and theorems, but once they have given a name to something, they never
consciously change the meaning of that name. If they discover that the named concept was not quite
the interesting one, they make a new name for the new concept, rather than changing the meaning
of the old one, so that mathematical theories are impervious to change. Since mathematicians do
not often explicitly concern themselves with the use of their theories in their studies, they are also
somewhat blind to changes in how these theories are used in reasoning. A book on determinants
written today would likely have the same form and theorems as one one written when the subject
was alive.12

AI tends to formalize a theory of blocks, natural numbers, or elephants, and once this axiom-
atization is set, it is rarely changed. Instead, modifications are given new names. AI adopts a
standardized form for reasoning, say resolution, production rules, procedural attachment, or what
have you, then lets this organization sit untouched in its reign over all domains. Since the basic
representations and reasoning processes are fixed, the AI researcher can build them into a program,
and, to improve the program’s initial efficiency, discard most of the information concerned with why
these representations and processes are used. But these reasons for the current organization are just
what is necessary for the program to be able to reason about how to change its organization when
its environment or usage changes. Blindness to change leads to organizing programs so that their
representations and reasoning processes are built-in, unchangeable. This is the traditional view’s
fatal flaw.

1.6.2 Consequences of the Inaccessibility of Control Information

Sing, O Goddess, the anger of Achilles, son of Peleus,
that brought countless ills upon the Acheans.

Homer,The Iliad, translation by Samuel Butler.

12Here I am deliberately exaggerating the point for the sake of argument. Dead fields sometimes regain popularity
through the infusion of new methods from other areas, and Dummett [1973] and Lakatos [1976] might be taken as
suggesting that mathematicians unconsciously change the meanings of their terms.

33

DOYLE

We label the traditional view’s fatal flaw theinaccessibility of control information. Just as the
inaccessibility of captain Achilles contributed to the Acheans’ woes at Ilium, the singularly unhappy
methodology of the inaccessibility of control information leads to manifold unhappy consequences.
Since there is just one correct way of organizing reasoning, the framework-systems investigated in
AI usually support only one program at a time. The researcher has the responsibility for determining
what that program should be and for coding it up. He is also responsible for writing a new program
or changing the old one when the program is discovered to be in error or inadequate to its task. That
is, the program is not organized to be adaptive, but the programmer is expected to do the adapting.13

For example, almost all the early programs (such as SHRDLU) written in PLANNER14 required
that all changes be made by the programmer.

This non-adaptiveness has a terrible consequence in practice. Because all responsibility for the
writing, maintenance, and evolution of the program is kept by the researcher and none is given to
the system, the information describing the program and its organization is typically distinct from
the information with which the program reasons. For example, references to PLANNER’s control
stack had to be made in LISP, rather than in terms of PLANNER assertions and theorems. Almost
always, the program cannot refer to its own structure and the structure of its behavior as its designer
does.15 Since this is information controlling the program’s reasoning and actions, we call this the
inaccessibility of control information. The program simply cannot reason about its own control
processes.

In the following subsections we outline some of the many unfortunate consequences of the inac-
cessibility of control information. The nesting of subsection numbers will reflect the consequential
relationships between these difficulties.

1.6.2.1 The Inexplicability of Actions and Attitudes

The first problem following from the inaccessibility of control information is theinexplicability of
actions and attitudes. Because the program cannot interrogate its own control process, it cannot
explain why it took the actions it did, why it didn’t take the actions it didn’t, why it believes what it
does, and why it plans to do what it does. For example, early evaluation-function search techniques
rarely kept records of their searching actions. Instead, they were notorious for basing all actions on
inexplicable and uninformative numbers.

One might think that this inexplicability is a trivial flaw, that one can tolerate incomprehensible
programs. This, however, is an gravely misguided tolerance. As programs and databases become
more common and more complex, society comes to rely crucially on their accuracy and intelligibil-
ity. Stories abound of false information irrevocably ruining someone’s credit ratings, employment
records, or worse. In trying to deal with such tragedies, society finds that computer systems are

13A frequent symptom of both this problem and a limited control vocabulary (Section 1.6.2.2) is the oft repeated
warning of system designers that theusershould take care in deciding which inference rules should be used for forward
chaining and which for backwards chaining. This is a good signal that something is wrong with the system.

14I will give most of the examples of traditional systems and their problems in terms of PLANNER, in part because it
so clearly demonstrates most of these problems, and in part because so many subsequent systems are largely based on its
ideas. The full language introduced in [Hewitt 1972]. However, only a subset was ever implemented, and the examples
refer to programs written in that subset. The full language shares all the problems of the subset.

15By this is meant the terms and reasons with which the designer explains the program’s design. These explanations in-
clude much more than just the programming language in which the program is written, at least with current programming
languages.

34

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

designed with the view that they are monolithic, infallible sources of information. This leads to
great disrespect and growing resentment of these large information systems. If we are to justify our
reliance on these systems while avoiding society’s censure, we can take either one of two paths. We
might make programs responsible for their actions or, more immediately practical, we can make
programs explicitly defer all responsibility to humans. We can have programs keep historical in-
formation about their inputs and about the computations they perform. This historical information
can then be used to construct explanations or justifications of each action and database entry so that
errors can be traced to bad inputs, to faulty programs, or to other databases in a distributed system.
In this way, the computer can be prepared with the fact of its own fallibility and irresponsibility, and
can help track down its own problems and those of its users. While this may not render intelligible
the enormous systems of programs involved, at least their effects will have been isolated to some
extent. It may be impossible for programs without historical annotations to do many of the things
that we want them to do, namely to defer responsibility to humans so that their actions may be ex-
plained and corrected. The larger and more important programs become, the more important such
humility becomes. The fairness and effectiveness of programs are at stake, and if society is to trust
their accuracy and usefulness, they must be able to trace their actions and contents to responsible
sources.

In addition to these strong social reasons against incomprehensible programs,16 many important
limitations on the program stem from the lack of reasons for actions and attitudes.

1.6.2.1.1 The Chauvinism of Values

But are they all horrid, are you sure they are all horrid?
Jane Austen,Northanger Abbey

The most important problem stemming from this inexplicability involves thechauvinism of
values. The inability to examine one’s reasons greatly limits the sorts of decision-making that can
be performed, for it forces one to fit all sorts of values into a single dimension, thereby making
impossible reasoning based on the incomparability of values.

Dilemmas are the central problem. The genesis of dilemmas is in part that we think of our
world comprising many subworlds, with only tenuous connections between them. We can describe
the world and our actions in physical terms, or from the standpoint of a moral system, or as events
in an economic system, or simply in terms of what we like and dislike. Each of these subworlds
of physics, morality, economics, or pleasure has its own vocabulary, facts, principles, and values.
The values of each of these systems cannot be compared with the values of the other systems. If
we eventually discover some reduction of all these worlds to a single world, for example, some way
of reducing moral and economic theory to physics, then we may have hope of comparing a moral
value with an economic value. Without such a revolution, however, we must live with incompatible
values. Indeed, many thinkers have argued that we will never find such a reduction of values because
one does not exist, or that even if one did exist, the explanations for decisions resulting from the
reductions would be too detailed and intractably long for routine purposes.17 We must, at least for
the time being, find some way of making decisions despite thisfragmentation of values.18

16See also [Weizenbaum 1976] and [Rosenberg 1980].
17See Fodor [1975] and Putnam [1975].
18This is Nagel’s term [Nagel 1979b]. Bell [1976] terms it the “disjunction of realms”.

35

DOYLE

This fragmentation of values permeates our deliberations far more than one might expect. Even
in apparently technical decisions, which in the popular view are the most straightforward, incom-
parable principles must be reconciled. For example, when designing an automobile, or a computer
program, or an electronic circuit, one typically encounters many decisions between different ways
of implementing the design specifications. But when one comes to these decisions, one must choose
between methods which result in varying degrees of elegance, expense, ecological harmfulness, re-
liability, ease of maintenance, conformity with statutes, coverage under patents or patentability,
difficulty of design, complexity or size of the design, ease of construction, ease of customization,
the favor of one’s peers, the innovativeness or personal challenge of the design, marketability, work-
ability under expected future changes in energy, legal, and social systems, etc., etc., etc. All of these
considerations involve different sets of values, and in anything one would call a problem, the value
of the decision cannot be maximized along all of these dimensions simultaneously. Making de-
cisions necessarily involves reflecting on the types of reasons involved to compare them with each
other. If these reasons are incomparable, then the decision cannot be made in a fully rational fashion
when so desired.

The fragmentation of values is a strong motivation for avoiding systems which do not record
their reasons, or which use only reason-obscuring techniques like voting or numerical strength-
combination rules for decision-making. In this latter case, such systems impose arbitrary, implicit,
and frequently indefensible judgements about the relation of different types of reasons by chauvin-
istically fitting all types of reasons into a single-dimensional grading scheme. For example, MYCIN
[Davis 1976] forces all decision-making into numerical strength-combination rules. This not only
means that the program must commit itself to absolute strengths for all reasons, but it also means
that the combination of reasons cannot be affected by context. A classic instance of this is the intran-
sitivity of evidential relationships in medical diagnosis. As Rubin [1975] explains (along with other
examples), both facial edema and ascites are evidence for sodium retention, and sodium retention is
evidence for each of cirrhosis and acute glomerulonephritis. However, these evidential relationships
are not transitive, as would be required by MYCIN, since facial edema is always positive evidence
against cirrhosis, and ascites is positive evidence against acute glomerulonephritis. Here context
(i.e. facial edema) invalidates a usual evidential relationship (i.e. between sodium retention and
cirrhosis). Even Simon’s satisficing decision-making, which avoids the unnaturalhomo economicus
or value-maximizing man, still fits all utilities into a single dimension [Simon 1976]. Necessarily
chauvinistic decision-making processes may be simple, but lead to insurmountable inadequacies in
the reasoner, and lead to more decisions being made than is properly possible.19

1.6.2.1.2 The Lack of Intentionality Another problem stemming from the inexplicability of
actions is thelack of intentionality. If the program cannot reflect on why some action was taken, or
why some circumstance occurred, it cannot distinguish between the intentional and the unintentional
consequences of an action. A famous problem with PLANNER-based robot bank robbers is that
they would blithely proceed to rob the bank after tripping over a pot of gold while on the way to the
bank. Being able to make these judgements is crucial in analyzing its successes and mistakes with
an eye to improving its skills and performance. Telling whether the effects of some action were
“successful” or not depends on the ability to distinguish some conditions as the aim towards which

19Of course, any decision-making procedure may be made chauvinistic by a decision to accept universal comparison
rules. The issue here is whether the decision-making procedure forces this decision on one, or whether one can leave
some values incomparable.

36

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

the action was taken, and then checking if the action realized these conditions. For example, I have
on occasion begun to assemble a complex toy without understanding what the intended structure
was. When the assembly directions were unhelpful and did not explain the intended functions of
the parts to guide me, I sometimes completed the bulk of the assembly only to find that I apparently
misassembled some substructure earlier because the next assembly instruction made no sense for
the then current partial assemblage. To correct my error, I tried to reconstruct the intentions of each
assembly step and see where my actions had diverged from the intended actions.

1.6.2.1.3 Inextensibility The inexplicability of the program also contributes to theinextensibil-
ity of the program. Since the program cannot explain its workings, it has little chance to aid in its
own modification. Even trivial changes must be left to the designer or user to effect. Simple methods
for augmenting the procedures used by the program, such as those presented in [Davis 1976], are
impossible to implement. For example, the program may in the course of reasoning discover that its
beliefs are inconsistent. If the program can explain its beliefs, it can help to trace the conflict back
to its assumptions and to resolve the conflict by changing one of these assumptions. But without a
self-explanatory facility, the program’s extender must rely on the program’s designer to provide this
analysis, if he can. For example, PLANNER recorded no explanatory information outside of its con-
trol stack, and that was sufficient only for suspecting the chronologically last procedure executed,
as in chronological backtracking.

1.6.2.1.4 Hubris The fifth consequence of the inaccessibility of control information and the
inexplicability of the program is itshubris, the program’s inability to acknowledge its own fallibility
and limitations. Because its reasoning and deliberations are external to its language, it cannot say
anything about whether it might be wrong in making some inference or decision, but has to proceed
as though it is always right. In fact, the program has many limitations in its abilities and in its
knowledge of its abilities. Its knowledge of its own abilities and beliefs is not very much more secure
than its knowledge of the external world. To be effective in action and in reaction to difficulties, we
must replacehubriswith sophrosyne, knowledge of both abilities and limitations.20

Many useful forms of reasoning depend on being able to refer to such limitations. A prime
example of this is the ability to make default assumptions or other non-monotonic inferences on
the basis of incomplete information. Such inferences can be made and maintained correctly only if
the reasons for beliefs and actions can be given. This was one of the major failings of PLANNER
and its relatives. PLANNER could not correctly handle THNOT because it lacked reasons for its
beliefs. PLANNER could not correctly compute the intended conditions of a THNOT’s success,
for it could not tell which assertions depended on previous THNOTs. For the same reason, it could
not correctly update its set of assertions when a new assertion invalidated a previous THNOT’s
success. Knowledge of one’s limitations also enters into the tenacity with which one holds beliefs,
into judgements about which beliefs to give up (say as tentative hypotheses) before others (say as
tenets of faith).

1.6.2.1.5 Non-additivity A fourth result of the inexplicability of program actions and attitudes
is a failure of additivity. This problem involves more than non-monotonic changes in the program

20For a better explanation of this term, see Ostwald’s gloss ofsophrosynein [Aristotle 1962, p. 314] and Aristotle’s
usage in Book 3, Section 10 of that work, pp. 77ff.

37

DOYLE

beliefs in response to actions and inconsistencies. Here I refer to PLANNER’s failure under the
addition of new imperative inference rules. The programmer always had to take great care when
adding new inference rules to avoid loops of inferences which would halt progress. Not only would
some added rules cause catastrophic failures of the program through non-terminating iterations,
but no information could be added later to indicate the proper use of the rules. For one example,
a backwards-chaining inference rule, to the effect that one block is a above another if there is a
block which is above the one and below the other, might never halt if asked about two isolated
blocks. If asked to prove that block A is on block B, it would generate the subgoal of finding a
block C above B and below A, the sub-subgoal of finding a block D above C and below A, and
so on, endlessly, without the possibility of adding a new rule to say that the first rule should never
be used if the two blocks are isolated. Also, conflicting non-monotonic rules will loop. If one has
procedures (each added by a different user with his own ideas about what the program should do)
to addP wheneverQ is added, to eraseQ wheneverP is added, to eraseP wheneverQ is erased,
and to addQ wheneverP is erased, one might go into an infinite loop of addingQ, addingP ,
erasingQ, erasingP , addingQ, etc. No techniques fully adequate to this problem were available
because the real answer involves keeping track of the inferences themselves, that is, the actions of
the control component, and reasoning about the presence of loops in these inference records. When
such techniques are employed, new inference rules may be added without fear of this sort of failure
occurring.21

1.6.2.2 Inexpressibility of Control Information

The second major problem stemming from the inaccessibility of control information involves the
inexpressibility of control information, the inability to give the program heuristic advice, guidelines
for how to carry out an decision or task. This is the doom of McCarthy’s goal of an Advice Taker
[McCarthy 1958]. Because control is fixed external to the program, at some point the controller must
arbitrarily give up on controlling the program’s actions and resort to blind search, for otherwise
the control component would contain all possible information about how to do what, when. For
example, the usual PLANNER scheme of writing programs with inference rules marked as forward
or backward chaining allows one to significantly direct the behavior of the programs in simple cases.
However, when one increases the number of inference rules beyond trivial proportions, one finds
many goals or assertions being answered by an unmanageable number of inference rules. It requires
a new language of control to specify even the simplest procedures for directing what to do in this
case, such as which rules are to be dealt with first. Some systems employ such a rule by imposing
a linear ordering on the order of execution of all inference rules. Whenever one builds in a level
beyond which the program can never see, one builds in eventual search, for any fact may at some
time be the point on which an enormous search turns.

1.6.3 Hence Reasoning Applied to Control

The common element of all the above inadequacies of the traditional approach to reasoning pro-
grams is the inability of the program to refer to, to reason about, and to modify the information
controlling its actions. The obvious approach to remedying these inadequacies is to design reason-
ing programs which can reason about themselves. In this way we can simultaneously overcome

21For example, AMORD avoided these problems in just this way. [de Kleer, et al. 1977]

38

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

the limitations of previous approaches and make use of their strengths, for nothing need inhibit the
program from consciously deciding to use one of the less sophisticated methods in certain cases if
it deems those methods appropriate and more efficient in those cases.

1.7 Relation to Other Works

And one might therefore say of me that in this book I have only made up a bunch of
other people’s flowers, and that of my own I have only provided the string that ties them
together.

Michel E. Montaigne,Essais

This thesis is related in general and in detail to a number of other works. Some of these will
be cited in the chapters that follow. In this final section of this chapter, we first relate the thesis to
its closest relatives among those works which have had the strongest influence on it. (See Figures 3
and 4 for a “mythical” summary of these influences.) We then survey some of the many other works
relevant to topics studied in the thesis.

1.7.1 Major Influences and History

This thesis is an outgrowth of my earlier research on control of reasoning and belief revision. This
line of work started for me with my paper “The use of dependencies in the control of reasoning”
[Doyle 1976], which emphasized the need to control reasoning and “reasoning about reasoning” as a
promising approach towards solving it. There I describe an early version of RMS, along with its ap-
plication to maintaining explicit statements of the goals of the reasoner. My masters thesis, revised
as “A truth maintenance system” [Doyle 1979], developed RMS further along with its philosophy
and applications. Developing the other theme of my first paper, “Explicit control of reasoning” [de
Kleer, et al. 1977], proposed the explicit representation of the control state of the reasoner, in the
main clarifying my earlier paper. This paper introduced AMORD, a procedural deduction system
based on RMS, first implemented by de Kleer and Sussman.22 In unpublished work, I extended
the example system of this paper, and later Shrobe [1979b] extended it yet further. I hope that the
present thesis ties these threads of thought together again.

I owe my colleagues large debts for many ideas. My earliest exposures to these sorts of ideas
were, I believe, in a class on religion with Lloyd Swenson, and later, in my studies of mathematics
with Joseph A. Schatz, who tutored me in the possibility of scrutinizing one’s beliefs and rules of
reasoning, and how such scrutiny is essential in foundational questions. John S. MacNerney vividly
illustrated this point to me in a class on integration.

At the time of writing of my first paper above, I had been working for Sussman on ARS [Stall-
man and Sussman 1977] and with McDermott on NASL [McDermott 1978], and was very excited
by their programs, and by Davis’ new thesis [Davis 1976] as well. I then sat in on some discussions
involving them, de Kleer, and Steele, thinking about the structure of a “new MICRO-PLANNER”
based on antecedent reasoning. I then developed and applied my idea of non-monotonic data-
dependencies to try to make some of these things workable, and my first paper above is the result.

22AMORD is actually the second program of that name, Steele and I having labored over and, after several months,
finally quietly buried the first AMORD.

39

DOYLE

SEAN

GPS

6

Science
Fiction

6

Matter, Mind
& Models

6

6

Society of Mind

6 6

K-Lines

6

Affective
Exploit’n

6

Advice Taker

6

�
�
�
�
�
�
�
���

Hacker

6

6

Prog.
Appr.

6

Mathematical Logic

6

6

6

�
�

�
�

�
�

��

LISP

A
A

AK

�
�
�
�
�
�
�
���

���

FOL

6

PLANNER

J
J

J
JJ]

C
C
C
C
C
C
C
C
CCO

6 6 6 6 6

ARS

6

�
�
�
�
�
�
�
���

TMS

6

�
�

��

SCHEME

6

GOLUX

6

TIRESIAS

6

NASL

B
B

B
B

B
B

B
BBM

6

NETL

6

AMORD

6

Figure 3: Diagram of Mythical Influences. (See next figure for mnemonic interpretations and cita-
tions.)

40

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

SEAN = this program
AMORD = de Kleer, Doyle, Steele, and Sussman [1977]
TMS = Doyle [1979]
ARS = Stallman and Sussman [1977]
SCHEME = Steele and Sussman [1978]
GOLUX = Hayes [1974]
TIRESIAS = Davis [1976]
NASL = McDermott [1978]
NETL = Fahlman [1979]
K-lines = Minsky [1979]
Affective Exploitation = Minsky [1980]
Programmer’s Apprentice = Rich, Shrobe, and Waters [1979]
FOL = Wehyrauch [1978]
PLANNER = Hewitt [1972]
Society of Mind = Minsky and Papert [1978]
HACKER = Sussman [1975]
LISP = McCarthy, et al. [1965]
Matter, Mind, and Models = Minsky [1965]
Advice Taker = McCarthy [1958]
Mathematical Logic = Mathematical Logic
GPS = Newell and Simon [1963]
Science Fiction = Asimov [1950, 1964] and Heinlein [1966]

Figure 4: Key to Influence Diagram Abbreviations

41

DOYLE

RMS itself stems from my experience with the “fact garbage collector” of ARS. I introduced
the idea of non-monotonic justifications for beliefs (and how they fit into dependency-directed
backtracking) to capture the “PRESUMABLY” inferences in NASL. I discovered that ARS’s fact
garbage collector and backtracker were both very buggy and needlessly non-incremental, and iso-
lated improved versions of these subprograms based on non-monotonic justifications as a domain-
independent subsystem.

My interpreter is an extension of NASL’s task network interpreter. NASL in turn builds to some
extent on Sacerdoti’s NOAH [Sacerdoti 1977], which reasoned about its own system of intentions
represented as a “procedural net.” My major changes to NASL have been the reorganization re-
quired by the RMS, the use of a hierarchical library of plans (NASL used the first order predicate
calculus in such a way as to make this inconvenient at best), the separation of desires and intentions,
and the introduction of reasoned deliberation. NASL’s choice protocol is a simple relative of rea-
soned deliberation, with little of the structure, power, or intutiveness of the latter. In NASL’s choice
protocol, one erases options, retains options, or combines options, until just one option remains.
One cannot give reasons against reasons, since there are no reasons. However, one can draw some
conclusions about the deliberation process as a whole through the QUIESCENCE step of the choice
protocol, which signals the executive that decision-making has gotten stuck. McDermott used this
last ability for encoding default decision outcomes. NASL is little concerned with self-models, and
so lacks plans describing the interpreter’s actions. However, some of NASL’s plan-reformulation
mechanisms hint at a self-model, as they are mediated through plans rather than as simple proce-
dures.

The formalism for desires, intentions, and plans used in the interpreter is also related to the
plan formalism of Rich and Shrobe [1976], who in turn refine earlier formulations [Brown 1976,
Sussman 1975, Goldstein 1975]. They also present libraries of standard plans for programming,
and methods for analyzing programs into their underlying plans. I draw heavily on their work in my
approach to skill introspection and hypothetical reasoning.

Patrick Hayes has long advocated the general approach of controlling reasoning by reasoning
about control [Hayes 1974]. He first suggested this idea in elucidating the relation between com-
putation and deduction [Hayes 1973b]. More recently, he critiqued the traditional approaches to
control [Hayes 1977a], and I have tried to build on his criticisms in my arguments above.

Long ago, McCarthy proposed an Advice Taker, a program which could accept facts and heuris-
tics about the world and how to reason, and then find ways of using this information effectively
[McCarthy 1958]. His proposal had no direct influence on me, but had a great indirect effect through
Sussman’s thesis [Sussman 1975], which has had a large impact on my views of learning of proce-
dures and assimilation of information.

I have also been considerably stimulated by Sussman’s addiction to writing meta-circular LISP
interpreters [Steele and Sussman 1978b]. Although these interpreters do not refer to their self-
description to act, they admit a description of themselves in the same language that they interpret,
so that they can be used to evaluate themselves evaluating some other program.

I toyed with ideas about how to make a non-monotonic, hierarchical calculus of descriptions
ever since reading about NETL [Fahlman 1979], which substantially influenced my views on
databases. However, these ideas never demanded quite enough of my attention to permit their full
development. My confusions about this might have hindered this thesis even more than they have,
had it not been for Weyhrauch’s timely exposition of FOL [Weyhrauch 1978]. I finally worked out

42

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

the details of SDL while trying to understand his paper and its relation to Brown’s work on meaning
and meta-theory [Brown 1977, 1979]. SDL draws heavily on both NETL and FOL.

Minsky’s ideas on reflection [Minsky 1965], once I discovered them, served to illuminate the
problems I was fumbling towards. I was also extremely stimulated by his views on the role of affect
in intellect [Minsky 1979], and by his criticism of the logistic approach in reasoning in [Minsky
1974].

Finally, many years ago I read and reread a number of stories which have ever since inspired my
attitudes towards the problems of building intelligent machines. I would like to thank the authors of
these stories, Isaac Asimov [1950, 1964] and Robert A. Heinlein [1966], for their inspiration.

1.7.2 Related Works

There are many other related works, some of which influenced me, but most of which were de-
veloped independently. Unfortunately, I am not quite the scholar I wish I were, and much of my
recent and continuing effort has been directed to learning of the approaches already developed to
the problems of this thesis and trying to relate all these ideas. However, I am still a novice in most
of these areas. I have explored enough to see the truly huge bulk of writings on these topics, so to
add some measure of coherence, I discuss them by topic.

1.7.2.1 Representation Theory

This category groups together studies of the nature of representation, hierarchical representation
systems, and self-descriptive and self-referential systems.

The philosophy of logic and languageis the usual location for studies of the nature of repre-
sentation, meaning, and representational system. Quine [1970], Haack [1978], and Linsky [1977]
are good survey expositions of this area. Linsky [1971], Schwartz [1977], and Strawson [1967] are
useful collections of articles on these topics.

Representational systems based on ideas ofhierarchical relationsbetween representations have
been explored by Brachman [1978], Fahlman [1979], Minsky [1974], Ph. Hayes [1977], Hendrix
[1975], Steele and Sussman [1978c], Smith [1978], Martin [1979], and Borning [1979]. Simon
[1969] stresses the importance of hierarchical systems in organizing information and behavior.

There has been quite a bit of work onself-descriptiveand self-referentialsystems, although
most of it is foundational in character and little is applied to the problem of controlling reasoning.
Programmers will find familiar the idea of the meta-circular interpreter, the earliest of which is
Turing’s universal machine [Turing 1936]. Such interpreters have also been developed for studying
the semantics of programming and logical languages by McCarthy [1965], Backus [1973], Reynolds
[1972], Brown [1977], and Steele and Sussman [1978b]. Minsky [1965] discussed machines which
reason about and use their own self-descriptions. So also do those mentioned above involved in the
approach to control pursued in this thesis. Davis [1976] not only explores controlling reasoning with
self-reference, but also shows the high value of programs using models of their own data structures
and inference rules in acquiring new information.

In addition to meta-circular interpreters, the computer-architecture and compiler-compiler fields
have studied formal machine description systems. See [Bell and Newell 1971], [Cattell 1978], and
[McKeeman et al. 1970].

The fundamental formal properties of self-descriptive and self-referential systems have been
studied by Russell [1908], Hilbert [1925], Godel [1931], Tarksi [1944], Turing [1936], Post [1943],

43

DOYLE

Kleene [1950], Smullyan [1957], Montague [1963], Quine [1966], Kripke [1975], Feferman [1960],
Resnik [1974], Boolos [1979], and Scott [1973]. Smullyan [1978, 1980] and Hofstader [1979]
present popular expositions of some of these questions. The non-monotonic logics mentioned below
can also be viewed as self-referential systems. Brown [1979] and Weyhrauch [1978] have each
developed programs which can reason about languages, proofs, and models. Weyhrauch’s program
is its own theory of itself, so that it can reason about itself and as its model of its description of itself.
Brown’s program seems similar in basic nature. Smith [1978] is also working towards developing
another such program and formal system. All these studies, however, are essentially foundational.
None tell how to reason about oneself, but instead concentrate on providing the power to do so if
one so desires. An aim of this thesis is to explain ways of doing just that, of using these frameworks
for self-referential reasoning.

1.7.2.2 The Nature of Reasoning

The mathematical semantics of the non-monotonic justifications and default inferences used in RMS
and other programs has recently been developed by McDermott and Doyle [1978]. Reiter [1979]
analyzes a less general system allowing stronger results while still capturing many important infer-
ences. Kramosil [1975] is the first, but unfulfilled, study of this sort. McDermott [1980] follows up
our earlier approach with stronger logics based on traditional the modal logics T, S4, and S5. I sus-
pect there may be another interesting logic along these lines, namely a non-monotonic extension of
Boolos’ modal logic of provability in Peano arithmetic [Boolos 1979]. Reiter [1978] catalogs some
of the many important appearances of non-monotonic reasoning in artificial intelligence studies.

Another close relative to non-monotonic logic and these views is the theory of conclusions
as formulated by Tukey [1960] and devloped by Dacey [1978]. This is a formal logic in which
statements with very strong evidence can be adopted as conclusions, to be maintained independently
of the evidence until and unless very strong evidence to the contrary is accepted.

Harman, Lehrer and Paxton, Scriven, and Bennett each formulate view of inference which seem
close in some ways to non-monotonic inference. Harman [1973] sees inferences as total views, with
all inferences containing the proviso “and since there was no undermining evidence.” Lehrer and
Paxton [1969, Lehrer 1974] formulate knowledge as undefeated justified true belief. Scriven [1959,
1963] formulates historical explanations as involving truisms or what he calls “normic rules” which
state “true” general principles which may be defeated in particular instances. He argues that such
rules are neither deductive nor statistical in nature. Bennett [1964] develops a notion of “R-denials”
as denials of reasons, but apparently does not continue the process with denials of denials in any
uniform way.

Rosenberg [1978] presents a beautiful exposition of the conversational logic of dialectical argu-
ment. Belnap [1976] discusses a simple four-valued logic of this sort of argument, and shows its
connection to relevance logic.

There is a sizable literature on logics of various attitudes, such as belief, desire, and obligation.
Rescher [1968] surveys this area. See for example Hintikka [1962], Kenny [1978], Rescher [1966],
[Hilpinen 1971] and Chisholm [1978]. For the most part, I have not developed a comprehensible
relationship between these logics of attitudes and the behaviors of the program suggested here. The
formal logics all seem too simplistic, or specialized to very specific sorts of reasoning. Chapters 4
and 5 briefly mention some connections of the ideas proposed here with deontic logic.

44

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Kreisel [1968, 1971, 1977] and Prawitz [1973] survey the literature and ideas of proof theory,
and Boolos [1979] presents the correct modal logic of provability in arithmetic. Proof theory is
intimately related to reasoning about reasoning, it being in large part formal reasoning about formal
reasoning systems. Closely related, intuitionists reflect on the structure and development of proofs
as a means of judging what arguments are constructive or non-controversial. See [Heyting 1956]
and [Yessinin-Volpin 1970].

Collins [1978] and Wason and Johnson-Laird [1972] discuss questions in human plausible rea-
soning and the psychology of reasoning. I am not yet familiar enough with this literature to comment
on it.

Our approach to reasoning should be taken as orthogonal in many ways to the decision-theoretic
approaches mentioned below, and to Zadeh’s fuzzy logic, which aims at capturing a separate set of
intuitions. See [Zadeh 1975] and [Gaines 1976].

1.7.2.3 The Theory of Intentional Action

Shaffer [1968], Taylor [1966, 1974], and Davis [1979] survey the standard theories of intentional
action. White [1968] and Brand [1970] collect a number of papers on this topic. See also [Anscombe
1957] and [Goldman 1970].

Miller, Galanter, and Pribram [1960] discuss the role of plans in psychological explanations
of behavior, and Collingwood [1946] the role of intention in historical explanation. Dray [1964]
surveys theories of historical explanations, and Gardiner [1974] and Hook [1963] collect a number
of papers in this area.

Studies of program understanding and action interpretation develop a number of models and
techniques for representing plans, recognizing plans in programs, devices, or patterns of behavior,
and analyzing errors to find the faulty plans that caused them. See Sussman [1975], Goldstein
[1975], Brown [1976], de Kleer [1979a], Miller [1979], Rich and Shrobe [1976], Wilensky [1978],
and Schmidt, Sridharan, and Goodson [1978].

1.7.2.4 The Fragmentation of Values

Nagel [1979b], Fodor [1975], and Putnam [1975] present arguments for the irreducibility of the
various domains of the world to a common basis of comparison. The basic arguments are that
even if we are able to determine how each of the domains is realized in a more fundamental do-
main, these reductions cannot be lawlike because there are so many sorts of ways of realizing each
domain in the underlying domains, and that even if they were lawlike, the bridging realization
explanations would be so hopelessly detailed that they would never make sense in arguments, rea-
soning, or decision-making. When each person is taken as a separate domain of values, as is usual
in social decision-making, there result a number of problems due to the fragmentation of values.
Arrow [1967] discusses the fundamental result of the nonexistence of a “nice” way of combining
fragmented values coherently in all cases to find an aggregate value.

1.7.2.5 Decision-making

Much recent work in decision-making has been developed in decision-theory, the most popular
branches of which are based on Bayesian probability theory, and most of this work concentrates on
chauvinistic utility measures. Suppes [1967] surveys this area. Good [1952] mentions a hierarchical

45

DOYLE

decision-theory of this sort. Duda, Hart, and Nilsson [1976] apply these ideas in the context of
popular AI techniques. Giles [1976] develops a subjective logic of belief along these lines. Simon
[1976] introduced the notion of satisficing to avoid hopelessly idealized rationality. Allison [1971]
and Braybrooke and Lindblom [1963] discuss social and political models of decision-making.

Many studies have been made on various structures for organizations and decision-making in
them. Many of the ideas and concerns here are closely connected with those of the control and orga-
nization of reasoning programs. See for example Barnard [1938] (which has an intriguing appendix
on the nature of mind and reasoning, logical and non-logical), Drucker [1946, 1974], Simon [1976],
March and Simon [1958], Chandler [1962], Rawls [1971], and Nozick [1974]. Related studies
attempt to view animal and human behavior as stemming from organizations of smaller decision-
making units. Tinbergen [1951] presents such control structures for several animals. Minsky and
Papert [1978, Minsky 1977] explore such organizations for the human mind. Fox [1979] attempts
to relate AI decision-making models, organization theory, and decision theory.

Quite different from that on decision theory, the literature on deliberation usually admits the
fragmentation of values, and concentrates on the reasons involved in the deliberation. See the
articles in Raz [1978], and books by Aune [1977], Castaneda [1975], Edgley [1969], Gauthier
[1963], Hare [1952, 1963], Harman [1977], Nagel [1970], Norman [1971], and Richards [1971].

1.7.2.6 Control of Reasoning

Basic studies of controlling actions by constructing and executing plans of action include Newell
and Simon [1963], Ernst and Newell [1969], Fikes and Nilsson [1971], Fahlman [1974], Sacerdoti
[1974, 1977], and Tate [1977]. Sacerdoti [1979] surveys these techniques. As mentioned earlier,
planning techniques have been applied to controlling reasoning as well by Hayes [1973b], Doyle
[1976], de Kleer et al. [1977], and McDermott [1978]. Latombe [1976, 1979] and Stefik [1980]
take this approach as well.

Gordon et al. [1978] develop a proof-construction system based on an explicit language/meta-
language distinction, and encourage the encoding of proof construction strategies as metalanguage
programs. However, they leave all planning to the human user, and do not self-apply the program.
In particular, their system never records proofs, and hence cannot reason about its own reasoning.

In the “pure” production system framework, McDermott and Forgy [1976] discuss techniques
for conflict resolution and focus of attention. Rychener [1976] presents an interesting implementa-
tion of GPS in such a production system. Hayes-Roth and Lesser [1977] explore “focus of attention”
techniques in a “blackboard” production-system architecture. In the “deductive” production system
framework, Davis [1976, 1980] developed meta-rules as a way of encoding control information. In
all these approaches, however, control depends on a chauvinistic decision-making technique that
operates without reasons, and neither approach involves a particularly coherent notion of action.

A final approach (or non-approach) is that of the logic programming community. Kowalski
[1974] seems content to refuse the problem of control as a domain for reasoning. Pratt [1977] seems
to beg the question by concentrating on the “facts” and postulating an intelligent interpreter to decide
what to do with them, much like the earlier GPS and mechanical theorem proving methodologies.

1.7.2.7 Adaptive Changes of Mind

Russell [1930], Carnegie [1936, 1944], Ellis and Harper [1961], and Johnson [1977] discuss in-
formal techniques for changing ones attitudes in the context of self-improvement. There is a large

46

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

literature on this problem, but these are the best expositions I have seen. Suppes [1977] surveys
several influential learning theories.

Concept learning is discussed by Winston [1975] and Fahlman [1979].
Belief revision has been an active field recently, and the literature is surveyed and indexed by

Doyle and London [1980]. Hayes [1973a] is still an excellent earlier survey. My approach in [Doyle
1979] has close relatives in the works of London [1978], McAllester [1978], Thompson [1979],
Fikes [1975], and Stallman and Sussman [1977]. de Kleer and Harris [1979] critically compare
these approaches. Charniak, et al. [1979] present a simple RMS in explicit detail with considerable
discussion. London applies this approach in detail to belief revisions following actions. Fahlman
[1974] and Sridharan [1976] present schemes for describing rules to disambiguate action effects,
their common suggestion being rules which choose one revision over another on the basis of aspects
of the particular beliefs being revised. Some approach of this sort is necessary because revisions
due to inconsistencies and actions can typically be done in many ways, so some way of choosing
between the alternate revisions must be possible. Excellent general of belief revisions can be found
in Rescher [1964, 1976], who presents a formulation of consistency-based belief revision, and in
Quine [1953], and Quine and Ullian [1978], who discuss the ambiguity of revisions and several sorts
of general guidelines for disambiguating them. Goodman [1973], Lewis [1973], Turner [1978], and
Rescher [1976] study counterfactual and plausible reasoning. Analyses of counterfactuals usually
involve some way of evaluating the consequent of the counterfactual statement in circumstances as
“close” as possible to the actual circumstances but in which the hypothesis of the counterfactual
holds. These proposals for counterfactuals thus suggest ways of choosing “minimal” revisions of
beliefs to accommodate new hypotheses. Sosa [1975] collects a number of papers on this topic.

Fahlman [1974], Sacerdoti [1977], and Shrobe [1979b] discuss revision of one’s plans.
Harper [1976] discusses changes of preference in a probabilistic setting.
Sussman [1975] studies the problem of skill development. Fikes and Nilsson [1972] discuss the

collection of STRIPS plans, and Davis [1976] the acquisition of new inference rules.

1.7.2.8 Affect and Intellect

Freud [1937] analyzed the impact of affect on intellect through repression and censors. Ellis and
Harper [1961] base their psychotherapy on the converse influence of intellect on affect. They an-
alyze people’s problems by finding the troublesome statements the afflicted repeat to themselves.
Minsky [1980] explores how affect and intellectual activities are aspects of the same mechanisms,
how affect exploits intellect for its purposes, and how intellect similarly exploits affect.

1.7.2.9 Consciousness

The standard positions on the nature of consciousness are surveyed by Shaffer [1968], Taylor [1974],
and Dennett [1978a]. Other topics in the philosophy of mind and psychology are discussed in [Fodor
1968, 1975], [Gustafson 1964], [Glover 1976], [Dreyfus 1979], [Nagel 1979c, 1979d], [Boden
1977], Ryle [1949] and Dennett [1969, 1978c].

47

DOYLE

1.7.2.10 The Absurd

Nagel [1979a], Quine [1953], Camus [1955], Sartre [1956], Anderson [1975], Wheeler [1977], and
others discuss the problems of why we are the way we are, and why we should adapt. Pascal [1971],
James [1971], and Kierkegaard [1944] discuss leaps of faith.

48

Chapter 2

THE REPRESENTATION OF
STRUCTURE

One important kind of human action is that of building new things out of previous things. There may
be little to distinguish a new thing from its components or its surroundings but our calling it so (as
detractors of modern sculpture have been wont to point out). Nevertheless, we often find it useful
to think of portions of the world as things constructed from other things. This chapter outlines a
representational system designed to allow a program to share this way of thought.

Now conceivably, a program could build and use things and never think of them except as their
constituents. This, however, has the disadvantage of unnecessary detail. It is ridiculous to think of
moving a table across the room only in terms of the motions of individual molecules making up the
table, or of a mind or machine only in terms of the physical events associated with its physical real-
ization, but that would be a consequence of an inability to think of structures as objects, abstracting
away all the unwanted details of their structure. Instead, the program must be able to think of its
creations in terms other than their constituents. Since the program thinks about its internal actions
as well as its external actions, we conclude that it should be able to make new representations out
of previous representations, and then be able to use the new representations as objects in creating
further representations.1

Often in physical constructions, the constituent parts retain their structure so that the structure
of the whole includes the former structure of the parts. Of course, this is often not so, as in chemical
mixtures or plastic deformations of constituents, for example salt dissolved in water and ice floes
made into an igloo. But retained structure, when it exists, makes descriptions of constructs much
simpler to comprehend, so we require further of the representational system that it allow structure
retention when possible. In cases in which (internal and external) building operations leave intact
the combined (internal and external) objects, this means that the structure of the representation
reflects the structure of its referent.

We also place some distinctly non-physical requirements on the representational system.
The previous chapter made many arguments in support of the program’s ability to explain its

structure and behavior, and the representational system should make this possible. We require that

1Harrison [1978] emphasizes the unity of the building activities involved in creative thought with the building activities
involved in mundane constructions and practical reasoning. Lenat [1977] makes a similar point and presents a program
for inventing mathematical concepts.

49

DOYLE

each representation include information explaining how it was formed from other representations,
and what processes were responsible for its formation.2

Another important requirement is the ability to economize on the storage size of representations.
To consider an analogous case, large corporations must often raise large sums of money, much larger
than they might borrow directly. They do this by borrowing from a number of banks, who in turn
borrow from other sources. Jack borrows from Jill and Jane, who borrow from John and Jake and
James and Jonas, who borrow from Jean and Joan and others, so that many of the effective funds
are only virtual possessions, not a single actual bank-account. In a similar way, the program should
economize on the information for which it actually uses long-term storage resources. It can do this
by using the records of how representations were constructed from others to temporarily reconstruct
the apparent structure of a representation when answering questions, and then to discard all but the
basic information about the representation and its structure.

2.1 Desiderata of the Representational System

In summary, the desiderata for the representational system, along with examples and how we realize
them, are as follows.

1. The representational system should be able to represent all the objects considered by the
program.

This requirement has two parts. The first is the simple semantical adequacy of the represen-
tational system, which rules out, for example, a representational system whose only symbol is the
numeral 3, for 3 is just one symbol, and there are many things which must be represented simul-
taneously. We adopt a system based on the first-order predicate calculus (FOPC), as it is the best
understood formal representational language. However, this choice is intended to be the most col-
orless choice possible. Since no one has yet actually demonstrated the adequacy of any known
representational system (FOPC included) for describing everything, we take FOPC as a base for
extension, such as modalities, etc., and do not address completions or alternatives of this language.

The second part of this requirement concerns the physical realization of the representational
system. A purely formal system cannot represent anything, for what it thinks of as its representing
something is not supported by actual causal connections between its thoughts and its objects. Sev-
eral authors, such as Putnam [1978], Fodor [1978], and Searle [1980], discuss this issue in detail.
We do not discuss this question further, and take for granted a realization of the representational
system as part of a machine actually connected to the physical world in the proper ways.

2. New representations can be built from previous representations.
The basic unit of representation in a FOPC-based system is the logical theory, or set of state-

ments. This requirement means that we can combine sets of statements to get new sets of statements.
We do not restrict these combinations to be simple unions of the sets, but can make more compli-
cated, non-additive combinations. But a simple mathematical example is that of combining a theory
describing a set of objects as a group under one operation and another theory describing a subset of
those objects as a group under another operation into a theory describing the objects as a semiring.

3. Combinations of representations are objects as well.

2It would be nice if representations explained not only the how but the why of their formation. Unfortunately, as
the last chapter speculates, it may not be possible always to say why. This question depends on the completeness of the
program’s self-description, on its knowledge of itself being detailed enough to tell the purpose of each of the actions of
its procedures.

50

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

This means that the representational system treats sets of statements as objects to which state-
ments can refer. For example, one might have a theory describing a semiring theory as a combination
of two other theories. Here the first theory treats the other three as objects.

4. Each representation incorporates an explanation of how it was constructed.
This means that the theories and their statements include the reasons mentioning the other the-

ories, statements, and procedures which constructed them. Precise explanations of this will largely
be deferred until Chapter 3. But an example might be a theory constructed by adding together two
other theories. The statements in this theory would all have reasons mentioning the corresponding
statements in the initial theories, along with the statements relating the combination theory and the
constituent theories, and finally, along with the procedure which inferred the new statements from
the earlier statements and the theory-construction statements.

5. The representation is asymptotically storage-space efficient.
This requirement means, for example, that statements in a theory are not actually inferred from

the constituent theories unless actually needed, and are not retained unless needed.3

In the remainder of the chapter, we will base the representational system onvirtual copies
(VC’s), a term due to Fahlman [1979]. Virtual copies of theories will be theories whose statements
can be inferred, when needed, and discarded when not required. Virtual copies can be modified by
adding in other, non-virtual statements, and by defeating some of the virtual statements. This last
capability is used for describing overridden defaults, exceptions, and what might be called family
resemblances, in which the simplest way of describing a number of objects is as a number of distinct
modifications of an ideal family member. As we will describe in more detail later, VC inferences
are non-monotonic inferences, to allow these sorts of non-additive theory modifications.

Unfortunately, the claim that the program uses virtual copies is a fiction. All the versions of it
that I have implemented in fact make actual copies, that is, always permanently infer all statements
of all theories. However, this is merely an accident of time pressures on my implementation efforts,
as the full-copy techniques are easy to implement quickly, and the virtual-copy techniques are harder
to implement correctly, as there are many subtleties involved.

This fiction about the representational system presented here is actually a symptom of a larger
incompleteness in this thesis, namely the lack of database retrieval procedures altogether. Mc-
Dermott, Fahlman, and others have argued for a separation between database retrieval and problem
solving, where database retrieval consists of applying automatic, quick procedures which adequately
handle almost all queries (the routine cases), and problem solving consists of applying carefully con-
trolled inference procedures to ferret out the desired information that the routine procedures miss.
This distinction is sometimes hazy, but is a convenient way of viewing the problem, and I adopt
it here. Routine retrievals are carried out by a set of standard, efficient, but sometimes inadequate
database interrogation procedures. The difficult cases are handled by self-applying the reasoner with
means of information retrieval plans and deliberation about where to look for information. This the-
sis discusses neither the routine procedures nor the information retrieval plans. The representational
system presented here is capable of reinterpretation as other representational systems, for example,
as NETL, and retrieval algorithms developed for them can easily be adapted to the data-structures

3In [Doyle 1977] I suggested that asymptotic storage-space efficiency was a major factor in the design of represen-
tation languages intended for use in representing human-sized bodies of information about the world. I also argued that
virtual-copy representational systems like Fahlman’s NETL [Fahlman 1979] are best viewed as attempts at asymptotic
storage-space efficiency.

51

DOYLE

used here. Likewise, the ability of the program to refer to its own representations allows formulation
of information-retrieval plans for careful reasoning.

One final introductory remark: This chapter is not intended as a presentation of the classical
open problems of representational theory. The system presented here can be viewed as a simple
extension of the ideas of Fahlman and Weyhrauch [1978] to include reasons for representations.
Smith [1978] describes how many classical representational puzzles can be fruitfully attacked with
representations which can be referred to as objects by other representations. Both Hayes [1977b]
and Nilsson [1980] present alternative readings of hierarchical representational systems as non-
meta-theoretical FOPC systems, but their readings have major semantical shortcomings, discussed
in Section 2.5.

2.2 A Key Application

The program uses a library of hierarchically organized plans and primitives. It occasionally builds
new plans and adds them to this library. For example, it might make a plan for cooking a single
spaghetti dinner from two existing plans, that of cooking and refrigerating a vat of spaghetti sauce,
and that of heating some spaghetti sauce and cooking some spaghetti. To construct the new plan,
it concatenates the two existing plans, changing the quantities involved, and removing the steps
of refrigerating and reheating the sauce. To do this, it makes copies of the representations of the
previous plans, identifies some of the components of these copies, deletes some of their components,
and then packages up the resulting collection as the new plan.

We view these steps of copying and modifying representations in terms of the above require-
ments as follows. The program first creates the copies of preexisting plans by making new rep-
resentations along with inference rules which make the assumption that any part of a prototype
representation is also part of the corresponding copy representation. These inferences are non-
monotonic assumptions, so that modifications may be made to the representation by defeating the
assumptions. The identifications are accomplished by creating inference rules which duplicate any
conclusion about one representation with similar conclusions about the identified representations.
Finally, the collection of modified and interconnected representations is reified as a new plan repre-
sentation available for further copying and combination. The rest of this chapter presents the details
of these operations.

2.3 SDL, a Structured Description Language

The program employs a representational language called SDL. SDL is based on a predicate cal-
culus, but bears strong resemblances to current structured-description representational systems. In
particular, SDL involves both a modified form of the data-structures of FOL [Weyhrauch 1978] and
a particular way of using these data-structures based on NETL.

The basis of SDL is the first order predicate calculus. However, where normal FOPC systems
are viewed as having one language, one set of axioms, and a model external to the language, SDL
employs many languages, axiom sets, and models simultaneously. It describes each object with
a separate set of axioms in an appropriate language and its intended model. SDL describes the
structural relationships between such descriptions by treating each of these logical theories as an

52

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

individual with parts. These meta-theoretic relationships then become axioms of yet other logical
theories.

The most important data-structure in SDL is thetheory. The standard usage of “theory” in
mathematical logic is the set of theorems of some set of axioms in a formal language, that is, the
axioms together with all their logical consequences. Following Weyhrauch, we corrupt the usage
of this term to mean a data-structure combination of a language definition, a set of facts (axioms
and theorems) in the language, and a simulation structure (partial model) for the set of facts and the
language, or mnemonically, T =〈L,S,F〉. We explain all of these components below.

All of SDL’s first order languages are constructed from the standard logical connectives along
with individual constants and variables, predicates, functions, and predicate and function parameters
(for axiom schema). In addition, the languages are many-sorted, with a system of partially ordered
sorts. (In logic, the term “sort” means kind-classification, not ordering classification.) In many
respects the system of sorts is an inessential convenience of the languages, although they turn out to
be nontrivial extensions computationally. Other kinds of extensions to the type of language allowed,
such as modalities and conditional expressions, are not used or explored here for simplicity, and
might be added in future versions of the program.

We define a language in SDL by specifying the non-logical symbols in the language and the
roles of these symbols. Language definitions consist of the following types of declarations. The
first argument of these commands,name, is always a Lisp atomic symbol or a pathname (explained
later). Types are also Lisp atomic symbols, which are defined as predicate constants of the lan-
guage. Theory ’s are the theory data-structures in whose languagename is being defied. The
number of arguments are, when specified, non-negative integers (Lisp integers). Argument names
and types are Lisp atomic symbols defined as individual variables and predicate constants of the
language. Likewise, result types are sort predicate constants of the language. The last argument is a
justification (as explained in the next chapter) used as the reason for the data-structures created by
the declaration.

(INDIVIDUAL-CONSTANT name type theory justification)
(INDIVIDUAL-VARIABLE name type theory justification)
(PREDICATE-CONSTANT name {# of args} {({arg name} arg type) list}

theory justification)
(PREDICATE-PARAMETER name {# of args} {({arg name} arg type) list}

theory justification)
(FUNCTION-CONSTANT name {# of args} {({arg name} arg type) list}

{result type} theory justification)
(FUNCTION-PARAMETER name {# of args} {({arg name} arg type) list}

{result type} theory justification)

In the following we write these commands in a syntax similar to FOL’s. In this syntax, the theory is
given by the context of the presentation. The statement “IN theory ” is used to switch attention
to the theory with the global nametheory . (Once we have defined them later on, we will allow
pathnames as well.) We usually ignore justifications for simplicity of exposition.

For example, we might construct a language for discussing natural numbers and arithmetic with
the declarations:

IN ARITHMETIC:

53

DOYLE

Function-constant SUCCESSOR 1 NATNUM;
Function-constant PREDECESSOR 1 NATNUM;
Function-constant + 2 (NATNUM NATNUM) NATNUM;
Function-constant * 2 (NATNUM NATNUM) NATNUM;
Predicate-constant < 2 (NATNUM NATNUM);

These declarations define the usual symbols of successor, predecessor, plus, and times, and the
ordering predicate.

We use SDL to discuss not only languages, but their models and their relations to their models as
well. However, many intended models involve objects which simply do not exist inside a computer,
for example, cows, real numbers, and redness. Because we can sometimes present the elements of
models inside the computer and sometimes not, instead of ordinary models we employsimulation
structures. A simulation structure can be thought of as a partial model, one which includes partial
decision procedures to represent its domain and the set of constants, and a set of attachments. We
take these decision procedures to be Lisp procedures which take an object as input and tell whether
or not it is one of the objects in the domain (constant) or domain (constant) representation. The list
of attachments is essentially an association list pairing linguistic symbols with domain elements as
their referents, thus specifying the set of “bindings” of the symbols to objects in the model. A sim-
ulation structure may not completely determine the truth value of every statement in the language,
but it may determine the truth value of some. This is as good as we can hope for, and is all we will
require. Attachments are made with the command

(ATTACH name object theory justification) ,

domains and constants with the command

(REPRESENT name representation theory justification) .

TheATTACHcommand adds the specified pairing to the list of attachments of the simulation struc-
ture, with the given justification. TheREPRESENTinstruction declares the name to be a predicate
and sort symbol of the language and attaches the name to the representation function in the simu-
lation structure.4 One particular sort of attachment is that of a procedure in a theory, in which an
individual constant is attached to a LISP procedure. All procedures are named by such attachments,
so that values computed by them may be justified in terms of the procedure as the “inference rule”.

Of course, one does not have a model of a language, but rather a model of a set of statements
in the language. These statements are called facts (to subsume both axioms and theorems), and are
declared by either

(AXIOM name wff theory justification)

4This chapter will be hazy on exactly what representations are and how they relate to languages and simulation
structures. The intended ideas can be illustrated with numbers. One has the numerals in the language, which refer to
numbers, and since numbers don’t exist in the computer, we add in Lisp fixnums as a representation of numbers. The
distinction becomes important because in many cases, the program will have the referent for a symbol, namely a data-
structure which does exist inside the computer. (Actually, the existence of data-structures in the computer may be a
fiction. Data-structures are referred to by pointing to some location in memory, but the intended data-structure results
only through interpretation of the information in that location as further pointers, fields, etc. In this way, the fiction of
data-structures is much like the fiction of the “self” of the program, since the program is one big data-structure interpreting
itself.) Weyhrauch and others discuss the problem of languages, models and representations, and I expect to adopt one of
their suggestions when I become more familiar with their proposals.

54

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

or

(FACT name wff theory justification) .

Each of these facts is added to the set of facts of the theory. Each fact consists of both the name of
the fact (a symbol in the theory’s language), and a wff of the language of the theory. This connection
between fact name and wff is treated as an attachment of the theory, although here the attachment
is from a symbol of the language to a wff in the set of axioms and theorems. Thus theories with
axioms refer to parts of themselves.

Theories are made up out of a language, a simulation structure, and a set of facts. Theories are
created with the command

(THEORY name parent-theory justification) ,

which declaresname to be an individual constant in the parent theory, creates a new theory data-
structure, and attaches this data-structure toname in parent-theory .

For example, we can declare more of the theory of natural number arithmetic as follows.

IN ARITHMETIC:
Individual-constant 0 natnum;
Individual-variable n natnum;
Individual-variable m natnum;
Predicate-parameter P (natnum);
Axiom Oneone: ∀n ∀m successor(n)=successor(m) → n=m;
Axiom Succ1: ∀n ¬ 0=successor(n);
Axiom Succ2: ∀n [¬ 0=n → ∃m n=successor(m)];
Axiom Plus: ∀n [n+0=n ∧ ∀m[n+successor(m)=successor(n+m)]];
Axiom Times: ∀n [n*0=0 ∧ ∀m[n*successor(m)=(n*m)+m]];
Axiom Induct: [P(0) ∧ ∀n[P(n) → P(successor(n))]] → ∀nP(n);
Attach Successor (LAMBDA (X) (ADD1 X));
Attach Predecessor (LAMBDA (X) (COND ((> X 0) (SUB1 X)) (T 0)));
Attach + +;
Attach * *;
Attach < <;
Attach 0 0;

The first two attachments above attach Lisp procedures to two predicate constants of the theory.5

The next four attachments attach to a symbol of the theory the value attached to the same symbol
in the global theory. In the first three of these, the value is a Lisp procedure, and in the last it is the
Lisp number 0.

Each of these data-structures contains information about the reasons for the data-structure,
which are stored as justifications for a RMS node, as explained in Chapter 3. Each theory data-
structure has a justification mentioning the procedures which created it. Each declaration of a lin-
guistic symbol adds a justification to that declaration. Each attachment has a justification, and so
does each axiom in the theory. That is, an axiom would have a premise justification in the theory,

5Those familiar with SCHEME [Steele and Sussman 1978a] should understand that we ideally would employ
SCHEME instead of LISP, so that these attached values would be procedures (closures) rather than s-expressions.

55

DOYLE

but that premise justification itself would not be an assumption, but would have a justification spec-
ifying the reason for this fragment of the theory in terms other theories and inference procedures.
As usual, consequences have justifications mentioning both the nodes of their antecedents and the
inference rule or procedure deriving the consequence.

We will represent all of these things with the following data-structures. We notate these in
the “structure” syntax of MIT Lisp Machine Lisp [Weinreb and Moon 1979], in which a name is
specified followed by the fields of the data-structure. The first structure defines the fields common
to all the rest: the name, the RMS node, and the parent (whose function is explained following these
definitions). The:INCLUDE specification is the means by which these common field definitions
are included in all other structures.

(DEFSTRUCTURE (COMMON-STRUCTURE)
NAME
NODE
PARENT)

These declarations define the data-structures associated with languages.

(DEFSTRUCTURE (LANGUAGE (:INCLUDE COMMON-STRUCTURE))
INDIVIDUAL-VARIABLES
INDIVIDUAL-CONSTANTS
PREDICATE-CONSTANTS
PREDICATE-PARAMETERS
FUNCTION-CONSTANTS
FUNCTION-PARAMETERS)

(DEFSTRUCTURE (INDIVIDUAL-CONSTANT (:INCLUDE COMMON-STRUCTURE))
INDIVIDUAL-TYPE)

(DEFSTRUCTURE (INDIVIDUAL-VARIABLE (:INCLUDE INDIVIDUAL-CONSTANT)))

(DEFSTRUCTURE (PREDICATE-CONSTANT (:INCLUDE COMMON-STRUCTURE))
NUMBER-OF-ARGUMENTS
ARGUMENT-TYPE-LIST)

(DEFSTRUCTURE (PREDICATE-PARAMETER (:INCLUDE PREDICATE-CONSTANT)))

(DEFSTRUCTURE (FUNCTION-CONSTANT (:INCLUDE PREDICATE-CONSTANT))
RESULT-TYPE)

(DEFSTRUCTURE (FUNCTION-PARAMETER (:INCLUDE FUNCTION-CONSTANT)))

These declarations define the data-structures associated with simulation structures.

(DEFSTRUCTURE (SIMULATION-STRUCTURE (:INCLUDE COMMON-STRUCTURE))
DOMAIN-REPRESENTATION
CONSTANTS-REPRESENTATION

56

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

ATTACHMENTS)

(DEFSTRUCTURE (REPRESENTATION (:INCLUDE COMMON-STRUCTURE))
REPRESENTATION-ALGORITHM)

(DEFSTRUCTURE (ATTACHMENT (:INCLUDE COMMON-STRUCTURE))
OBJECT)

This data-structure is used for facts.

(DEFSTRUCTURE (FACT (:INCLUDE COMMON-STRUCTURE))
WFF)

This structure defines the data-structure for theories.

(DEFSTRUCTURE (THEORY (:INCLUDE COMMON-STRUCTURE))
(THEORY-LANGUAGE (MAKE-LANGUAGE))
(THEORY-SS (MAKE-SIMULATION-STRUCTURE))
THEORY-FACTS
EQ-POLICIES
EQ-POLICY-LIST
VC-TYPE-THEORY
VC-UP-STATEMENTS
VC-DOWN-STATEMENTS
VC-STATEMENTS-LIST
MAP-UP-STATEMENT
MAP-DOWN-STATEMENTS
MAP-STATEMENTS-LIST)

In the above, the structures (particularlyTheory) contain not only the lists we have previously
indicated, but also slots for redundant forms of these lists to facilitate retrieval and manipulation of
information. The basic such slot is that of PARENT, which typically is used as a reverse pointer
from a sub-data-structure to the data-structure which includes it. The exact interpretation of this slot
varies with the data-structure involved. Languages, simulation structures, facts, and reasons point
back to their theory; individual constants, individual variables, predicate constants, predicate pa-
rameters, function constants, and function parameters point back to their language; representations
and attachments point back to their simulation structure, and theories point back to the theory which
is their context of existence.

THEORY, in addition, contains slots to facilitate retrieval of structure-sharing statements, part
inferences, and dataflow policies. These will be explained later in this chapter and in Chapter 4.

This completes the description of the underlying logical system.

2.4 How to use SDL

We represent objects hierarchically in SDL by using a separate theory to describe each object. The
parts of the object are in turn described by other theories, and the theory of the object includes
statements of the relations between these parts and between their theories. When two objects are

57

DOYLE

mutually defined, each of the theories describing these objects will contain the other theory as a
part. This means of representation is not paradoxical because the theories of the parts are copies of
their prototype theories.

For example, suppose we wish to describe as objects arithmetic relations between numbers. To
do this, we can make a theory ADDER as follows.

IN ADDER:
Individual-constant A1;
Individual-constant A2;
Individual-constant SUM;
Predicate-constant =;
Function-constant +;
Attach + +;
Attach = =;
Axiom Plus: A1+A2=SUM;

This theory describes the prototypical adder. ADDER has three individual constants for the addend,
augend, and sum, and, via attachments to the arithmetic predicates and functions, defines the relation
between the constants.

Notice that the description of the prototype contains no attachments to the constants. That is
because the prototypical adder does not relate any particular numbers or have any default values.
Suppose we wish to make an instance of this description for the addend and augend values 3 and 4.
We first would create a new theory which is a virtual copy of ADDER, namely,

58

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

IN T-1:
Individual-constant T-1;
Attach T-1 T-1;
Individual-constant ADDER;
Attach ADDER ADDER;
Axiom VC(T-1, ADDER);

T-1 is the theory’s name in the global theory. T-1 is also the theory’s name for itself. ADDER is
the theory’s name for the theory with the global name ADDER. The sole axiom in T-1 allows us
to make a number of conclusions within T-1. The VC inference rule is that all statements defining
a theory, including the language, the simulation structure, and the facts, are inferred in the copy
theory as individual non-monotonic assumptions. That these inferences are non-monotonic will be
important later when we wish to modify the copies of prototypes to override default values or to
describe exceptions. Thus T-1 actually has the following statements.

IN T-1:
Individual-constant T-1;
Attach T-1 T-1;
Individual-constant ADDER;
Attach ADDER ADDER;
Axiom VC(T-1, ADDER)
Individual-constant A1;
Individual-constant A2;
Individual-constant SUM;
Predicate-constant =;
Function-constant +;
Attach + +;
Attach = =;
Axiom Plus: A1+A2=SUM;
Attach A1 3;
Attach A2 4;

To this, we have added the two values as attachments to A1 and A2. By use of the axiom PLUS of
this theory, the attachments can be used to compute an attachment for SUM to the value 7.

The idea of VC theories could also have allowed writing ADDER more succinctly, by declaring
ADDER to be a VC of ARITHMETIC. In this way, ADDER would have been an extension of
ARITHMETIC, and the extra definitions of +, =, etc. would have been unnecessary.6

However convenient might be theory extensions made in this way, many circumstances require
a theory to contain as subtheories multiple distinct copies of other theories. The main motivation for
this is the need to describe structures having several parts, each of the same type, but each having its
own peculiarities. We facilitate this by means of the TYPED-PART command, as the next example
shows.

We can make a new description, called DOUBLER, by modifying a copy of ADDER.

6The Edinburgh LCF proof construction system makes similar use of a collection of theories (sets of theorems) with
its “ancestry graph.” [Gordon et al. 1978]

59

DOYLE

IN DOUBLER:
Individual-constant X;
Individual-constant 2X;
Typed-Part ADDER ADDER;
Axiom: X = [A1 ADDER]; ;[Pathname] explained below.
Axiom: 2X = [SUM ADDER];
Axiom: [A1 ADDER] = [A2 ADDER];

The expressions in brackets are calledpathnames, and are compound names treated as the corre-
sponding names in the subtheories. That is, [A B . . . C] should be interpreted as the variable A of
the theory named B . . . of the theory named C. We write V[pathname] to notate the value attached to
the symbol represented by the pathname, so V[A B] is the value attached to A in the theory attached
to B in the current theory.

The command

(TYPED-PART name prototype justification)

expands into several other statements and actions. It creates a new theory as a virtual copy of the
prototype, and then creates a constant of the given name in the theory and attaches the copy to the
name in the theory. Thus we have the new statements

IN DOUBLER:
Individual-constant ADDER;
Attach ADDER T-2;

where we have also created the theory T-2:

IN T-2:
Individual-constant T-2;
Attach T-2 T-2;
Individual-constant ADDER;
Attach ADDER ADDER;
Axiom: VC(T-2, ADDER);

Now by itself, this new theory T-2 is not much good, since the original doubler theory can only
refer to it, not use it. However, the final function of theTYPED-PARTstatement is to enable the
inference rule that any statement of T-2 is also a statement of DOUBLER under a rewriting of names
of T-2 into reference expressions in DOUBLER. With this rule, DOUBLER gets the new statements

IN DOUBLER:
Individual-constant [A1 ADDER];
Individual-constant [A2 ADDER];
Individual-constant [SUM ADDER];
Predicate-constant [= ADDER];
Function-constant [+ ADDER];
Attach [= ADDER] =;
Attach [+ ADDER] +;
Axiom [PLUS ADDER]: [A1 ADDER] [+ ADDER] [A2 ADDER]

[= ADDER] [SUM ADDER];

60

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Note here that all symbols in the language of the part-theory are replaced by pathnames when they
are inferred in the whole-theory. However, the second items in attachments are not affected by
these substitutions. Instead, those expressions are referentially opaque, as they are symbols in the
language of the global theory, rather than symbols of the language of the part-theory.

Suppose we now wish to combine two doublers to get a quadrupler. This, of course, is straight-
forward.

IN QUADRUPLER:
Individual-constant X;
Individual-constant 4X;
Typed-part D1 DOUBLER;
Typed-part D2 DOUBLER;
Axiom: X = [X D1];
Axiom: [2X D1] = [X D2];
Axiom: 4X = [2X D2];

Suppose, however, that we didn’t quite want a quadrupler, but instead wanted to first quadruple and
then add one. We could, of course, make something new using an extra adder with an attachment
to 1 of one of its “inputs.” But to show off the sort of local modification/exception idea, we instead
make a local modification to the axiom of one of the doublers in the quadrupler.

T-3:
Typed-part QUADRUPLER QUADRUPLER;
Individual-constant 1;
Attach 1 1;
Cancel [PLUS ADDER D2 QUADRUPLER];
Axiom PLS: [A1 ADDER D2 QUADRUPLER] + [A2 ADDER D2 QUADRUPLER] + 1

= [SUM ADDER D2 QUADRUPLER]

The effect of the Cancel statement is to defeat the non-monotonic assumption of the specified state-
ment. We then just add in the desired modification, and we are done. Alternatively, we could have
switched the theory we were working with to the theory attached to ADDER in D2 in QUADRU-
PLER. We could have then just made the commands

IN V[ADDER D2 QUADRUPLER T-3]:
Cancel Plus;
Individual-constant 1;
Attach 1 1;
Axiom Pls: A1 + A2 + 1 = SUM;

This shows how the statements inherited in one theory can be canceled.7 We can easily represent
default information in this way by using the non-monotonic nature of VC inferences. In fact, all of
the statements of copies of theories are assumptions, and can be defeated for reason. The distinction

7Of course, there are limitations to this technique. An interesting example is that of a wagon being drawn by four
horses, one of whom had one blind eye. This we might have said with∃Horse in HORSES(Wagon) and∃Eye in
EYES(Horse) such that BLIND(Eye). Then RMS would have a pretty time finding a model, as it would have to pick
one out of so many possibilities.

61

DOYLE

between what one considers to be default information and what one considers essential aspects of
theories is entirely a matter of how willing one is to give up one statement rather than another. The
program employs policies which guide decisions between alternate revisions of the its beliefs, as
discussed in chapters 3 and 6. However, policies form merely the mechanism, not the vocabulary,
of guidelines for revision of beliefs. Several authors, for example Fahlman, have proposed a trinary
classification of the strength of attachment to beliefs in concepts, namely default, normal, and cri-
terial (or essential). How these absolute classifications should be realized in policies is unexplored,
although the obviously intended policies should at least say that any default statement should be
rejected in favor of any normal statement, and any normal statement should bow before any criterial
statement. I am not convinced that absolute, context-free policies of this sort are particularly useful,
and so have not pursued them. I would much rather believe that each domain of reasoning has its
own set of revision policies along these lines.

The above examples all used Typed-part to include theories defining objects in a theory. Another
major application is that of including subtheories to define the sort predicates of the language.
Unfortunately, I have not yet convinced myself of just how this should be done, whether by Typed-
part, an analogue of it, or by direct VC inclusion. Part of my hesitation in this matter relates to yet
another question unanswered here, that of how sort predicates are taken as defined in the first place.
For example, the previous theory ARITHMETIC is often thought of as the definition of what natural
numbers are, but the sort predicate enters that theory only as a relativizer on the variables. That is,
the whole theory is of the form NATNUM(x)→AXIOMS(x), and nowhere is there any statement of
the form AXIOMS(x)→NATNUM(x). I don’t think this is a difficult problem to solve, but it is one
that requires more attention than I have been able to devote to it.

2.5 Relations with other Representational Systems

Bless thee, Bottom! bless thee! thou art translated.
William Shakespeare,A Midsummer Night’s Dream

It seems likely that SDL can be used to realize many of the current representation languages,
although we do not demonstrate this here. For example, we can translate CONLAN [Steele and
Sussman 1978c] into SDL. In this translation,

(CONSTRAINT name parts+types equivalences)

goes into a named theory, the parts of the theory being given by the parts and types, and the equiv-
alences by equations. What we do not capture without further inference rules is the constraint
language control and inference structure, which strives to propagate values through all the known
relations between variables. On the other hand, we can add new parts to a theory at any time, which
CONLAN cannot. Also, we can make theories like the following, which are far beyond CONLAN’s
expressive powers, since it does not subsume FOPC.

IN SANDWICH:
Individual-constant BLOCK1 BLOCK;
Individual-constant BLOCK2 BLOCK;
Individual-variable MIDBLOCK BLOCK;
Predicate-constant ON;

62

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Axiom: ∀ MIDBLOCK [ON(MIDBLOCK, BLOCK1) ≡ ON(BLOCK2, MIDBLOCK)];
Axiom: ∃ MIDBLOCK ON(MIDBLOCK, BLOCK1);
Axiom: ∃ MIDBLOCK ON(BLOCK2, MIDBLOCK);

This blocks-world theory describes the situation in which two blocks sandwich in a number of other
blocks.

This theory, incidentally, also shows the distinction between individual variables and constants
in a prototype. Constants refer to parts of the prototype, which are constant aspects of the prototype
even if they seem like variable aspects in instantiations of the prototype. Variable are used only in
general statements about the domain of parts of the prototype.

Hayes [1977b] and Nilsson [1980] present translations of representational systems like KRL
[Bobrow and Winograd 1977] in FOPC, but these translations miss the point of most current repre-
sentational systems. Hayes and Nilsson succumb to the temptation to confuse the ideas of descrip-
tion specialization and predicate subsumption.

Consider, for example, theories describing mammals and horses. We normally accept the state-
ment∀x[HORSE(x)→MAMMAL(x)]. We also might be likely to construct the theory describing
horses (which contains the predicate HORSE) by refining with additional axioms the theory de-
scribing mammals (which contains the predicate MAMMAL). These are two separate connections
between the predicates HORSE and MAMMAL, but Hayes and Nilsson confuse them. The reason
they make this conflation is simply that without treating theories as objects, the only way they can
approximate theory construction is with an implication.

This confusion has many severe problems. The first is thefamily resemblance problem. Con-
sider a human family with several members. We might try to capture their commonalities of appear-
ance by describing the prototypical member of the family. However, there may be no property (other
than prototypical human properties) shared by all members of the family. Each member may have
most of the properties described by the prototype, but be lacking a single property that all the other
members possess. Now if we use SDL with its non-monotonic VC inferences, this circumstance
presents no problem, and can be treated succinctly. But if theories are not objects, and the only tool
available is implication, then the best that can be stated is that the prototype has the property

(P2∧ . . .∧Pn)∨ (P1∧P3∧ . . .∧Pn)∨ . . .∨ (P1∧ . . .∧Pn-1),

which is hardly succinct. Hayes and Nilsson each allow default statements in the descriptions, which
are essentially non-monotonic assumptions. But they cannot get the succinctness and freedom of
description construction that SDL allows unlesseachstatement is taken explicitly as an assumption,
including all instances of the implications relating concepts.

2.6 Advanced Applications

I have not explored the full powers (or even the complete details) of this representational system,
particularly the hard questions concerning modality, non-denotation, and existence. For example,
suppose one had the theories

IN UNICYCLE:
Typed-part WHEEL WHEEL; ;etc.

63

DOYLE

IN WHEEL:
Typed-part TIRE TIRE;
Typed-part HUB HUB; ;etc.

and wished to say that some WHEEL-1 had no tire. If no attachment is made to [TIRE WHEEL-1],
that would just be a lack of information about the question, not a definite belief that WHEEL-1 had
no tire. However, one could state

¬∃x ATTACHED([TIRE WHEEL-1], x, WHEEL-1) ,

which would seem to say that the term [TIRE WHEEL-1] lacked a referent. I have not yet been able
to explore in detail whether this sort of trick can be used to attack the classical problems of existence
and proper names, as in “Pegasus does not exist.” Would the domains of existence be specified by
the theory in which the nonexistence statements occurred? For example,

¬∃x ATTACHED(Pegasus, x, REAL-WORLD-THEORY) ,

but

∃x ATTACHED(Pegasus, x, MYTHOLOGY-WORLD-THEORY).

Consult [Smith 1978] and [Martin 1979] for more detailed treatments of these sorts of puzzles in
hierarchical structured representational systems, and [Haack 1978] and [Linsky 1977] for surveys
of the classical problems.

2.7 Theories about Theories

As the preceding examples suggest, theories may be constructed to describe not only objects in
the external world, but equally important, other theories. Thus the preceding theories typically
described not only their “proper” subjects, but also their relations to other theories. For example,
DOUBLER contained a statement that one of its subtheories was a copy of the ADDER theory.
This, of course, is just one statement relating two theories. This section tries to illustrate more
general cases of theories about theories which determine the large-scale structure of the program.

2.7.1 The THEORY Theory

The starting point is the theory of the prototypical theory and its construction. This theory simply
reflects in logical language the data-structure definitions given earlier, with the simulation structure
mentioning the procedures for accessing those structures. For example, the THEORY data-structure
is reflected as the following.

In THEORY:
Individual-variable T THEORY;
Individual-variable L LANGUAGE;
Individual-variable S SIMULATION-STRUCTURE;
Individual-variable F FACTS;
Individual-variable PARENT THEORY;
Function-constant T-L (THEORY) (LANGUAGE);

64

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Function-constant T-S (THEORY) (SIMULATION-STRUCTURE);
Function-constant T-F (THEORY) (FACTS);
Function-constant T-P (THEORY) (THEORY);
Axiom ∀T [∃L[L = T-P(T)] ∧∃S[S = T-S(T)] ∧∃F[F = T-F(T)]
∧∃PARENT[PARENT = T-P(T)]]
Attach T-P (LAMBDA (X) (CXR 0 X));
etc.

When we fill out this sort of theory, we obtain a complete description of the basic data-structures of
the program, and the primitives for accessing, creating, and modifying them. I will not go into this
here, for the full description is quite lengthy.8

2.7.2 Theories of Specific Theories

The THEORY theory only reflects the structure common to all logical theories. Other theories
describe the structure common to all members of certain classes of theories. For example, the
ADDER theory above describes a prototypical adder. If each of the components of this theory are
reflected in the language of THEORY and related theories, we get a theory describing all theories
copied from ADDER, containing, for instance

IN THEORY-OF-ADDER:
Axiom: INDIVIDUAL-CONSTANT(‘‘A1’’, LANGUAGE(ADDER));

We can include these meta-theoretical statements in the theory itself, just as we include VC state-
ments. Of course, we do not want to do this automatically for all statements, lest we reflect endlessly
to produce an infinite number of such statements in each theory.

2.7.3 The VC Theory

The VC inference rule can be described by yet another theory, with contents like the following.9

IN VC:
Individual-variable T1 THEORY;
Individual-variable T2 THEORY;
Individual-variable S1 WFF;
Individual-variable S2 WFF;
Axiom ∀t1 ∀t2 VC(T1, T2) →

∀S1[S1 ∈ METATHEORY(T1)→
∃S2[S2 ∈ METATHEORY(T2) ∧ S2 = SUBSTITUTION(S1)];

What this means is that to copy statements from one theory, one reflects the definition of the state-
ment into a meta-theoretic statement, substitutes in the appropriate new names, adds the new meta-
theoretical statement to the copy theory, and then de-reflects to get the copied object-level statement

8Similar reflections can be made of the underlying Lisp system, by axiomatization of s-expressions and the primitives
for creating and manipulating them. Weyhrauch and Cartwright and McCarthy [1979] have developed theories of Lisp
along these lines.

9This is not quite correct or complete, as the exact details have yet to be worked out.

65

DOYLE

in the copy theory. Thus the definition of an individual constant S in the prototype would be re-
flected into a statement that S is an individual constant symbol. That meta-theoretical statement
would be inferred in the copy theory, and de-reflected (treated as a definitional command) to realize
S in the copy theory.

2.7.4 The PERSON Theory

Just as we progress from theories of things to theories of theories to theories of pairs of theories, we
continue to theories describing the large-scale structure of the program as a theory of all currently
existing theories. The abstract structure of the program we capture in the PERSON theory.

IN PERSON:
Individual-constant THEORIES SET;
Individual-constant BELIEFS SET;
Individual-constant DESIRES SET;
Individual-constant INTENTIONS SET;
Individual-constant PROCEDURES SET;
etc.

In addition, each of these parts of the program is attached to lists of concepts, beliefs, desires,
intentions and procedures typical of all persons.10 Of course, persons may be subclassified into
types of persons, each of which has some extra or missing attitudes over those expected of persons
in general. Further specializations lead to theories of particular persons, and then to theories of those
persons in different temporal or hypothetical situations. We speculate on the use of these models of
persons in hypothetical reasoning and discourse in Chapter 7.

2.7.5 The Global Theory ME

I am he as you are he as you are me and we are all together.
John Lennon and Paul McCartney,I am the Walrus

The program itself is a theory, and this theory it describes as a modified copy of the PERSON
theory. The program calls this theory of itself ME, and for simplicity, we will often do likewise,
or alternatively use our name for the program, SEAN. That is, SEAN is our name for the program,
not its name for itself, although it may know that others call it SEAN. The program refers to itself
by containing the individual constant ME of type THEORY, and attaching itself to ME as ME’s
referent.11

ME is the parent theory, or context of existence, of all the program’s theories, either directly or
indirectly.12 Thus ME’s parent is ME, as is the parent of PERSON. This may seem paradoxical, to

10More likely, these sets are given only implicitly by predicates and procedures which recognize their extensions, and
the typical contents are all listed in the tables of these procedures. The details of this have yet to be worked out.

11Weyhrauch uses the term META for this, but I don’t for two reasons. First, the it is the system’s theory of itself, for
which the canonical term is “me” or “I”, not “meta.” Second, the term vulgarizes the memory of my paternal grandmother,
Meta Enters Doyle, daughter of Hermann Enters.

12It seems possible in principle that the program might contemplate (but not employ) theories which have no parent.
In fact, it might construct an entire other program in this way, or a description of another program, complete except for
connections to the real world, and never running, because it can never get control. If the program then connects this other
program to another processor, or sets up a time-sharing executive, it might have two minds running independently in the
same machine, each with a different self.

66

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

have a theory be a copy of one of its parts, but as we have constructed them, there is no inherent
difficulty. In fact, PERSON ought to mention a ME symbol, but I have not worked out this detail.

ME also contains the symbol I, which serves as its name for its “self.” I is normally attached to
the global theory, that is, is coreferential with ME, but can be rebound to other person theories in
hypothetical reasoning, as described in Chapter 7.

The normal operation of the program involves making changes to the theory denoted by I, that
is, attachments are looked up in I, pathnames are interpreted in I, and inferences are made in I’s
theories.

2.8 Concepts and Attitudes

The preceding has explained how to create a hierarchically organized database of concepts to be
used in representing things. But concepts are of little use unless they can be applied. This section
indicates how concepts are used to form the attitudes of belief, desire, and intention which go to
make up the mental state of the program.

The basic idea is simple. The global theory of the program contains statements about some
of the concepts so as to create attitudes. By “attitudes” we mean “propositional attitudes” in the
usual sense in which beliefs, wants, and intentions are propositional attitudes, and are viewed as
a combination of an attitude and a propositional content. Thus “I want to eat some food” would
be decomposed into the attitude “I want” and the propositional content “I eat some food”, the
combination notated as I-Want(I eat some food). This might be done in the program as follows. If
Raining is a concept describing a state of affairs in which it is raining now, and if R1, R2, and R3 are
all copies of Raining, then the global theory might contain statements BELIEF(R1), DESIRE(R2),
and INTENTION(R3) to indicate its belief that it is raining, its desire that it be raining, or its
intention that it be raining. We assume that one always makes particular instances or copies of
concepts used in attitudes, just as one makes copies of concepts in forming parts of concepts. Thus,
there might be commands Believed-concept, Desired-concept, and Intended-concept analogous to
Typed-part, which automatically create the copy theory and whatever inference procedures (see
below) are appropriate for relating the new concept to the current state of mind. This copying may
be needless, but only further study can tell.

This realization of attitudes makes clear the distinction between the reasons for the concept
involved and the reasons for attitudes involving the concept. That is, the program might have reasons
for holding the concept theory in terms of the theories and procedures from which it was constructed.
These reasons would have nothing to do with the reasons for the attitude statements in the global
theory.

The global theory includes all the currently believed concepts as subtheories. That is, the pro-
gram infersVC(ME, C) from BELIEF(C) in ME, so that all the statements in C are inferred
as statements of ME. This scheme, or a variant using TYPED-PART, has considerable elegance,
particularly when applied to plan concepts (as discussed in Section 4.9), in which the plan theory
contains statements of several sorts of attitudes which are used to temporarily augment the current
sets of attitudes for the duration of the plan. The exact details of this idea are yet to be resolved.

One important question is the relation between these concept-based attitudes with their reasons,
and the logical statements and their reasons which go to make up concepts. There may well be a
confusion of levels in my suggestions, as they seem to imply that attitudes (at least from one view-

67

DOYLE

point) are really beliefs about attitudes, a conclusion raising many problems. Chapter 7 discusses
this problem in more detail.

68

Chapter 3

FOUNDATIONS OF THE THEORY OF
REASONING

“Ladder of wit! What madness is this?” Ebenezer demanded.

“No madness save the world’s, sir. Take your wig question, now, that’s such a thing in
London: whether to wear a bob or a full-bottom peruke. Your simple tradesman hath
no love for fashion and wears a bob on’s natural hair the better to labor in; but give
him ten pound and a fortnight to idle, he’ll off to the shop for a great French shag and
a ha’peck of powder, and think him the devil’s own fellow! Then get ye a dozen such
idlers; the sharpest among ’em will buy him a bob wig with lofty preachments onthe
tyranny of fashion– haven’t I heard ’em! – and think him as far o’er his full-bottomed
fellows as they o’er the merchants’ sons and bob-haired ’prentices. Yet only climb a
rung the higher, and it’s back to the full-bottom, on a sage that’s seen so many crop-
wigs feigning sense, he knows ’tis but a pose of practicality and gets him a name for
the cleverest of all by showing their sham to the light of day. But a grade o’er him is
the bob again, on the pate of some philosopher, and over that the full-bottom, and so
on. Or take your French question: the rustical wight is all for England and thinks each
Frenchman the Devil himself, but a year in London and he’ll sneer at the simple way
his farm folk reason. Then comes a man who’s traveled that road who says, ‘Plague
take this foppish shill-I, shall-I! When all’s said and done ’tis England to the end!’; and
after him your man that’s been abroad and vows ’tis not a matter ofshill-I, shall-I to
one who’s traveled, for no folk are cleverer than the clever French, ’gainst which your
English townsman’s but a bumpkin. Next yet’s the man who’s seen not France alone
but every blessed province on the globe; he says ’tis the novice traveler sings such
praise for Paris – the man who’s seen ’em all comes home to England and carries all’s
refinement in his heart. But then comes your grand skeptical philosopher, that will not
grant right to either side; and after him a grander, that knows no side is right but takes
sides anyway for the clever nonsense of’t; and after him your worldly saint, that says
he’s past all talk of wars and kings fore’er, and gets him a great name for virtue. And
after him –”

“Enough, I beg you!” Ebenezer cried, “My head spins! For God’s sake what’s your
point?”

69

DOYLE

“No more than what I said before, sir: that de’il the bit ye’ve tramped about the world,
and bleared your eyes with books, and honed your wits in clever company, whate’er ye
yea is nay’d by the man just a wee bit simpler and again by the fellow just a wee bit
brighter, so that clever folk care less for what ye think than why ye think it.”

John Barth,The Sot-Weed Factor

In later chapters of this thesis, we discuss the question of which inferences to make, that is, how
the reasoning process is controlled. We devote the present chapter to explaining the prior question
of what we take inferences to be, and to describing the structure of a program based on this theory
of reasoning.

3.1 The Nature of Reasoning

Reasoning involves changing one’s attitudes from one set to another by adding some new attitudes
and relinquishing others.1 Reasoning includes not only “deductive” and “inductive” inferences, in
which new beliefs are produced from prior beliefs via “deductive” and “inductive” rules of infer-
ence, but also “practical” inferences, in which new wants and intentions are produced from prior
beliefs, wants, and intentions, and “changes of mind”, in which one becomes unhappy with some
belief or desire and discards it.

Reasoning is one sort of mental event, where by mental event I mean one’s changing one’s mind
from one state or structural form to another. Reasoning, however, is not the only sort of mental event.
For example, the creation of new mental data-structures which do not affect the set of attitudes is a
non-reasoning mental event, as when one creates a new attachment or data-structure in SDL without
giving it a justification.2 Of course, most data-structures are created for use in changing the set of
attitudes, but they need not all be of this form. For example, when a question arises concerning the

1Harman [1973] develops the thesis that reasoning is a process of changing one’s set of attitudes by adding some and
abandoning others. Perhaps I misinterpret him, but I understand this to mean that one cannot have cases of reasoning
which do not change the set of attitudes. Here, and later in this section, I propose a more general view, which incorporates
such cases of reasoning.

Harman develops his view as part of his thesis that reasoning always increases the “explanatory coherence” of the set of
attitudes. This view can be taken in at least two ways, either as a proposed control structure for the reasoning process, in
which case the mechanisms I propose subsume and significantly extend this proposal, or as a proposal about what sorts of
mental events count as cases of reasoning. But if this latter interpretation is his intent, his proposal seems to have serious
flaws, of which I sketch three. A. It leaves out faulty reasoning, which is certainly reasoning, but need not always increase
explanatory coherence. B. Harman’s view either requires that explanatory coherence is a total order on the collection of
sets of attitudes, which seems absurd, or that reasoning cannot involve changes of mind in which one switches from one
“theoretical” interpretation of a set of “data” beliefs to another interpretation also explaining the “data” but incompatible
with the original interpretation. This also seems unrealistic. C. I would think that there are many plans of reasoning
which involve first decreasing explanatory coherence so as to later increase it, for example, making an assumption to see
how it works out, reaching a paradox or contradiction, and then retracting the assumption to get a coherent set of beliefs.

The approach developed in this thesis, while motivated by rational thought, can also be used for some types of irrational
thought. For example, the approach contains nothing that forces the program to avoid inconsistent intentions. Rather it is
the values and procedures of the program which work to keep the set of intentions consistent. Similarly, the program can
engage in rational thought even when it entertains conflicting beliefs. Indeed, to be able to think about how to escape its
plight, it must be able to reason effectively in the presence of inconsistencies.

2In particular, the only unreasoned processes are those which (a) compute primitive justifications, (b) construct SDL
data-structures prior to their justification, and (c) compute values to attach to constants in theories.

70

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

truth of some proposition about which one has no opinion, one must first construct the proposition
to be able to consider it. Only later, after one finds reasons for or against the proposition, does it
enter the set of beliefs and thus directly into reasoning.

Although we must admit non-reasoning mental events such as the creation and destruction of
data-structures, our aim will be to explain as many mental events as possible in terms of reasoning.
We do not insist that all mental events always be performed by reasoning, just that it ought to
be possible to perform any particular mental operation through reasoning when desired. This aim
entails severe restrictions on the form of the program we adopt, restrictions on all aspects of program
operation down to the basic processes of choosing and making inferences.

Why adopt such an aim? In rational actions one changes one’s attitudes only for some reason,
so a rational program should be able to explain its actions in terms of its reasons. If the program
has explanations of its actions, then it can do many useful things, such as correct faulty rules of
inference or beliefs, by examining and analyzing these explanations to trace effects to their sources.

But in this view, it appears, all mental events in a rational program would have a reason. Is this
possible? Nearly so, as this thesis attempts to demonstrate. In later chapters we will manage to push
just about everything into reasoning when necessary, from making inferences, to making choices,
to taking actions on the basis of intentions.3 Non-reasoning mental events will be used solely in the
service of reasoning processes.4

The common view of reasoning differs from ours in taking reasoning to be the purely monotonic
or additive process of adding new attitudes to the current set of attitudes, as in deductive inference.
But that view has many inadequacies.

With this aim of embedding most of the program in reasoning when desired, we face the prob-
lem that in the traditional view of reasoning, many changes of attitudes must be apparently non-
reasoned, e.g. all non-monotonic or non-additive changes, all changes which do not increase the set
of attitudes monotonically. One of the most important reasoning steps necessary for taking action is
that of making predictions of the effects of the action. Making these predictions typically requires
making assumptions about the current state of affairs, because one never knows everything relevant
to the successful completion of an action. But once one has made such assumptions and predic-
tions, one is invariably surprised on occasion, and finds the assumptions to have been incorrect,
even though unavoidable. Then one has the problem of how to correct or revise one’s beliefs so
as to patch up one’s beliefs in light of this new information. How can the theory of reasoning be
formulated to accommodate these non-monotonic changes in the set of attitudes?

We answer this question by proposing a theory of reasoning in which all reasoning takes place
by adding a record of an inference, called areason, to the current set of reasons. Each reason is
basically a record of an application of an inference rule or other procedure to some set of attitudes.
The program then determines the current set of attitudes from this set of reasons by treating the set
of reasons as the set of required inferences, as opposed to the merely possible inferences indicated

3Even though they do not involve reasoning, the computations involved in non-reasoning mental processes can be
introspected and analyzed for some purposes. We will discuss this further in the context of skill introspection.

4Other non-reasoning mental events include independent, non-destructive processes, such as the random creation of
new data-structures, which do not hurt but may save work in later deliberate data-structure creation; sensory inputs, which
will change independent of reasons due to causal connections to the world; and random destruction of data-structures,
which is one (but only one) form of forgetting. Whether one wants to build random changes into one’s rationality is still an
unexplored question. Is there some utility in random events in thought, or are they just consequences of implementation
in an imperfect, noisy machine? Note that even if one’s mental processes involve no randomness, evolution would still
involve random changes to the species as long as traditional reproductive methods remain the fashion.

71

DOYLE

by the inference rules themselves. That is, an inference rule indicates only potential constraints on
the set of attitudes. Only after the inference rule has been applied to create actual inferences do those
inferences constrain the current set of attitudes by means of the reasons recording the inferences.
With this terminology, my thesis is as follows.

Rational thought is a process of constructing reasons for attitudes.

To say that some attitude (such as belief, desire, or intent) is rational is to say that there is some
acceptable reason for holding that attitude. Rational thought is a process of finding such acceptable
reasons.5 Whatever purposes the reasoner may have, such as solving problems, finding answers, or
taking action, it operates by constructing reasons for believing things, desiring things, or intending
things. The actual attitude in the reasoner occurs only as a by-product of constructing reasons. The
current set of beliefs and desires arises from the current set of reasons for beliefs and desires, reasons
phrased in terms of other beliefs and desires. When action is taken, it is because some reason for
the action can be found in terms of the beliefs, desires, and intentions of the actor. I stress again,
in this view the onlyreal component of rational thought is the current set of reasons - the attitudes
such as beliefs and desires arise from the set of reasons, and have no independent existence.

This view entails that for each possible attitude P just one of two states obtains: Either

(A) P has at least one currently acceptable (valid) reason, and is thus a member of the current set
of attitudes, or

(B) P has no currently acceptable reasons (either no reasons at all, or only unacceptable ones),
and is thus not a member of the current set of attitudes.

If P falls in state (A), we say that P isin (the current set of attitudes), and otherwise, that P isout
(of the current set of attitudes). These states are not symmetric, for while reasons can be constructed
to make Pin, no reason can make Pout. (If P is a belief, the most a new reason can do is to make
¬P in as well.)6

5Note that this thesis allows as rational thought inferences involving random choices. For example, we might count
as an acceptable reason “I couldn’t think of anything else to do, so I flipped a coin.”

6While this is a standard property of inference rules, it is not respected in the relatives of RMS developed by London
[1978], McAllester [1978], and Thompson [1979]. In their systems, inferences are recorded as implications, not as
inference steps. Thus if the program infers A from B, they record A→B, rather than À B. These two statements have
different meanings. In their systems, if A→B and¬B are both current beliefs, so also will be¬A. But this violates the
true meaning of the statement as a record of an inference, since if one has made the inference A`B and has¬B, one need
not be able to infer¬A, since that ability depends on the inference rules defining`. Even if` involves only the familiar
inference rules, one cannot infer¬A, but just that not̀ A.

McAllester has defended his conflation of these notions on the grounds of the space efficiency of his program, that it
simultaneously represent several justifications. but even if the semantic errors in his approach are ignored, it can be seen
that the claimed space efficiency is an illusion stemming from an unrealistic assumption about the use of the program.
Most propositions are used only in a positive form by the program, that is, it is the relatively rare proposition for which
the program considers both the proposition and its opposite. This is so because most propositions are uncontroversial
statements about the world or the structure and control of the program , rather than about questions being deliberated
on. Thus RMS, which represents propositions and their opposites as distinct, unique data-structures, ultimately uses less
space than McAllester’s program, which represents propositions and their opposites as a separate CONS in each clause
in which they occur.

The non-monotonic logic developed by McDermott and myself [1978] also appears to suffer from this confusion.
There we suggested writing inference rules as implications, but I was never happy with this since it predicted somewhat

72

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

It would seem that the proposed view also succumbs to monotonicity problems, for the set of
reasons grows monotonically, which (with the normal sense of “reason”) leads to only monotonic
increases in the set of current attitudes. To solve the problem of monotonicity, we introduce novel
meanings for the terms “a reason” and “an assumption” in the context of belief attitudes. Similar
theories apply to the other attitudes.

Traditionally, a reason for a belief consists of a set of other beliefs, such that if each of these
basis beliefs is held, so also is the reasoned belief. To get off the ground, this analysis of reasons
requires either circular arguments between beliefs (and the appropriate initial state of belief) or
some fundamental type of belief which grounds all other arguments. The traditional view takes
these fundamental beliefs, often called assumptions (or premises), as believed without reason. On
this view, the reasoner makes changes in the the current set of beliefs by removing some of the
current assumptions and adding some new ones.

To conform with the proposed view, we introduce meanings for “reason” and “assumption” such
that assumptions also have reasons. Areason(technically, a SL-justification, as explained shortly)
for a belief consists of an ordered pair of sets of other beliefs, such that the reasoned belief isin by
virtue of this reason only if each belief in the first set isin, and each belief in the second set isout.
An assumptionis a current belief one of whose valid reasons depends on a non-current belief, that is,
has a non-empty second set of antecedent beliefs. With these notions we can create “ungrounded”
yet reasoned beliefs by making assumptions. (E.g. give P the reason ({},¬P).) We can also effect
non-monotonic changes in the set of current beliefs by giving reasons for some of theoutstatements
used in the reasons for current assumptions. (E.g. to get rid of P, justify¬P.) We somewhat loosely
say that when we justify someout belief supporting an assumption, (e.g.¬P), we aredefeating,
denying, or retractingthe assumption (P).

These new notions solve the monotonicity problem, thus overcoming the limitations of the tra-
ditional view of reasoning. Non-monotonic assumptions allow the program to make inferences with
incomplete information about the actual state of affairs, and then to correct the conclusions drawn
from these assumptions by later examining the set of reasons. We will give examples of this shortly.

Other advantages over the conventional view also follow. One of these advantages involves how
the reasoner retracts assumptions. With the traditional notion of assumption, retracting assumptions
was unreasoned. If the reasoner removed an assumption from the current set of beliefs, the assump-
tion remained out until the reasoner specifically put it back into the set of current beliefs, even if
changing circumstances obviated the value of removing this belief. The new notions introduce in-
stead thereasoned retraction of assumptions. This means that the reasoner retracts an assumption
only by giving a reason for why it should be retracted. If later this reason becomes invalid, then the
retraction is no longer effective and the assumption is restored to the current set of beliefs.

The most important application of the reasoned retraction of assumptions is in dialectical argu-
mentation, a technique we will employ extensively later in decision-making procedures. The basic
idea is that one part of the program can put forward an argument for some conclusion based on some
assumptions, where for this purpose we represent each of the steps of the argument as an assumption

different behavior from that of RMS. Reiter [1979] has since improved on this situation by developing a non-monotonic
logic which properly treats justifications as inference rules, and thus avoids the problems with the earlier approach. It
remains to be seen whether the modal approach McDermott and I develop can be reinterpreted or emended to avoid these
confusions as well. McDermott [1980] strengthens the modal logic in an attempt at this. I would be very interested
in a similar extension of the modal logic of provability in Peano arithmetic [Boolos 1979]. I would expect any correct
provability-related logic to be an extension of that logic.

73

DOYLE

as well.7 Other parts of the program wishing to disagree with the conclusion of the argument ex-
amine the argument to find some assumption or argument step they disagree with, and then present
a new argument to defeat the chosen assumption or step. This new argument is constructed like the
original one, so the original procedure or some other part of the program can try to defend the orig-
inal conclusion by in turn defeating some assumption or step of the new argument with yet another
argument. By adopting this representation for reasons uniformly, the program gains the ability to
reflect on its inferences after the fact, and to simply not make the inferences if it decides it shouldn’t
have. If some step leads to paradox, the program need not make it, although the real progress will
be made only if it further inquires into the reasons for its antecedents.

Records of inferences also help with the problem of determining the relevance of one belief
to another. One can divide the problem of relevance into two parts: the more difficult one is the
connection of one belief with another by some possible but yet unknown chain of inferences, the
easier one is the connection of one belief with another by some past and recorded chain of infer-
ences. Here we assume that any connections between beliefs stemming from their intended models
are reflected in inference rules.

In this remainder of this chapter, we will describe the basis of our program organization by
describing RMS, a program for recording reasons and revising beliefs. Further explanation of RMS
can be found in [Doyle 1979]. RMS (Reason Maintenance System) renames and revises the TMS
(Truth Maintenance System) presented in that paper. I changed the name not only because the
program has nothing to do with truth, but also because the program is properly concerned with
reasons for attitudes rather than the attitudes themselves.

In the remainder of this chapter, I describe RMS solely in terms of the attitude belief. In fact,
RMS implements only a logic of belief, and not necessarily logics for any other attitudes. This
results from a hypothesis and methodology I entertain but since have come to suspect, that the
program can and should be designed so that it only uses beliefs, and embodies its intentions, say,
in its beliefs about its intentions. Part of the motivation for this hypothesis comes from viewing
the data-structures of SDL as statements in its meta-language, as mentioned in the previous chapter.
The final chapter discusses possible problems with this approach, and possible solutions. For the
time being, however, we accept this hypothesis and methodology, and pretend that the program
works strictly with beliefs and beliefs about attitudes.

3.2 RMS, the Reason Maintenance System

RMS records and maintains arguments for potential program beliefs, so as to distinguish, at all
times, the current set of program beliefs. It manipulates two data structures:nodes, which represent
beliefs, andjustifications, which represent reasons for beliefs. We write Content(N) to denote the
statement of the potential belief represented by the node N. We say RMS believes in (the potential
belief represented by) a node if it has an argument for the node and believes in the nodes involved in
the argument. This may seem circular, but some nodes will have arguments which involve no other
believed nodes, and so form the base step for the definition.

As its fundamental actions, (1) RMS can create a new node, to which the program attaches
as its content a data-structure representing some belief. As mentioned in the previous chapter, the
program attaches a RMS node to each of the data-structures representing the symbols of a language,

7See Section 3.11 for the details of how this is done.

74

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

the attachments of simulation structures, the facts in theories, etc. RMS performs no manipulation
of the content of nodes. (2) It can add a new justification for a node, to represent a step of an
argument for the belief represented by the node. This argument step represents the application of
some inference rule or procedure. Inference rules and procedures all have RMS nodes and include
these nodes in the justifications they create.8 (3) Finally, RMS can mark a node as acontradiction,
to represent the inconsistency of any set of beliefs which enter into an argument for the node. These
markings will be used by RMS to signal the program whenever the marked node is broughtin.

A new justification for a node may lead RMS to believe in the node. If did not believe in
the node previously, this may in turn allow other nodes to be believed by previously existing but
incomplete arguments. In this case, RMS invokes thereason maintenanceprocedure to make any
necessary revisions in the set of beliefs. RMS revises the current set of beliefs by using the recorded
justifications to compute non-circular arguments for nodes from premises and other special nodes,
as described later. These non-circular arguments distinguish one justification as thewell-founded
supporting justificationof each node representing a current belief. RMS locates the set of nodes to
update by finding those nodes whose well-founded arguments depend on changed nodes.

RMS employsnon-monotonic justifications, which, as explained previously, base an argument
for a node not only on current belief in other nodes, as occurs in deductive inference, but also on
lack of current belief in other nodes. For example, one might justify a nodeN-1 representing a
statement P on the basis of lack of belief in nodeN-2 representing the statement¬P. In this case,
RMS would hold N-1 as a current belief as long asN-2 was not among the current beliefs, and
we would say that it had assumed belief inN-1 . More generally, by anassumptionwe mean any
node whose well-founded support is a non-monotonic justification.

As a small example of the use of RMS, suppose that a hypothetical office scheduling program
considers holding a meeting on Wednesday. To do this, the program assumes that the meeting is
on Wednesday. The inference system of the program includes a rule which draws the conclusion
that due to regular commitments, any meeting on Wednesday must occur at 1:00 P.M. However, the
fragment of the schedule for the week constructed so far has some activity scheduled for that time
already, and so another rule concludes the meeting cannot be on Wednesday. We write these nodes
and rule-constructed justifications as follows:

Node Statement Justification Comment
N-1 DAY(M) = WEDNESDAY (SL () (N-2)) an assumption
N-2 DAY(M) 6= WEDNESDAY no justification yet
N-3 TIME(M) = 13:00 (SL (R-37 N-1) ())

The above notation for the justifications indicates that they belong to the class ofsupport-list(SL)
justifications. Each of these justifications consists of two lists of nodes. A SL-justification is avalid
reason for belief if and only if each of the nodes in the first list is believed and each of the nodes
in the second list is not believed. In the example, if the two justifications listed above are the only
existing justifications, thenN-2 is not a current belief since it has no justifications at all.N-1

8Actually, justifications mention not nodes but rather their contents. We do this so that it is easier to interpret the
justifications when debugging the program, for otherwise one cannot easily read justifications to see what inference rules
are involved, for one gets explanations like N-1 because N-2, N-3, and N-4, rather than B because Modus Ponens, A, and
A→B. RMS always reads through the content data-structures to the RMS node involved via the function RMS-NODE.
To make the exposition less complicated, all of the following is written as though the nodes themselves were mentioned
in the justifications, rather than their contents.

75

DOYLE

is believed since the justification forN-1 specifies that this node depends on the lack of belief
in N-2 . The justification for N-3 shows that N-3 depends on a (presumably believed) node
R-37 . In this case, R-37 represents a rule acting on (the statement represented by)N-1 .

Subsequently another rule (represented by a nodeR-9) acts on beliefs about the day and time
of some other engagement (represented by the nodesN-7 and N-8) to reject the assumption
N-1 .

N-2 DAY(M) 6= WEDNESDAY (SL (R-9 N-7 N-8) ())

To accommodate this new justification, RMS will revise the current set of beliefs so thatN-2 is
believed, and N-1 and N-3 are not believed. It does this by tracing “upwards” from the node
to be changed, N-2 , to see that N-1 and N-3 ultimately depend on N-2 . It then carefully
examines the justifications of each of these nodes to see thatN-2 ’s justification is valid (so that
N-2 is in). From this it follows that N-1 ’s justification is invalid (so N-1 is out), and hence that
N-3 ’s justification is invalid (so N-3 is out).

3.3 RMS Data-structures

To make clear exactly what information is actually stored by RMS, as opposed to the information
it computes on demand, this section presents the RMS data-structures. The following structure
definitions in MIT Lisp Machine Lisp give the slots in the data-structures used to represent nodes
and justifications. We have mentioned some of these already, and will explain many more in the
following. Some, however, are for esoteric purposes not discussed here, but can be found in [Doyle
1979]. The structure presented here are simplified for clarity, as in the actual implementation some
fields are full pointers, some are merely bits, and others are created only on demand.

(DEFSTRUCTURE NODE
CONTENT ;This chapter mentions these slots.
SL-JUSTIFICATIONS
CP-JUSTIFICATIONS
SUPPORTING-JUSTIFICATIONS
SUPPORTING-NODES
CONSEQUENCES
SUPPORT-STATUS
CONTRADICTION-MARK
NODE-MARK ;These slots are not discussed.
TMP-MARK
NOTED-MARK
FIS-MARK
SUBORDINATES-MARK
EXPLAIN-MARK
SUPERIORS-MARK
SIGNAL-RECALLING FUNCTION
SIGNAL-FORGETTING-FUNCTION
CP-CONSEQUENT-LIST)

76

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

(DEFSTRUCTURE SL-JUSTIFICATION
INLIST
OUTLIST)

(DEFSTRUCTURE CP-JUSTIFICATION
CONSEQUENT
INHYPOTHESES
OUTHYPOTHESES)

3.4 States of Belief

A node may have several justifications, each justification representing a different reason for believ-
ing the node. These several justifications comprise the node’sjustification-set. The node is believed
if and only if at least one of its justifications isvalid. We described the conditions for validity of
SL-justifications above, and shortly will introduce and explain the other type of justification used in
RMS. We say that a node which has at least one valid justification isin (the current set of beliefs),
and that a node with no valid justifications isout (of the current set of beliefs). We will alterna-
tively say that each node has asupport-statusof either in or out. The distinction betweenin and
out is not that betweentrueandfalse. The former classification refers to current possession of valid
reasons for belief.True and false, on the other hand, classify statements according to truth value
independent of any reasons for belief.

In RMS, each potential belief to be used as a hypothesis or conclusion of an argument must
be given its own distinct node. When uncertainty about some statement (e.g. P) exists, one must
(eventually) provide nodes for both the statement and its negation. Either of these nodes can have
or lack well-founded arguments, leading to a four-element belief set (similar to the belief set urged
by Belnap [1976]) of neither P nor¬P believed, exactly one believed, or both believed.

3.5 Justifications

Although natural arguments may use a wealth of types of argument steps or justifications, RMS
forces one to fit all these into a common mold. RMS employs only two forms for justifications,
calledsupport-list(SL) andconditional-proof(CP) justifications. These are inspired by the typical
forms of arguments in natural deduction inference systems.9 Natural deduction is a sort of logi-
cal system in which there are no axioms, only inference rules. Proofs in natural deduction involve
recording the steps of the proofs and the dependencies of each of these steps, that is, the set of
hypotheses upon which each step depends. The inference rules then analyze the proof steps and
dependencies to derive theorems which depend on no hypotheses. Two common inference rules are
Modus Ponens and Discharging an Assumption. Modus Ponens is the familiar rule for detaching a
conclusion from an implication and its antecedent. Discharging an Assumption is roughly the de-
duction theorem in action, which concludes an implication from the derivability of some statement
from certain hypotheses, where the statement becomes the consequent of the implication and the
hypotheses become the antecedents of the implication. These two inference rules respectively add
and subtract dependencies from the support of a proof line. A proof in such a system might run as

9See for example Suppes [1957].

77

DOYLE

follows:
Line Statement Justification Dependencies
1. A →B Premise 1
2. B →C Premise 2
3. A Hypothesis 3
4. B MP 1,3 1,3
5. C MP 2,4 1,2,3
6. A →C Discharge 3,5 1,2
7. A →B∧B→C ∧-introduction 1,2
8. (A →B∧B→C)→(A→C) Discharge 7,6 {} A Theorem

Each step of the proof has a line number, a statement, a justification, and a set of line numbers on
which the statement depends. Premises and hypotheses depend on themselves, and other lines de-
pend on the set of premises and hypotheses derived from their justifications. The above proof proves
A→C from the premisesA→B and B→Cby hypothesizing A and concluding Cvia two appli-
cations of Modus Ponens. The proof ofA→Cends by discharging the assumptionA, which frees
the conclusion of dependence on the hypothesis but leaves its dependence on the premises.

This example displays justifications which sum the dependencies of some of the referenced
lines (as in line 4) and subtract the dependencies of some lines from those of other lines (as in
line 6). The two types of justifications used in RMS account for these effects on dependencies. A
support-list justification says that the justified node depends on each node in a set of other nodes,
and in effect sums the dependencies of the referenced nodes. A conditional-proof justification
says that the node it justifies depends on the validity of a certain hypothetical argument. As in the
example above, it subtracts the dependencies of some nodes (the hypotheses of the hypothetical
argument) from the dependencies of others (the conclusion of the hypothetical argument). Thus we
might rewrite the example in terms of RMS justifications as follows (here ignoring the difference
between premises and hypotheses, and ignoring the inference rule MP):
N-1 A→B (SL () ()) Premise
N-2 B→C (SL () ()) Premise
N-3 A (SL () ()) Premise
N-4 B (SL (N-1 N-3) ()) MP
N-5 C (SL (N-2 N-4) ()) MP
N-6 A→C (CP N-5 (N-3) ()) Discharge
N-7 (A →B∧B→C)→(A→C) (CP N-6 (N-1 N-2) ()) Discharge two assumptions

CP-justifications, which will be explained in greater detail below, differ from ordinary hypothetical
arguments in that they use two lists of nodes as hypotheses, theinhypotheses and theouthypotheses.
In the above justification for N-6 , the list of inhypotheses contains justN-3 , and the list of
outhypotheses is empty. This difference results from our use of non-monotonic justifications, in
which arguments for nodes can be based both onin andoutnodes.

3.6 Support-list Justifications

To repeat the definition scattered throughout the previous discussion, the support-list justification
has the form

(SL < in list> < out list>) ,

78

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

and is valid if and only if each node in itsinlist is in, and each node in itsoutlist is out. The SL-
justification form can represent several types of deductions. With emptyinlist and emptyoutlist,
we say the justification forms apremisejustification. A premise justification is always valid, and
so the node it justifies will always bein. SL-justifications with nonemptyinlists and emptyoutlists
represent normal deductive inferences. Each such justification represents a monotonic argument
for the node it justifies from the nodes of itsinlist. We defineassumptionsto be nodes whose
supporting-justification has a nonemptyoutlist. These assumption justifications can be interpreted
by viewing the nodes of theinlist as comprising the reasons for wanting to assume the justified node;
the nodes of theoutlist represent the specific criteria authorizing this assumption. For example,
the reason for wanting to assume “The weather will be nice” might be “Be optimistic about the
weather”; and the assumption might be authorized by having no reason to believe “The weather will
be bad.” We occasionally interpret the nodes of theoutlist as “denials” of the justified node, beliefs
which imply the negation of the belief represented by the justified node.

To make the exposition less jargonistic, we occasionally use the phrases “N-1 is justified (non-
)monotonically in terms of N-2” and “N-1’s justification (non-)monotonically involves N-2” to mean
that N-2 occurs in theinlist (outlist) of N-1’s justification.

3.7 Terminology of Dependency Relationships

I must pause to present some terminology before explaining CP-justifications. The definitions of
dependency relationships introduced in this section are numerous, and the reader should consult
Figures 5, 6, and 7 for examples of the definitions. As mentioned previously, RMS singles out
one justification, called thesupporting-justification, in the justification-set of eachin node to form
part of the non-circular argument for the node. For reasons explained shortly, all nodes have only
SL-justifications as their supporting-justifications, never CP-justifications. The set ofsupporting-
nodesof a node is the set of nodes which RMS used to determine the support-status of the node.
For in nodes, the supporting-nodes are just the nodes listed in theinlist andoutlist of its supporting-
justification, and in this case we also call the supporting-nodes theantecedentsof the node. For the
supporting-nodes ofout nodes, RMS picks one node from each justification in the justification-set.
From SL-justifications, it picks either anoutnode from theinlist or anin node from theoutlist. From
CP-justifications, it picks either anout node from theinhypotheses or consequent or anin from the
outhypotheses. We define the supporting-nodes ofout nodes in this way so that the support-status
of the node in question cannot change without either a change in the support-status of one of the
supporting-nodes, or without the addition of a new valid justification. We say that anout node has
no antecedents. RMS keeps the supporting-nodes of each node as part of the node data-structure,
and computes the antecedents of the node from this list.

The set offoundationsof a node is the transitive closure of the antecedents of the node, that
is, the antecedents of the node, their antecedents, and so on. This set is the set of nodes involved
in the well-founded argument for belief in the node. The set ofancestorsof a node, analogously,
is the transitive closure of the supporting-nodes of the node, that is, the supporting-nodes of the
node, their supporting-nodes, and so on. This set is the set of nodes which might possibly affect the
support-status of the node. The ancestors of a node may include the node itself, for the closure of the
supporting-nodes relation need not be well-founded. RMS computes these dependency relationships
from the supporting-nodes and antecedents of nodes.

79

DOYLE

Node Justification Justification Name
1 (SL (3) ()) J1
2 (SL () (1)) J2
3 (SL (1) ()) J3
4 (SL (2) ()) J4A
4 (SL (3) ()) J4B
5 (SL () ()) J5
6 (SL (3 5) ()) J6

Figure 5: Six Nodes and Seven Justifications

1
(out)

2
(in)

3
(out)

4
(in)

5
(in)

6
(out)

�
�

�
�

�
��

@
@

@
@

@
@I

@
@

@
@

@
@I

�
�

�
�

����
�

�
�

��	

6

6

!!!!!!!!

aaaaaaaa

����
��

J1J2

J3

J4a J4b

J5

J6

Figure 6: A depiction of the previous system of justifications and nodes. All arrows represent
justifications. The uncrossed arrows represent the inlist, and only the crossed line of J2
represents anoutlist. We always visualize support relationships as pointing upwards.

80

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Dependency Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Support-status out in out in in out
Supporting-justification - J2 - J4A J5 -
Supporting-nodes 3 1 1 2 - 3
Antecedents - 1 - 2 - -
Foundations - 1 - 1,2 - -
Ancestors 1,3 1,3 1,3 1,2,3 - 1,3
Consequences 2,3 4 1,4,6 - 6 -
Affected-consequences 2,3 4 1,6 - - -
Believed-consequences2 4 - - - -
Repercussions 1,2,3,4,6 4 1,2,3,4,6 - - -
Believed-repercussions 2,4 4 - - - -

Figure 7: A table of all the dependency relationships implicit in the system of justifications. Dashed
entries are empty. All other entries are lists of nodes in the dependency relationship to
the node at the top of the column.

In the other direction, the set ofconsequencesof a node is the set of all nodes which mention
the node in one of the justifications in their justification-set. Theaffected-consequencesof a node
are just those consequences of the node which contain the node in their set of supporting-nodes.
Thebelieved-consequencesof a node are just thosein consequences of the node which contain the
node in their set of antecedents. RMS keeps the consequences of each node as part of the node
data-structure, and computes the affected- and believed-consequences from the consequences.

The set ofrepercussionsof a node is the transitive closure of the affected-consequences of the
node, that is, the affected-consequences of the node, their affected-consequences, and so on. The
set ofbelieved-repercussionsof a node is the transitive closure of the believed-consequences of the
node, that is, the believed-consequences of the node, their believed-consequences, and so on. RMS
computes all these relationships from the consequences of the node.

In all of the following, I visualize the lines of support for nodes as directed upwards, so that I
look up to see repercussions, and down to see foundations. I say that one node is of lower level than
another if its believed-repercussions include the other node.

3.8 Conditional-proof Justifications

With this terminology, we can now begin to explain conditional-proof justifications. The exact
meaning of these justifications in RMS is complex and difficult to describe, so the reader may find
this section hard going. CP-justifications take the form

(CP <consequent> < in hypotheses> < out hypotheses>) .

A CP-justification is valid if the consequent node isin whenever (a) each node of theinhypotheses
is in and (b) each node of theouthypotheses isout. Except in a few esoteric uses described later,
the set ofouthypotheses is empty, so normally a node justified with a CP-justification represents

81

DOYLE

the implication whose antecedents are theinhypotheses and whose consequent is the consequent of
the CP-justification. Standard conditional-proofs in natural deduction systems typically specify a
single set of hypotheses, which corresponds to theinhypotheses of a CP-justification. In the present
case, the set of hypotheses must be divided into two disjoint subsets, since nodes may be derived
both from some nodes beingin and other nodes beingout. Some deduction systems also employ
multiple-consequent conditional-proofs. We forego these for reasons of implementation efficiency.

RMS handles CP-justifications in special ways. It can easily determine the validity of a CP-
justification only when the justification’s consequent andinhypotheses arein and theouthypotheses
areout, since determining the justification’s validity with other support-statuses for these nodes may
require switching the support-statuses of the hypothesis nodes and their repercussions to set up the
hypothetical situation in which the validity of the conditional-proof can be evaluated. This may
may require reason maintenance processing, which in turn may require validity checking of further
CP-justifications, and so the whole process becomes extremely complex. Instead of attempting such
a detailed analysis (for which I know no algorithms), RMS uses the opportunistic and approximate
strategy of computing SL-justifications currently equivalent to CP-justifications. At the time of their
creation, these new SL-justifications are equivalent to the CP-justifications in terms of the depen-
dencies they specify, and are easily checked for validity. Whenever RMS finds a CP-justification
valid, it computes an equivalent SL-justification by analyzing the well-founded argument for the
consequent node of the CP-justification to find those nodes which are not themselves supported by
any of theinhypotheses orouthypotheses but which directly enter into the argument for the conse-
quent node along with the hypotheses. Precisely, RMS finds all nodes N in the foundations of the
consequent such that N is not one of the hypotheses or one of their repercussions, and N is either
an antecedent of the consequent or an antecedent of some other node in the repercussions of the
hypotheses. Thein nodes in this set form theinlist of the equivalent SL-justification, and theout
nodes of the set form theoutlist of the equivalent SL-justification. RMS attaches the list of SL-
justifications computed in this way to their parent CP-justifications, and always prefers to use these
SL-justifications in its processing. RMS checks the derived SL-justifications first in determining the
support-status of a node, and uses them in explanations. It uses only SL-justifications (derived or
otherwise) as supporting-justifications of nodes. The accuracy and limitations of this approximation
are open problems.

3.9 Circular Arguments

Suppose a program manipulates three nodes as follows:
F (= (+ X Y) 4) omitted but valid
G (= X 1) (SL (J) ())
H (= Y 3) (SL (K) ()).

If J is in andK is out, then RMS will makeF andG in, andH out. If the program then justifiesH
with

(SL (F G) ()) ,

RMS will bring H in. Suppose now that RMS makesJ out andK in, leading toG becomingout
andH remainingin. The program might then justifyG with

(SL (F H) ()) .

82

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

If RMS now takesK out, the original justification supporting belief inH becomes invalid, leading
RMS to reassess the grounds for belief inH. If it makes its decision to believe a node on the basis
of a simple evaluation of each of the justifications of the node, then it will leave bothG andH in,
since the two most recently added justifications form circular arguments forG andH in terms of
each other.

These circular arguments supporting belief in nodes motivate the use of well-founded supporting
justifications, since nodes imprudently believed on tenuous circular bases can lead to ill-considered
actions, wasted data base searches, and illusory inconsistencies which might never have occurred
without the misleading, circularly supported beliefs. In view of this problem, the algorithms of
RMS must ensure that it believes no node for circular reasons.

Purported arguments for nodes can contain essentially three different kinds of circularities, each
of which must be handled in a different way. The first and most common type of circularity involves
only nodes which can be taken to beoutconsistently with their justifications. Such circularities arise
routinely through equivalent or conditionally equivalent beliefs and mutually constraining beliefs.
The above algebra example falls into this class of circularity. In this case, RMS makes all of the
involved nodesout.

The second type of circularity includes at least one node which must bein. Consider, for exam-
ple
F TO-BE (SL () (G))
G ¬TO-BE (SL () (F)).

In the absence of other justifications, these justifications force RMS either to makeF in andG out,
or G in andF out. When RMS meets such a circularity, it must choose some one of these nodes
in. This decision frequently affects the actions of the program drastically, so it must often be made
carefully using the revision techniques outlined below.

In unsatisfiable circularities, the third type, no assignment ofin or out to nodes is consistent
with their justifications. Consider
F ... (SL () (F)).

With no other justifications forF , RMS must makeF in if and only if it makesF out, an impossible
task. Unsatisfiable circularities sometimes indicate real inconsistencies in the beliefs of the program
using the reason maintenance system. If so, RMS must discard one of the justifications involved.10

3.10 The Reason Maintenance Process

The reason maintenance process makes any necessary revisions in the current set of beliefs when
the program adds to the justification-set of a node. We only outline it here. For more detail, see
[Doyle 1979].

The reason maintenance process starts when a new justification is added to a node. Only minor
bookkeeping is required if the new justification is invalid, or if it is valid but the node is already
in. If the justification is valid and the node isout, then the node and its repercussions must be
updated. RMS makes a list containing the node and its repercussions, and marks each of these
nodes to indicate that they have not yet been given well-founded support. RMS then examines the
justifications of these nodes to see if any are valid purely on the basis of unmarked nodes, that is,

10Discarding a justification violates the thesis of rationality proposed earlier. However, as Section 3.11 explains,
the program always employs defeasible justifications, so unsatisfiable circularities never arise. This saves the thesis of
rationality and allows explanations of the revision as well.

83

DOYLE

purely on the basis of nodes which do have well-founded support. If it finds any, these nodes are
broughtin (or out if all their justifications are invalid purely on the basis of well-founded nodes).
Then the marked consequences of the nodes are examined to see if they too can now be given
well-founded support. Sometimes, after all of the marked nodes have been examined in this way,
well-founded support-statuses will have been found for all nodes. Sometimes, however, some nodes
will remain marked due to circularities. If so, RMS constructs a decision intention to decide between
revisions, so that the decision about which belief revision to use may be made carefully if desired.
Otherwise, the default decision is to choose a revision randomly by a constraint-relaxation process
which assigns support-statuses to the remaining nodes. The new intention does not depend on any
prior beliefs, in particular not on the beliefs under revision, so its addition does not invoke another
revision decision.

If the revision decision is made carefully, it involves analyzing the circularity to see what the
alternative revisions are. This analysis can be very involved, and we have not pursued it very exten-
sively. One early version of RMS [Doyle 1976] applied graph-theoretic algorithms to first analyze
the circularity into strongly connected components, and then to sort these components topologi-
cally.11 The minimal (in the sort order) strongly connected components are the obvious candidates
for closer examination, as non-minimal components cannot be decided without first deciding the
minimal components. The early RMS would then pick (randomly) one node from each minimal
component to beout, and determine the statuses of the other nodes in the component from this new
constraint. After all the repercussions of these choices had been accounted for, it would repeat this
process of analysis and choice until the statuses of all beliefs had been settled. This is a very tricky
procedure, for these choices of revision might be wrong, and so lead to apparently unsatisfiable
inconsistencies. To avoid this, it appears that the decision should involve adding a new justification
to the chosen nodes to set their status, rather than just setting it arbitrarily.

While processing the repercussions of a decision, RMS can detect an apparently unsatisfiable
circularity and again invoke a decision intention to either change one of the previous decisions or,
as a last resort, discard one of the justifications involved in the unsatisfiable circularity.

RMS also handles contradictions using this technique. Whenever it brings a nodein that has
been marked as a contradiction, RMS constructs a new intention whose aim is to resolve the incon-
sistency.

Actually, the existing RMS (TMS) has not been altered to provide for careful selection of revi-
sions by intentions, but just makes the revisions randomly. I do not see any overwhelming difficul-
ties in carrying through all these alterations. In any event, even if the current version is used, the net
result will be that the program will be a less efficient than it might otherwise be. These changes can
always be put in later.

3.11 Defeasible Reasons and Dialectical Argumentation

Jeder und jedes muss kritisiert werden, wenn es in der Welt Fortschritte geben soll, und
jeder soll sich das auch gefallen lassen und jedem einraeumen.

11Later versions of RMS abandoned this technique because it was unnecessarily complicated for the small belief
systems being manipulated, and since it involved answering a number of questions which involve considerable study
in the context of large complicated belief systems. It would be nice if someone would take up this problem again and
explore it carefully.

84

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Everything and everyone has to be criticized if there is to be any progress in the world.
Anybody ought to be prepared for that and grant everyone else that right.

H. Enters [1924, p. 100]

We have just described the basics of RMS, but the program uses RMS in a special way. In
the above we described only ways for RMS to update the current set of beliefs by adding new
justifications. We made no provisions for removing justifications, for we wish to make all changes
in beliefs for good reasons. To allow all justifications to be defeasible, we reflect all justifications in
explicit program beliefs about the justifications, and make all these beliefs assumptions.

Suppose the program wants to justify nodeN with the justification(SL I O) . Instead of
doing this directly, it creates a new node,J , representing the statement thatI andO SL-justify N ;
in other words, that belief in each node ofI and lack of belief in each node ofO constitute a reason
for believing inN . The program justifiesN with the justification(SL J + I O) , whereJ + I
represents the listI augmented byJ . RMS will makeN in by reason of this justification only ifJ
is in. The program also creates another new node,¬J , representing the statement thatJ represents
a challenged justification. It then justifiesJ with the justification(SL () (¬J)) . Note that this
justification is not reflected in a corresponding belief, but is a simple justification.12 In this way, the
program makes a new node to represent the justification as an explicit belief, and then assumes that
the justification has not been challenged.

To do this, the program never directly calls the functions RMS-SL-JUSTIFY and RMS-CP-
JUSTIFY which create basic RMS justifications for nodes. Instead, it calls(SL-JUSTIFY
node inlist outlist) and (CP-JUSTIFY node consequent inhypotheses
outhypotheses) . What SL-JUSTIFY does (and CP-JUSTIFY analogously), is to create a new
individual constant in ME of the form J-nnn and then use this as the name of a new fact in ME
whose wff is

SL-JUSTIFICATION(J-nnn, node, J-nnn+inlist, outlist) .

SL-JUSTIFY also creates a new fact in ME called D-nnn, whose wff is

DEFEATED(J-nnn) .

It then creates two basic RMS justifications. As the first, it justifies J-nnn with an emptyinlist and
anoutlist containing just D-nnn. It then justifiesnode with the inlist containing both J-nnn and the
original inlist, and the originaloutlist.

For example, suppose the program wishes to conclude that the value of Y is 1 in a theory T-1 in
which the value of X is 3 and the known that X and Y sum to 4.

IN T-1:
N-1 Individual-constant X; Justifications omitted
N-2 Individual-constant Y;
N-3 Individual-constant 4;
N-4 Function-constant +;
N-5 Attach X 3;

12There is a slight modification of this technique which avoids having these non-reflected justifications. To do this, we
do not create the new nodeJ , but only¬J , and make the actual justification be(SL I O+¬J) . The net effect is the
same.

85

DOYLE

N-6 Attach 4 4;
N-7 Attach + +;
N-8 Axiom X + Y = 4
N-9 Attach Y 1; No justification yet

It would first switch to ME to describe the justification of the new attachment of Y to 1 as describe
above, and then switch back to T-1 to make the actual justification.

IN ME:
N-10 Fact SL-JUSTIFICATION(N-10, N-9, {N-10 N-1 ... N-9}, {});

(SL () (N-11))
N-11 Fact DEFEATED(N-10) No justification yet
IN T-1:
N-9 Attach Y 1; (SL (N-10 N-1 ... N-9) ())

If the program then wished to defeat this justification, it would again go to ME and construct the
following.

IN ME:
N-12 SL-JUSTIFICATION(N-12, N-11, {N-12, ...} {...});

(SL () (N-13))
N-13 DEFEATED(N-12); No justification yet
N-11 DEFEATED(N-10); (SL (N-12 ...) (...))

This organization of the reasoning process into dialectical argumentation has three interesting
aspects. The first is that any belief of the program may be abandoned, since the program only
believes for reason, and all reasons can be reconsidered and rejected after the fact.

Second, RMS no longer has to worry about truly unsatisfiable circularities. Since all assump-
tions are defeated by reasons which are themselves assumptions, what in the direct use of RMS
would be unsatisfiable circularities are in this indirect use just defeasible reasons. Thus RMS never
needs to discard a justification. It only has to defeat the justification with another.

Third, this organization clarifies the meaning of CP-justifications. It shows that CP-justifications
actually compute arguments. Suppose the program draws the conclusion C from A and B via the
justification J. If the program justifies D with(CP C (A B) ()) , it is justifying D on the grounds
that an argument exists for C from A and B, but that argument is just J! This new justification then
is equivalent in this case to(SL (J) ()) . Thus the CP-justification in effect returns an argument
of one belief as the support (as an object) for another belief.

This concludes the discussion of the underlying reasoning framework. We now turn to the means
by which reasoning is controlled and applied in its own service.

86

Chapter 4

DELIBERATE ACTION

De l’audace, et encore de l’audace, et tojours de l’audace!
Georges Jacques Danton

One of the most important things about man is his ability to adapt so as to further his survival.
But to adapt, man changes both his environment and himself, body and mind. To do this, however,
he must be aware of himself and his environment.

But awareness is sometimes difficult to attain. For example, it is usually difficult to fully grasp
the effects of one’s actions. One contracts an outsider to build one’s home only to discover that
the social benefits of communal home-raising have been lost. One builds a dam to assure regular
crops and discovers the destruction of wilderness upstream and wildlife downstream. One paints
one’s nails only to discover them cracking in inconvenient moments. One selects one’s children’s
genes to avoid hemophilia and caries to discover unexpected diabetes. And one finally learns how
to concentrate well on one’s work to succeed, only to appear distant and uncaring to one’s family
and companions. Man may not always have all the information he needs to act successfully, but he
must always be concerned with the direction of change, and to try to control that direction as best
he can.

To control the direction of change, man needs to be conscious of the current state of affairs
and the desired state of affairs, and of the effects of various actions he might take, conscious of his
surroundings, his body, and his mind. AI studies of problem solving have touched on many ways
of problem solving and planning, but typically these are applied not to all objects of change, not to
the program’s own mental state, but only to external objects such as chess games, housebuilding,
or electronic circuits. Psychologists and popular writers have not neglected mental change, as an
enormous self-help literature attests.1 But in spite of this, AI seems to have largely rested content
with attacking the physical, not the mental, problem domains. Because of this, I believe, self-
consciousness, which humans frequently think of as their hallmark and gift over the other animals,
has been viewed as a mystical topic, something for future generations of scientists to conquer.

1For example, see [Russell 1930], [Carnegie 1936, 1944], [Ellis and Harper 1961], or [Johnson 1977]. Johnson’s book
gives an explicit (and to AI folk, familiar) problem solving procedure for changing one’s skills and attitudes towards the
world: reducing problems to subproblems, monitoring their progress, etc., all towards ends like becoming good at carrying
on conversations and learning to tolerate or accept one’s current limitations.

87

DOYLE

As I hope to indicate in this and later chapters, self-consciousness is no mystic apparition, but a
practical device to be readily applied to controlling reasoning. Self-consciousness is easy to achieve,
as long as one is not blinded by an overriding preoccupation with physical affairs.

This chapter lays out the basics of how a program can be conscious of and reflect on its own
plans, intentions, actions, reasons, decisions, and beliefs. The following chapters study decision-
making, modifying beliefs, and modifying skills as deliberate, conscious activities.

To be able to tell what one is doing is crucial for making plans, making decisions, and learning.
One can hardly make plans to achieve one’s desires if one cannot tell what one wants.2 Rational
decisions are sometimes described as those which “fit best” with one’s beliefs, desires, and inten-
tions, so to make rational decisions one needs to take one’s intentions into account. One can hardly
help painting oneself into a corner unless one neglects one’s intention to leave the room after the
job is done. And when learning, one cannot assign credit or blame to one’s beliefs or procedures
unless one can explain what one did and why, that is, one’s actions, intentions, and reasons.3 Thus
for one’s own benefit in planning, in evaluating one’s successes, and in modifying one’s beliefs and
skills, one needs to be able to distinguish which effects of one’s actions are intentional and which
are unintentional, since one can always hope to correct unintentional bad effects.

The basic problems discussed in this chapter are how a program can tell what it is doing and
how it can act on its intentions. The chapter discusses in turn the library of plans, the constituents
of plans, the current state of mind, and the interpreter.

4.1 Plan Generation, Execution, and Interpretation

Traditional approaches to the construction of complex patterns of actions rely on a distinction be-
tween plan generation and execution. In that view, the reasoner takes a problem description and
constructs a sequence of instructions for the action mechanism of a machine. The reasoner con-
structs this sequence of commands so that it believes their execution will solve the problem it ac-
cepted. Once the command sequence has been constructed, it is given to the action mechanism,
which carries out each of the instructions.

We do not adopt this two-stage approach, for it has several drawbacks. One problem is that it
makes error handling largely a matter of foresight. Actions of all kinds are notoriously prone to fail-
ures in unusual circumstances. To make an effective plan that is guaranteed to work is impossible.
There are always circumstances in which a particular plan will fail to realize its intended effect. The
best the plan generator can do is to try to build the sequence of instructions so that it incorporates
conditional steps which handle all of the possible failures that might arise. But this is a poor strat-
egy, both because there are in general a huge number of forseeable difficulties, and because there
are in general always unforeseen but possible difficulties. For similar reasons, the separation of plan
generation and execution makes information gathering steps awkward to plan, for these are steps
which explicitly have many possible (and perhaps unpredictable) outcomes. Thus this separation of
plan generation and execution is untenable. The reasoner must always be ready to replan the nec-

2This is not to say that desires cannot influence one’s behavior unless conscious. Freudian psychoanalysis goes to
great lengths to ferret out unconscious desires. We do not pursue here exactly how such unconscious attitudes might be
realized.

3As mentioned earlier, our use of the term “reason” refers to inference records, not to antecedents. The reader is
cautioned that much of the philosophical literature on action uses yet another meaning for “reason,” namely desires,
motives, or volitions underlying actions.

88

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

essary steps whenever a plan fails. For example, STRIPS [Fikes and Nilsson 1971] would devise a
plan to be executed by PLANEX [Fikes 1972], which would reinvoke STRIPS to replan whenever
actions failed. STRIPS could not produce conditional plans, so this was its only possible recourse.

In our case, there is yet another reason against dividing these processes. When this division
is made, it makes impossible the planning of the reasoning involved in the generation process.
Since we view reasoning as a species of action, we cannot construct a plan without taking actions
themselves requiring planning, and we cannot wait until the plan is constructed before executing it,
for otherwise reasoning actions can never occur.

The most natural strategy, and the one we adopt, is to mix plan generation and execution in a
process better described as self-interpretation. This consists of repeatedly acting on one’s intentions,
many of which involve the formation of intentions for further actions. Thus error handling and
information gathering steps (of which inferential reasoning steps can be viewed as an important
subclass) are handled by forming intentions to carry out the step and then reflecting on the result,
where the reflection involves the same reasoning processes which went into the formation of the
step itself.

The interpretation organization of the reasoner avoids the ill-considered separation of plan gen-
eration and execution, making the normal activity one of reasoning about how to take the next
reasoning steps, which themselves repeat this activity, so that the reasoner is constantly reasoning
about how to reason. The basic steps of the program’s operation are (1) to examine the set of desires
to possibly decide to pursue some of them, that is, to form some new intentions, (2) to examine the
current set of intentions to select one to work on next, (3) to examine the library of procedures to
select some way of carrying out the intention, (4) to carry out the selected intention by executing
the selected procedure if it is a primitive, and by adding it to the current state of mind if it is a plan,
and (5) to repeat these steps.

The next section describes the library of procedures, which contains the primitives and plans for
both external and internal reasoning and other actions.

4.2 Plans and the Library of Procedures

Plans are ways of describing the structure of one’s desires and intentions. Plans, as I use the term,
are complex concepts made up of many other sorts of concepts, including desires, intentions, and
subplans. We will describe these sorts of concepts in more detail below, along with the other sorts
of information that go to make up plans.

Plans play an important role in the operation of the program, and are stored in theprocedure
library (also called theplan library).4 The procedure library lists all procedures of the program as
attachments between the procedure’s name and the procedure itself. It also contains a number of
sorts of statements about the procedures, but we will discuss those later. Thus plans and primitives
contain the “how-to” information of the program. The “know-how” of the program results from
combining plans and primitives with information about their use, such as indexing them by their
important effects.

4Actually, the procedure library is a fiction just like the sets of beliefs, desires, and intentions. Procedures are each
concepts, and thus are a subset of the concepts of the program, but distinguished as procedures by statements about them
in the global theory, eitherPLAN(concept) or PRIMITIVE(concept) .

89

DOYLE

Plans differ greatly in their specificity. The plan library typically will contain very general plans
useful when one has nothing better to try. These general plans include the standard problem solving
techniques, the “weak methods” as Newell terms them [Newell 1969]. But plans can be specific
as well. The typical procedure library also includes plans for specific tasks, such as (depending on
the domains of expertise of the program) how to design Butterworth filters, how to build a three-
bedroom Colonial house in the northeast, how to make airplane reservations, and how to make
cheesecake.

This notion of specificity can be factored into two sorts of specificity. Part of the context of the
plan can be stated in the sort of problem the plan is applicable to, and part of the context can be
stated in restrictions on when the plan is considered defined. In terms that we will explain in more
detail below, this just means that the context of applicability of the plan can be stated in both the
justification of the plan and in the indexing of the plan by its relevant effects. For example, consider
a plan for putting out a grease fire when cooking. This plan has crucial differences from the ordinary
procedure for putting out a fire, namely that one should not use water as a suffocant. The question
of factoring the context of plan specificity can be seen here in the following suggestions. One can
index the plan under the problem of how to put out a fire while cooking with grease, or one can
instead have one’s plan for cooking with grease temporarily define a new plan for putting out fires
and temporarily mask the usual plan for putting out fires with the new one.

This separation of the context of applicability of plans into relevancy and definitional compo-
nents may seem unimportant, but I think it bears a message not to be neglected in the design of the
program. If one only uses relevancy indexing, which is standard in most traditional AI programs,
one is forced to face severe runtime retrieval problems. On the other hand, the combined approach
allows one to do a good bit of work when setting up the problem to be attacked. If the problem
is complex, then there will be many considerations necessary in judging whether a plan is relevant
to a subproblem, and so the retrieval problem will be very great. If one knows beforehand that the
problem is complex, one is willing to spend a good bit of time on preparing for the execution of the
plan. This can be seen in the standard human practices in which people who perform complex tasks
are give training or manuals to read specifying the procedures to use when special circumstance
arise. Someone may have a great talent in looking up what to do in reference sources, but he will
not be employed in many complex tasks on this basis. One can hardly expect a soldier in the field
to continually look up procedures for what to do about his problems.

For these reasons, our plans are not simply composed of a few goals and temporal ordering
relationships between them, as is common in many other AI systems which use the term “plan”.
Our plans contain not only these things, but also beliefs to be held as assumptions while carrying
out the plan, locally defined plans for handling foreseen special cases, and guidelines for making the
decisions expected to be encountered while carrying out the plan. In this way it is more appropriate
to view plans as specifying partial states of mind or sets of attitudes to adopt for the duration of the
execution of the plan.5 In this view, the current state of mind is the sum of a set of realized plans,
so that plans reproduce in the small the structure of the program in the large.

5I believe that there are close connections between this view of plans and Minsky’s K-line theory of memory [Minsky
1979]. For him, K-lines are ways of reactivating partial mental states. These connections are recursively arranged, in that
activation of one K-node typically leads to the activation of several component partial states of mind. While we will use
plans by making separate instantiations of them each time they are used, the analogy with K-lines becomes strong if we
assume that plans are only stored once in memory, and “lit up” whenever they are needed rather than making multiple
instantiations. If this is the case, then the definitional connections between plans and the subplans they define becomes
very similar to that between K-nodes and the sub-nodes they activate.

90

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

We represent plans as theories in SDL, and when instances of plans are added to the current
state of mind, versions of all the terms, attachments, and statements in the theory are added to the
theory representing the current state of mind. Thus, the description of the form of plans is largely a
matter of describing the sorts of things plans can contain.

4.3 The Ambiguous “Goal”

Before proceeding, we first digress to point out a long-standing confusion in artificial intelligence,
and perhaps in psychology and philosophy as well. The term “goal” in common technical usage
seems to have no fixed meaning. It seems instead to be used on different occasions to mean both
“desire” and “intention”. I have searched many places, and no where do I find any discussions
explaining what “goal” is supposed to mean, or how it relates to the less technical notions of desire
and intent. This may seem to be more a problem of my competence in English than one of a
confusion in the field, but I think there is a valuable point to be taken. The problem is that desire
and intention are two different sorts of attitudes, used in different ways, and treatments of reasoning
and problem solving which confuse the two lose much expressive power, power which is required
both in deciding what actions to take next and in revising the program’s mental state when actions
are taken.

Desires and intentions are different in logical form. Desires aim at the satisfaction of some
condition, and will be satisfied no matter how those conditions are brought about. Their content
can be stated roughly as “Condition X obtains.” Intentions, on the other hand, must be satisfied in
a certain characteristic way. Just what is the exact nature of intentions and their characteristic way
of satisfaction has been the subject of much study. Harman [1976] and Searle [1979], for example,
analyze intentions as self-referential attitudes, whose content is roughly “I take some action to attain
condition X by way of carrying out this very intention.” Intentions can be satisfied (at least partially)
by trying, by taking actions on the basis of the intentions, whether or not the attempts succeed in
attaining their aim or not. If the action fails, one forms another intention of the same sort. Attempts,
however, have no bearing on the satisfaction of desires. In this sense it is much more difficult to
tell if a desire has been satisfied than an intention, for the former requires verifying the effects of an
action, where the latter requires only the proper mode of taking the action.

Desires and intentions also differ in other qualities ascribed to them. Different desires may have
different relative strengths, which reflect the order in which, other things being equal, intentions
will be formed to pursue the desires. For intentions, however, it makes no sense to speak of relative
strengths. Once formed, and intention is an intention. There is no magnitude involved. Instead, two
intentions may be related by other intentions about their relative priority of achievement, intentions
to the effect that one intention should be carried out prior to another one. However, both desires and
intentions share (along with beliefs) relative strengths of tenacity with which the program resists
their abandonment. One might have, for example, two desires, the first of which is stronger than the
second, but the second of which is held more strongly than the first. In this case, while the program
considers the second desire less pressing it would rather give up the first desire than the second.
Similar considerations apply to beliefs and intentions.

It is very important to distinguish between intentions and desires. For example, when modifying
its plans, the program must analyze the causes and worth of the effects of the plan in action. An
effect of an action can be either (1) both desired and intended (the normal case), (2) intended but
not desired (action taken by compulsion), (3) desired but unintended (a serendipitous effect), or

91

DOYLE

(4) unintended and undesired (an error or unwanted side-effect). In these four cases we assumed
that undesired implied the opposite desire, but that is not correct, so there is actually a larger, more
refined set of cases. But the important point is that how the program should modify the procedure
depends on what classifications it makes of the procedure’s effects. Serendipity might be used to
construct new procedures specifically for realizing the desired effects, while errors normally call for
patching the procedure to avoid the effects.

Thus the notions of desire and intention capture separate, useful ideas about rational thought
and action, and the following part of this chapter and the next chapter will make that even clearer.
Rather than confuse matters by using the ambiguous term goal, we abandon it for these more useful
notions.

Unfortunately, none of the plans given in this thesis will seem to motivate this distinction terri-
bly much. Most of the plans will be rather deliberate constructions which proceed step by step by
means of intentions. One example of a plan employing desires is a problem-solving plan similar
to problem-reduction problem solving. Given an intention to solve some problem, this plan would
look for beliefs which say something about the problem statement, for example, A∧B→PS. The
plan would then add desires for A and B, so that there would be lots of desires around for possible
partial solutions. This would place the burden of controlling this solution effort in deciding which
desire to pursue. Alternatively, desires might have been avoided by shifting the burden to a deci-
sion of which implication to use in the problem reduction, and then creating intentions rather than
desires. The former method might be preferable if the problem is so difficult that the program must
use information discovered in pursuing one desire in satisfying desires stemming from different re-
ductions. The intention-based strategy does not make this opportunistic behavior as easy, since the
several alternative solution paths are not being kept in mind simultaneously. Keeping all potential
solutions in mind corresponds to using desires, while using intentions in this case corresponds to
single-path explorations.

4.4 Desires and Intentions

The representations of desires and intentions consist primarily of three sorts of information: anaim,
which is the condition to be achieved,variable-mappings, which identify in keyword fashion plan
variables with variables and terms used in defining the aim, andstatusinformation. Desires and in-
tentions are represented as theories. Each has as typed parts a set of input variables, a set of output
variables, and an aim.6 In addition, each also contains a statement of the formDESIRE(theory)
andINTENTION(theory) about whether it represents a desire or an intention, redundantly re-
peating a similar statement in the global theory.

The aim is a theory describing the state of affairs desired or intended to be attained. We mean
this to be a quite general notion, including, for example, descriptions of the program’s own mental
or physical state, and descriptions of changes in the world, that is, actions. Informally stated aims
might be (A) that the program believes the Banach-Tarski theorem, (B) that the program has a proof
of the Banach-Tarski theorem in ZFC, (C) that the program rest its “arms” after moving the block
halfway across the table, (D) that the program buys some electronic parts, (E) that the program finds
out some information from someone, (F) that the program is skilled at playing bridge, (G) that the

6Variables are used for communicating information between activities. There may be better ways of doing this, but
that is a subject for future study.

92

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

program leases a new tape drive from someone, (H) that the program earns enough money writing
novels to pay for its lease and to keep its programmer happy.

This research has not pursued the crucial problem of finding a language and vocabulary adequate
for encoding all known information about the world, nor the encoding itself. We instead rely on
work of others to build stores of information about the world and changes in it for use in aims of
desires and intentions.

For example, suppose we have an intention to find the difference between two numbers X and
Y.

IN T-1: (the intention)
Axiom: INTENTION(T-1);
Typed-part INPUTS SET;
Typed-part OUTPUTS SET;
Typed-part AIM ADDER;

IN T-2: (INPUTS of T-1)
Typed-part X VARIABLE; (T-5)
Typed-part Y VARIABLE; (T-6)

IN T-3: (OUTPUTS of T-1)
Typed-part Z VARIABLE; (T-7)

IN T-4: (AIM of T-1) (from ADDER)
Individual-constant A1;
Individual-constant A2;
Individual-constant SUM;
Axiom: A1 + A2 = SUM;

IN T-5: (from VARIABLE)
Individual-constant VALUE;

IN T-6: (from VARIABLE)
Individual-constant VALUE;

IN T-7: (from VARIABLE)
Individual-constant VALUE;

IN T-1: (again)
[VALUE X INPUTS] = [SUM AIM];
[VALUE Y INPUTS] = [A1 AIM];
[VALUE Z OUTPUTS] = [A2 AIM];

Here sets are represented as theories where the elements are used as names of constants. This allows
the same name to be used both for an input and an output variable, as it can be distinguished by the
set it is in. Variables are also represented as theories, in which values are represented as attachments
to the symbolVALUE. Theories representing variables will be used to note other information as
well, such as whether there is a value or not, hence this complicated representation. The reason for
using an explicit keyword mapping system in which equality axioms are used to identify intention
variables with aim variables is so that the same aim may be used in several sorts of intentions,
according to different input-output specifications of variables. For example, the ADDER aim used
above can be used to specify several sorts of intentions including subtractions (X-Y=Z; X=SUM,
Y=A1, Z=A2), addition (X+Y=Z; X=A1, Y=A2, Z=SUM), and doubling (X+X=Y; X=A1, X=A2,
Y=SUM).

93

DOYLE

In addition to the flexibility of aim use allowed by the keyword variable mappings, desires and
intentions can also include local modifications to their aims. Since their aims are just theories,
axioms can be added to the aim theory. For example, a doubling intention might be specified either
as

IN T-1:
Axiom: INTENTION(T-1);
Typed-part ADDER ADDER;
X = [A1 ADDER];
X = [A2 ADDER];
Y = [SUM ADDER];

or as

IN T-1:
Axiom: INTENTION(T-1);
Typed-part ADDER ADDER; (T-2)
X = [A1 ADDER];
Y = [SUM ADDER];

In T-2: (ADDER)
Axiom TIED: A1 = A2;

In the first case, the value to be doubled is given to the adder twice. In the second case, it is
transferred only once, but the copy of the adder theory is modified to be a doubler.

Desires and intentions also contain information about the state of the process of their execution,
for example, whether the desire or intention is being worked on, is yet to be worked on, or has
been finished with. Here we distinguish between desire and intention in interpreting just what these
status indicators mean. “Being worked on” means roughly “is being pursued with an intention”
for desires, and “is being carried out by a primitive or a plan” for intentions. Since intentions are
carried out by complex sequences of program operations, the most precise description of the state
of the executing program is just the current step and environment of the code of the interpreter or
whatever program is carrying out the intention. However, such a description is hopelessly detailed
for normal use. In fact, the program employs several sorts of interpreter, and each of them would
give a different report of the state of the execution process. Rather than use such an overly detailed
indicator, eight major classifications of desires and intentions are used which summarize some of
the most important aspects of their execution. Better classifications undoubtedly await discovery,
but this initial list will suffice in this thesis. The classifications are as follows. (Figure 8 summarizes
the transitions each intention goes through.)

1. Progress status:Initially, desires and intentions arepending. When the interpreter is working
on one, it isactive. When the interpreter is done with it, it isfinished. The program is working on
an intention if it is executing some primitive to carry out the intention, or has added a plan to the
current state of mind to carry out the intention. The program is working on a desire if it has formed
an intention to realize the aim of the desire. Desires are finished when their aim has been achieved,
and intentions when some plan or primitive is completely executed to carry out the intention.

2. Missing input values status:A desire or intention either has values known for all of its input
variables, or it is missing some input variables values. The interpreter will not begin work on ones
missing some of their input values.

94

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Pending
Blocked
Unrealized

Pending
Enabled
Unrealized

Active
Enabled
Unrealized

Active
Enabled
Realized

Active
Enabled
Realized

Active
Enabled
Realized

?

?

?

?

?

Input variable values
Predecessor completions
Superior completions

Activation

Realization

Subordinates enabled

Successors enabled

�

�

�

�

�

Figure 8: Progress Status Transitions

95

DOYLE

3. Uncompleted predecessors status:Desires and intentions are related in two partial orderings,
desire strengths and intention priorities. Work on one cannot begin until all of its predecessors have
been completed (specifically, are in the enabling-successors status described below).

4. Uncompleted superiors status:Desires and intentions are related in teleological relationships
in which subordinate desires and intentions are used to carry out superior intentions. Work cannot
begin on the subordinates until all superiors of the subordinates have been completed (specifically,
are in the enabling-subordinates status described below).

5. Enablement status:Desires and intentions areblockedif they have missing input values,
uncompleted predecessors, or uncompleted superiors. Otherwise they areenabled. The program
will not begin work on blocked desires or intentions.

6. Realization status:An intention is said to berealizedif it has been carried out by executing
a primitive program or by reducing it to a plan. A desire is realized if an intention to pursue its aim
has been formed. They areunrealizedotherwise.

7. Enabling subordinates status:Once an intention is active, normally after it has been realized
by reduction to a plan, the interpreter will enable its subordinates if possible. This status indicates
whether the intention should still block its subordinates or not.

8. Enabling-successors status:After a desire or intention has been realized, the interpreter may
try to enable its successors if possible. This status indicates whether it should block its successors
or not. The interpreter will declare an intention to be enabling-successors either if it was carried out
by executing a primitive, or if itsmainsubordinate (see below) has finished.

We represent all these sorts of status information in the desire or intention theory itself.7 Each
status name is a symbol in the language, and the possible conditions of the status are represented as
possible attachments. Relationships between the possible attachments are represented as justifica-
tions.

In detail, each theory contains individual constants as in the following example intention.

IN T-1:
Axiom: INTENTION(T-1);
Individual-constant MISSING-INPUT-VALUES-STATUS;
Individual-constant UNCOMPLETED-PREDECESSORS-STATUS;
Individual-constant UNCOMPLETED-SUPERIORS-STATUS;
Individual-constant ENABLEMENT-STATUS;
Individual-constant PROGRESS-STATUS;
Individual-constant REALIZATION-STATUS;
Individual-constant ENABLING-SUBORDINATES-STATUS;
Individual-constant ENABLING-SUCCESSORS-STATUS;

The possible attachments and their standard justifications are as follows. (They are simplified some-
what for clarity.) The standard justifications are arranged so as to default the attachments to the
appropriate values in the correct temporal sequence.

N-1 Attach MISSING-INPUT-VALUES-STATUS SOME (justified as specified below)
N-2 Attach MISSING-INPUT-VALUES-STATUS NONE (SL () (N-1))

7Properly, perhaps, this information should be viewed as annotation on the theory in some more general theory (such
as the plan containing the theory, or the global theory), but for simplicity of the representation we include it in the desire
or intention theory itself.

96

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

N-3 Attach UNCOMPLETED-PREDECESSORS-STATUS SOME
(justified as specified below)

N-4 Attach UNCOMPLETED-PREDECESSORS-STATUS NONE (SL () (N-3))

N-5 Attach UNCOMPLETED-SUPERIORS-STATUS SOME (justified as specified below)
N-6 Attach UNCOMPLETED-SUPERIORS-STATUS NONE (SL () (N-5))

N-7 Attach ENABLEMENT-STATUS BLOCKED (SL (N-1) ()),
(SL (N-3) ()), (SL (N-5) ())

N-8 Attach ENABLEMENT-STATUS ENABLED (SL () (N-8))

N-9 Attach PROGRESS-STATUS PENDING (SL () (N-10 N-11))
N-10 Attach PROGRESS-STATUS ACTIVE when activated: (SL (proc) (N-11))
N-11 Attach PROGRESS-STATUS FINISHED when finished: (SL (proc) ())

N-12 Attach REALIZATION-STATUS REALIZED when realized:
(SL (proc realization) ())

N-13 Attach REALIZATION-STATUS UNREALIZED (SL () (N-12))

N-14 Attach ENABLING-SUBORDINATES-STATUS YES when so: (SL (proc) ())
N-15 Attach ENABLING-SUBORDINATES-STATUS NO (SL () (N-14))

N-16 Attach ENABLING-SUCCESSORS-STATUS YES when so: (SL (proc) ())
N-17 Attach ENABLING-SUCCESSORS STATUS NO (SL () (N-17))

In the above justifications,proc stands for the procedure adding the justification.Realization
stands for the record of the realization of the desire or intention, that is, either the plan or action
record that the interpreter constructs (as explained in Section 4.10) for intentions, or the intention
constructs from a desire.

Justifications for N-1, N-3, and N-5 above involve statements in other theories. Recall that
each variable is represented as a theory and the value as an attachment in that theory to the symbol
VALUE. In addition, we have each variable theory contain a constantVARIABLE-HAS-VALUE.
Whenever an attachment is made toVALUE, thus specifying a value, we by convention also use
that attachment to justify an attachment ofYES to VARIABLE-HAS-VALUE. Symbolically, we
typically have justifications as follows.

N-18 Attach VALUE xxx (some justification)
N-19 Attach VARIABLE-HAS-VALUE NO (SL () (N-20))
N-20 Attach VARIABLE-HAS-VALUE YES (SL (N-18) ())
N-1 Attach MISSING-INPUT-VALUES SOME (SL (N-19) ())

This last justification, when made for each input variable, ensures that theMISSING-INPUT-
VALUES-STATUSwill be properly maintained. Similarly, N-3 and N-5 above will have justifica-
tions involving other desires and intentions. N-3 will be justified in terms of an ordering relationship
and the enabling-successors-status attachments of the predecessor. N-5 will be justified in terms of
a subordinate relationship and the enabling-subordinates-status attachments of the superior.

97

DOYLE

Finally, desires and intentions containscopeinformation about the context of their definition.
The parent theory of each is either the plan it is defined in or the current state of mind. The desire
or intention theory, in addition, is justified in terms of the parent and the procedures adding it to the
current state of mind.

4.5 Policies

The intentions presented in the previous section all had aims describing some action that the program
could decide to carry out. However, not all intentions can be expressed in that form. Instead, there
are intentions with conditional or hypothetical statements as their aims. For example, the program
can decide to carry out “I intend to visit George,” but not “I intend to visit George whenever I am in
New York.” This latter intention we term apolicy.8 In the following, all policies will be intentions.
There may be desires with hypothetical statements as their aims, but I have not yet worked out how
they might be used, and so leave them an open problem.

Policies are represented as theories similar to other intentions. Policies have sets of input and
output variables, an aim, status information, and a scope or context of definition just like other in-
tentions. In addition, policies are distinguished by the program from other intentions by a statement
POLICY(policy) in them, wherepolicy is a symbol referring to the policy theory itself.

The aims of policies are instances of a “conditional” theory, the prototype of which is

IN CONDITIONAL:
Individual-constant CONDITION;
Individual-constant ACTION;

The aim of a policy is a copy of this theory in whichCONDITIONis attached to a sentence wff and
ACTION is attached to the theory describing the action as in the aims of ordinary theories.9

Where ordinary intentions usually are only active for some limited duration, and then are carried
out, policies need not be so limited. Some policies will be of limited scope, for example, while the
plan they are part of is being executed, or while some intention is active. But other policies may
have unlimited scope, that is, some might be constantly in effect until a decision is made to abandon
them.

As we will interpret them, policies embody intentions to make decisions in certain ways. Where
intentions ordinarily are intentions toact in certain ways, policies embody intentions toreasonin
certain ways. Instead of leading to actions, policies lead to reasons for possible actions in decision-
making. Thus we would translate the informal intention “I intend to visit George whenever I am in
New York” as the intention to reason that I ought to visit George if I am in New York deciding what
to do, that is, the intention to construct the option of visiting George and a reason for taking that
option as the outcome of the decision.

This interpretation of policies has two major consequences. The first consequence is that it
allows some flexibility in carrying out intentions. If I have intentions to visit George and to buy
books whenever I am in New York, I do not feel compelled to do either the minute I arrive there.
Instead, these intentions merely suggest the possibilities of visiting George and of buying books,
and construct reasons for taking those actions. But since these are just reasons for action rather

8[McDermott 1978] introduced this technical meaning of policy as an intention with a hypothetical aim.
9I find this representation for policy aims unsatisfactory, but have not yet found how to improve it.

98

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

than absolute requirements, I can defeat these reasons in this decision and do something else, and
reconsider the possibilities the next time I think of what to do. Since specific cases of their actions
can be defeated in this way, policies seem similar to what have been termedprima facieobligations
in the literature.10

Second, this interpretation of policies means that they embody some of the values of the pro-
gram. That is, we would translate a preference of one possible action over another in some cir-
cumstances as the intention to reason for the first and against the second in such circumstances,
specifically, to defeat reasons for the second possibility with reasons for the preferred possibility.

What are policies for? In the following we will use them in many ways. Policies will express
temporal ordering relationships between intentions, as in the intention to carry out one intention be-
fore another, which we can interpret as the intention to choose the prior intention over its successor
when deciding what to do if the prior intention is yet unrealized. Policies will embody the strengths
of desires, where we interpret one desire as stronger than another when the option of working on
or satisfying the first is preferred over working on or satisfying the second in decisions of what to
do next. Policies will embody many of the preferences of the program, such as those used in belief
revision to choose one possible revision over another. There policies amount to statements of the
strength or commitment to beliefs.

With this interpretation of policies, we see the special importance of the scopes of policies.
Policies of temporary duration amount to temporarily adopted values. Policies of unlimited duration
amount to permanent values. In this way, RMS serves the function of maintaining the current set of
values as well as the current sets of other attitudes. And, as Chapter 6 discusses, permanent values
can be adopted or abandoned through decisions to create or defeat policies of unlimited scope.

Policies, like other intentions, are carried out either by executing primitive programs or by
reducing them to plans. The next chapter discusses something of how and when policies are carried
out during deliberations, but the details of this, and the details of how the progress statuses of
policies are manipulated, are yet to be worked out.

4.6 Relationships Between Desires and Intentions

In addition to the plan steps embodied in ordinary desires and intentions, plans also contain policies
which restrict how the steps are to be carried out. For example, the program might have not only
the intention (1) to place block A on top of block B, and the intention (2) to place block B on top
of block C, but also the intention (3) to carry out the previous intentions in the order (2 then 1).
Another example would be the intention (4) to build a tower of blocks, and the intention (5) to
use intentions (1,2,3) as a way of carrying out (4). As these examples suggest, the two main sorts
of inter-step relationships are ones which impose (relative strength or temporal) orderings on the
realization of desires and intentions, and ones which describe teleological relationships between
desires and intentions.

Actually, relationships between intentions are always teleological. Teleological relationships,
preeminently those of one intention being a prerequisite of another or of one intention being a way
of carrying out another, figure crucially in all other relationships. For example, two intentions might
be executable in either order. If one order is more efficient than another, then that is a reason making
for a temporal ordering on them, but the underlying explanation remains the teleological one of the

10The term is due to Ross [1930]. See also [Harman 1977] and [Searle 1978].

99

DOYLE

efficiency of the computation. Similarly, if the second intention depends on some precondition
being achieved by the first intention, then one would again have a temporal ordering policy, with
the underlying reason being the teleological relationship of prerequisite.

In spite of the fundamentally teleological nature of rational intention relationships, we sepa-
rate out the ordering relationship so that they may be specified even when (as is usual in informal
program efficiency arguments) the reasons behind the relationship still have not been completely
formulated. In addition, this separation permits us to use uniformly an ordering relationship on both
desires and intentions. For intentions the order is temporal order, and for desires the order is relative
strength. Ordering policies never connect both desires and intentions, as these are different sorts of
entities, between which an order makes no sense.

All policies of these sorts are defined as copies of one of the standard policy types with the
desires or intentions involved added into the theory as attachments. For example, one of the main
temporal ordering policy types is that of one intention anteceding another. This is defined by the
following theory.

IN ANTECEDENCE-POLICY-THEORY:
Axiom: POLICY(ANTECEDENCE-POLICY-THEORY);
Typed-part INPUTS SET;
Typed-part OUTPUTS SET;
Typed-part AIM CONDITION-THEORY;
Individual-constant ANTECEDENT;
Individual-constant SUCCESSOR;
Axiom: ANTECEDES(ANTECEDENT, SUCCESSOR);

IN T-1: (Aim of ANTECEDENCE-POLICY-THEORY)
Attach CONDITION ¬SUCCESSORS-ENABLED(ANTECEDENT);
Attach ACTION (CON (OPTION SUCCESSOR)

(SL (ANTECEDENCE-POLICY-THEORY) ()));

A policy of this sort could then be created relating Intention-1 and Intention-2 by making a
copy of ANTECEDENCE-POLICY-THEORY and adding two attachments in its aim, that of AN-
TECEDENT to Intention-1, and SUCCESSOR to Intention-2.

To make the interpreter more efficient, we also include in the desire or intention theory lists of
all ordering policies mentioning it. For example, each has the individual constants ANTECEDENT-
POLICIES and SUCCESSOR-POLICIES, to which are attached lists of all antecedence policies
mentioning the desire or intention as the successor or antecedent, respectively. The policies them-
selves are kept in these lists rather than just the antecedents or successors so that the policies may be
used in justifications. Also, whenever new ordering policies are added, corresponding justifications
for the status attachment of the desires or intentions are added, to facilitate reasoning about which
successors are blocked by the order relationship. This duplicates some of the reasoning that would
normally occur in deliberations in a convenient and efficient, but still defeasible, fashion.

The major types of policies relating desires and intentions are order, dataflow, prerequisite, and
subordinate policies.

1. Ordering policies: As mentioned above, ordering policies represent intentions to realize
desires or intentions in certain ways, to relate the steps of processing each of those desires or inten-
tions. Of course, the descriptions of the steps of carrying out an intention might be very detailed,
so these policies might specify very complex relationships. For example, specifying the temporal

100

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

interleaving of coroutines, or tasks like laying and finishing a concrete driveway, can be very com-
plicated, because one does a little of one, a little of the other, more of the first, and so on until they
are finished. We avoid such complexity in this thesis, and leave the problem of developing a more
complete vocabulary for execution relationships for future research. Instead, we present merely a
small set of concepts for relating two desires or intentions.11

If I1 and I2 are two intentions, we denote the times at which the processes carrying out these
intentions begin and end, abbreviated B1, E1, B2, and E2. We can identify the beginning of a
intention as the time of transition of its progress status from pending to active, and the ending of a
intention as the time of the following transition from active to finished. With these terms, we define
the temporal ordering policy types as follows.

I1 precedes I2 Directly I1 finishes, I2 begins B1<E1=B2<E2
I1 antecedes I2 I1 finishes before I2 begins B1<E1<B2<E2
I1 leads I2 I1 begins before I2 begins B1<B2
I1 overlaps I2 I2 begins during I1 B1<B2<E1
I1 covers I2 I2 occurs during I1 B1<B2<E2<E1
I1 beats I2 I1 finishes during I2 B2<E1<E2

If D1 and D2 are desires, we say that D1 antecedes D2 to mean that D1 is a stronger desire than D2
in the partial strength order.

If circularities are present in the ordering policies, so that an inconsistent set of orders exist,
then some desires or intentions will all be blocked in a deadlock. To avoid this, when the program
reflects on its current plans to decide what to do next, it also checks to see if such a deadlock exists.
(Actually, whenever an ordering policy becomes one of the current policies, the program checks to
see if it is consistent with the previous ordering.) If an inconsistent ordering is detected, the program
sets itself the intention of breaking the deadlock by abandoning one or more policies. It makes the
decision of which policies to abandon by using the deliberation techniques described in the next
chapter and the guidelines described in Chapter 6.

2. Dataflow policiesrepresent intentions to use the outputs of one desire or intention as the
inputs to another, that is, the intentions to infer values for some variables upon getting values for
other variables. In their representation as theories, these policies mention not only the desire or
intentions being connected, but also the input and output variables of each of each that are to be
identified. Dataflow policies are respected by the interpreter by waiting until a value is computed for
each input variable mentioned in a dataflow policy. Dataflow policies thus ensure that the producer
leads the consumer by enough time to compute the required value. Dataflow policies are actually
always carried out by a built-in primitive which propagates these values when necessary. To make
this easier, each variable theory contains a symbolEQ-POLICIES which is attached to all dataflow
policies mentioning the variable.

It might be useful to have other classes of dataflow policies, such as an analogue of “precedes”
above, wherein one intention would begin immediately upon the availability of some variable value.

11Many people have studied and are studying this question of vocabularies for execution relationships. See the litera-
tures on parallel programming languages [Hewitt 1977], petri nets, and PERT extensions [Wiest and Levy 1977]. Smith
and Davis [1978] and Kornfeld [1979] study such vocabularies in terms of parallel problem-solving systems.

One significant extension to our vocabulary might involve the introduction of a clock or time-system for referring to
future events not related to specific actions. This sort of extension would be necessary for stating intentions like “I intend
to finish this thesis by May 12, 1980.”

101

DOYLE

This might be the case with removal of intermediate stage waste in a complex chemical process.
However, it would seem difficult to implement this sort of policy without some form of actual
parallelism in one’s machine, since the producing intention may produce the value while in an
uninterruptible stage of its process.

3. Prerequisite policiesmake explicit the rationale of temporal orderings. Prerequisite policies
mention at least two intentions, rather than only two. They are interpreted as the intention to use
the several effects of one set of intentions I1, . . . , Ik as the means of achieving a combined state of
affairs prior to another intention I. Along with each of the intentions the prerequisite policy mentions
a logical formula expressing the corresponding state of affairs. According to the interpretation, if
we write the formula corresponding to an intention I as F(I), the meaning of the policy is that

F(I1) ∧ . . .∧ F(Ik) → F(I),

or perhaps

<I1>F(I1) ∧ . . .∧ <Ik>F(Ik) ∧ (F(I1) ∧ . . .∧ F(Ik) → F(I)) ∧
(¬F(I) →[I]false).

Here we have written a formula in dynamic logic [Harel 1979], in which<action>P means that
action can achieve a state in which P holds, and[action]false means thataction cannot
terminate in the current state.12

4. Subordinate and reduction policiesmake explicit intentions to use one set of desires and
intentions as a means of carrying out another. Whenever the interpreter reduces an intention to
a plan, it adds an instance of the plan to the current state of mind and adds a reduction policy
intention the intention and the plan. It also adds subordinate policies relating the reduced intention
and each of these new desires and intentions. In contrast to prerequisite policies, which state that the
preconditionsof an intention are attained jointly by its predecessors, the reduction and subordinate
policies state that theeffectof the reduced intention is attained jointly by its subordinates.

5. Main subordinates:A subordinate intention of an intention may be annotated as the main
subordinate of the intention. This policy represents the intention to complete the main subordinate
before beginning work on the intention’s successors. For example, if the plan for serving dinner
has two steps, to prepare the food and then to serve it, the preparation step involves the substeps
of cooking the food and then washing the pots and pans. But the food may be served just after
cooking the food, and the washing up can be postponed until after serving. (See Figure 9.) Main
subordinate policies thus serve a function analogous to that of dataflow policies, but concerned with
action effects rather than variable values.

Main subordinate policies are specified by method statements, as described later. They mean
that all of the intentions in the plan must be carried out, but the superior itself will be carried out
once the main subordinate has finished, that is, from the point of view of the superior, all remaining
subordinates are merely cleanup steps unrelated to the purpose of the plan.

12It probably is simply wishful thinking to apply a language as precise and as inexpressive as dynamic logic to dis-
cussing actions as general and as vaguely specified as plans, but some language is needed for this purpose. Dynamic
logic is much too limited except as a basis, for we need to be able to discuss in the language itself algorithmic complexity,
intermediate states, relations between actions, etc., none of which are fully within dynamic logic’s realm. Moore [1979]
explores a logic of action with the power to treat actions as objects, but he makes no use of that power, and restricts his
study to actions as in dynamic logic. Hayes [1971] explores a logic of actions which attempts to capture statements about
the causal relations between objects affected by actions.

102

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Cook Food Wash Pots and Pans

Prepare Food Serve Food

Serve Dinner

-

-

�
�

�
�

�
�

�
�
�

@
@

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�
�

@
@

@
@

@
@

@
@

@

�
���

���
���

���
���

���
����

Subordinate Subordinate

Subordinate Subordinate

Then

Then

Then (Main Subordinate)

Figure 9: Plan for Serving Dinner

103

DOYLE

One extension of this idea would be to have multiple main steps of plans, each of which allows
a different set of successors of the superior to proceed. However, this would require taking into
account considerable information about the context of the superior. For simplicity, we restrict the
program to single main subordinates, and leave the generalization for future studies.

4.7 The Hierarchical Structure of Plans

The preceding pages have explained two major classes of constituents of plans, namely desires and
intentions. Some of these specify the steps of actions, and others restrict how the former are to be
realized. But plans contain many other sorts of information whose purpose is to fill out, refine, and
make coherent the behavior sketched out by the desires and intentions. In addition, the plan itself is
an object in a library of plans, and plans contain information aiding in their indexing in this library.
Plans are represented as theories with a number of standard parts. Plans have a set of input variables,
a set of output variables, a set of desires, a set of intentions, a set of subplans, a set of assumptions,
and a set of plan definitions to be held during the tenure of the plan. Concretely, a plan theory will
have the following parts as well as further restricting axioms.

Typed-part INPUTS SET
Typed-part OUTPUTS SET
Typed-part DESIRES SET
Typed-part INTENTIONS SET
Typed-part SUBPLANS SET
Typed-part ASSUMPTIONS SET
Typed-part PLAN-DEFINITIONS SET

All of the subparts of a plan have names. The set of desires of a plan has names for each of the
desires, with the desire theories attached to these names. Similarly, each subplan in the set of
subplans, each assumption in the set of assumptions, each intention in the set of intentions, and
each plan definition in the set of plan definitions may have names. The input and output variables
have names of course, and the program generates names for any assumptions, policies, and plan
definitions entered anonymously by the syntactic macros described in Section 4.12. The naming
of these parts allows, for example the combination of copies of two plans from the plan library for
incorporation into the current plan, or the defeat of a local assumption specifically by a local policy.

As in desires and intentions, the variables of a plan are theories, with the same conventions.
Since the plan is used as a unit of behavior by the interpreter and by other plans, it is crucial that
the details of the plan’s construction normally be hidden. This is the function of the plan variables.
The plan’s input and output variables will be the only parts of the plan normally referred to by other
plans. These variables will be connected to the variables of the desires and intentions by dataflow
policies. For example, whenever a plan is built from a subplan, it is necessary to provide variable
mapping information in dataflow policies to connect the relevant plan variables with the relevant
subplan variables.

Plans often contain restricting axioms which modify the subplans used in constructing a plan.
For example, one frequent modification is attaching constant values to variables of subplans.

Plan theories may contain a number of assumptions. These are beliefs to be held during the
execution of the plan to be retracted if contradictions are encountered. For example, when negoti-
ating to buy a house, one typically assumes that the seller will sell the house once agreeable terms

104

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

are reached. Another sort of example is the specification of default values for local variables or
other variables, an instance being a plan to clear the top of a block which assumes that the table is
always a good default target location for any blocks to be moved. A final sort of assumption is that
of assumed method relationships between procedures and aims (as explained below), in which it is
assumed that some procedure is relevant to achieving some aim during the plan’s execution.

Plan theories may contain a number of policies to be in force during the plan’s execution to
influence the expected sorts of decisions. These are typically concerned with decisions about the
order in which the plan’s desires and intentions should be carried out, the methods by which they
should be carried out, and the ways that the plan’s assumptions should be revised in case of difficul-
ties. For example, one’s plan for giving a talk may include the policy to prefer to answer questions
with “I don’t know” rather than trying to think on one’s feet. Similarly, the cooking with grease
plan mentioned earlier might employ a policy to change the default plan for extinguishing fires to
one involving a fire extinguisher.

Finally, plan theories may contain a number of plan definitions to be held during the plan’s
execution.13 An example is the plan for cooking with grease mentioned earlier, which contains a
local plan definition for how to put out fires, along with a policy preferring the local plan to the
standard plan. Locally defined plans and policies are how one might write plans with conditional
steps. Each of the cases is encoded as a policy which adds the appropriate intention or plan to the
network depending on what conditions hold.

Temporary assumptions of beliefs, policies, and plan definitions are actually shorthand for the
intentions to adopt them temporarily. As intentions, they can be related by temporal ordering poli-
cies. For example, in Section 4.12, we present a plan which midway through its execution makes
an assumption to endure only while carrying out the next intention. We separate out explicit sets
of these assumptions as abbreviations both for the intention declarations and for the ordering poli-
cies necessary to make all the plan-extant assumptions precede all the “real” intentions. Temporary
assumptions are made to have scopes limited to the duration of the plan by making the assumed
attitude depend on the statement that the scope intention is not finished. That is, the assumptions
depend monotonically on the statement that the superior intention has become active, and non-
monotonically on the statement that the superior has finished.

4.8 Plan Specifications

Plans are involved in at least three hierarchical organizations. The first of these is the hierarchy
of construction, in which existing plans can be combined to construct a new plan. Second is the
hierarchy of definition, in which plans can contain local definitions of other plans to be of limited
temporal duration. Third is the hierarchy of effects or situations of use, in which plans are indexed
by the purposes for which they can be used. This indexing information is divided into two compo-
nents: specifications of plan effects, and method statements to connect ends with relevant plans as
means.

Plan effect specifications are simply statements about the properties of the plan. For example,
Section 1.4.2 indicated how statements about what procedures call other procedures could be used

13Actually, the variables and plan definitions are just temporarily defined concepts. The plan might contain other sorts
of temporarily defined concepts, but variables and plan definitions are the most important sorts, so we concentrate on
them.

105

DOYLE

in answering questions about the program’s history of actions. For another example, statements
estimating the complexity of procedures can be used in planning under time constraints. But the
most studied sort of statement of procedure properties is that of Floyd-Hoare specifications: pairs
of formulas P and Q with the interpretation that if P holds before the plan is executed, then Q
will hold if the plan terminates, where termination of the plan is not assumed. These specifications
take the formP→[plan]Q in dynamic logic [Harel 1979], and termination can be correspondingly
expressed asP→<plan>true . There can be several plan effect specifications for each plan. These
specifications are not used in the normal operation of the program, but are useful in hypothetical
reasoning and in modifying or analyzing the plan library. In hypothetical reasoning the technique
of symbolic execution is used. This technique does not execute a primitive or plan, but instead tries
to prove that the antecedents of a procedure’s specifications hold in one situation, and if successful,
then concludes the consequents in the following temporal situation. In modifying the plan library,
the program might seek, for example, to reorganize the plans to make sure that they are seen to be
relevant to problems whose statements are contained in the plan’s effects. In analyzing the plan
library, the aim is to more completely annotate (and verify the correctness of) the plans and their
internal structure with the records of, say, additional prerequisite policies where before there were
only temporal ordering policies.14

Information involving a plan’s effects is more directly useful in the form ofmethod statements.
These indicate what plans are useful for which aims of intentions. The interpreter uses method
statements to retrieve the plans and primitives relevant to achieving the aim of the intention being
interpreted. In addition, method statements for plans also specify which step of the plan is the main
step with respect to the desired effect. Thus a multistep plan may be a means of achieving several
sorts of aims. Each of these uses of the plan would be specified in a separate method statement,
along with a statement of which of the steps of the plan achieved the particular effect (aim) of
relevance.

Method statements are represented as simple beliefs of the program. For plans they take the
form

PLAN-METHOD(aim, plan, mainstepname) ,

whereaim andplan refer to, respectively, a theory describing some aim concept and a plan theory.
Mainstepname is the name of some desire or intention in the plan which is declared main. For
example, a method statement like the following might be used in describing the subplan of the
dinner-serving plan of Section 4.6.

PLAN-METHOD(PREPARE-FOOD-AIM, COOK-THEN-WASH-PLAN, COOK-FOOD).

For primitives, method statements take the form

PRIMITIVE-METHOD(aim, primitive) .

Methods relevant to an intention’s aim are retrieved by procedures which take the aim, instantiate
it with the intention’s input variable values, and then look in the procedure library for method
statements which mention aim types subsuming the particular instantiated aim. This can be a very
difficult problem, as many inferences might be required to judge one aim description subsumed by
another. This is an incompleteness in the current program. I envision actually employing several

14[Shrobe 1979a] discusses such techniques in detail.

106

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

sorts of retrieval procedures, simple ones which are fast but miss some methods (for example, ones
which just look up the VC hierarchy from the particular aim) to procedures which are slower but
find more of the relevant methods. Different versions of the interpreter would then use the different
retrieval procedures, and in difficult cases, self-apply the program to retrieving the relevant methods.

This issue of what methods should be retrieved as relevant to a particular aim seems to be one to
which deontic logic is relevant. One of the issues addressed by logics of commands and obligations
is that of what commands and obligations are entailed by a given command or obligation. For
example, suppose I am obliged to visit MIT. Since MIT is part of Massachusetts, being on the
grounds of MIT entails being in Massachusetts. Thus we can infer that I am also obliged to visit
Massachusetts as well. I suggest that this question of entailment of commands or obligations is
closely connected with the question of what method aims entail or are entailed by a given intention
aim. Further study of this connection might shed light on both the techniques of this thesis and on
the proper role of deontic logic. The next chapter mentions another connection with deontic logic
as well.

4.9 The Current State of Mind

The program represents its current state of mind to itself as the global theory ME. ME contains
statements about the program’s current concepts, reasons, beliefs, desires, and intentions. To act, the
program reflects on the contents of ME, on what desires and intentions are currently held according
to the global theory.

Plans reflect the structure of the program, as they are used to temporarily augment the current
state of mind. Plans are concepts describing subconcepts (the plan variables and plan definitions),
reasons, beliefs (the assumptions made by the plan), desires, and intentions. When the program
carries out an intention by reducing it to a plan, it adds the contents of the plan to the current state of
mind by making the global concept ME be a VC of the plan-instance concept. This VC statement
(in ME of course) is justified monotonically in terms of the statement of the reduction, and non-
monotonically in terms of the incompletion of the intention being reduced. In this way the contents
of the plan augment the current state of mind until the execution of the plan (and hence its superior)
has finished, or until the superior is abandoned. At that time, the VC statement becomesout, and
the plan’s contents are removed from the current state of mind.15

15It is often argued (e.g., by Taylor [1974]) that our notion of “self” is an illusion. Even if one acknowledges this thesis,
the idea of one’s self may be useful in practice, and in fact, people typically find the concept indispensible. However,
people also voice their indecision with phrases like “Part of me wants to do this, part of me wants to do that,” or “I’m of
two minds about it.” These highlight the next problem: Is there just one “self” of a person? Nagel [1979c] argues that
there cannot be just one self from psychological evidence concerning brain bisections. Minsky and Papert [1978] argue
against a single self both from psychological evidence concerning the development of intelligence in children, and from
computational grounds, namely that presupposition of a single self begs the question of how the mind might work. They
propose an analysis of the mind into many hundreds or thousands of simple “agents” in a “society of mind.” The mind’s
idea of its self continually changes as different agents gain control. The proposals of this section for the current state of
mind might be viewed as one realization of Minsky and Papert’s ideas. In the program, each procedure actually carries
with it a fragment of the current state of mind, so what the current state is varies with what procedures have control. Thus
Minsky and Papert’s [1973] conservation examples, in which the physical laws believed by the child seem to vary with
the problem being worked on, can be explained easily by their suggestion of different beliefs embodied in the different
procedures used by the child. Similarly, recognition of conflicts between two currently active procedures manifests as
reflection to an arbitrating procedure which specifically considers which of the two “minds” (procedures) to adopt.

107

DOYLE

We leave several unanswered questions here. This technique for interpreting plans requires a
distinction between the satisfaction of an intention and the finishing of an intention. Plans are pur-
poseless procedures, or more precisely, procedures which can be used for many different purposes.
Because of this, plans may be indexed via method statements as useful for achieving intentions for
which they are more general than necessary. One symptom of this is that of main subordinates, in
which the aim of the intention is sometimes satisfied before all of the intentions in the plan have
been carried out. In some cases this indicates that the remainder of the plan can be discarded, as
when I use my plan for getting to someplace as a plan for getting to one of the stops on the way.
But in other cases, the remaining intentions of the plan are clean-up steps which secure the results
achieved by the main step, or which prevent certain undesirable side-effects. For example, my plan
for checking if I turned off the lights in my dormitory room has a step for closing the door after
I have opened it and looked inside. This step does not serve the nominal purpose of the plan, my
intention to make sure the lights are out, but rather my policy of discouraging robberies by keeping
my door closed. In this case, I cannot simply discard the remaining step of the plan after achieving
its purpose.

We do not offer any way of overcoming this difficulty here. A suggestion for investigation is
that the plan also contain a schematic reason for the last step in terms of the realization record of
the first step (as explained in Section 4.10, this is a belief that the action was taken) and the extra-
plan policy of keeping the door closed. However, just how this would work is uncertain, because
presumably the reasons contained in a plan have tenure limited to that of the plan as well, so nothing
has been gained. The plan might contain a step taking the action of adding the reason permanently.
Alternatively, a distinction might be developed between the satisfaction of an intention and the
finishing of an intention. Perhaps the plan’s tenure and the finishing of the intention are coincident
with the satisfaction (and simultaneous finishing) of the reduction intention to carry out the first
intention by means of the plan.

4.10 The History of Actions

As the interpreter acts, it makes records of its actions so that later it can tell what it did and why.
These records include beliefs about its past actions and the connections between these actions, the
desires or intentions leading to them, and their effects (the changes in beliefs and other attitudes
stemming from the actions). The records left by the interpreter include arealization recordand a
realization statement, where the realization record reflects what action was taken, and the realization
statement reflects which intention the action realizes.

Realization statements are just beliefs in the global theory of the form

REALIZES(realization-record, intention) ,

and are justified by the interpreter procedure performing the realization and by the decision used
to select the method for carrying out the intention. The intention and realization record contain
redundant pointers to the realization statement to facilitate explanations. Realization records are
beliefs of the form

ACTION(plan/primitive, argument list)

whereplan/primitive is the plan or primitive in the procedure library by which the intention
was carried out, and the argument list is a list of the variable bindings used for plan variables or

108

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

primitive arguments derived from the intention. Realization records are justified by the interpreter
program alone. They are not conclusions drawn from other beliefs or attitudes, but rather are obser-
vations made by the interpreter about its own actions.

The nature of realization records can be clarified by comparing them with RMS justifications.
Justifications are actually a form of realization records. The realization records specified above
record actions for which explicit intentions exist. They record actions taken directly on the basis of
intentions. Justifications, on the other hand, are constructed by primitives called by other primitives.
They record actions taken without explicit intentions, actions taken only indirectly on the basis
of explicit intentions. Realization records and justification have similar forms. Recall that the
justifications employed by the program are all reflected in explicit beliefs of the form (we only
consider SL-justifications here)

SL-JUSTIFICATION(name, node, name+inlist, outlist)

The standard use of justifications includes the primitive’s node in theinlist and its arguments’ nodes
in either theinlist or theoutlist, depending on how they are used in the procedure. Ignoring the
name/node andinlist/outlist complexities, justifications share the form of realization records: pro-
cedure plus arguments. Justification record the unconscious inferential actions of the program.

It might well be possible to make the treatment of justifications and realization records both
more uniform and more general, but that is left for future research.

Just as attitudes depend on the explicit belief about their justification, attitudes concluded from
plan or primitive realizations depend on the realization records for those plans or primitives. Each
new plan instance added to the current state of mind is justified monotonically in terms of a realiza-
tion record. Each conclusion drawn from a primitive includes the realization record in the inlist of
the justification for that conclusion. For example, if a primitive computes a value for one of the out-
put variables of the intention it is carrying out, it justifies this attachment in terms of the realization
record. If it computes a new value for some symbol (e.g the list of successors of an intention the-
ory), it likewise justifies the new attachment in terms of the realization record, as well as using this
record in a justification defeating the justification of the previous attachment. With such records, the
program can discard the effects of an action if it discards the memory of the action, say by deciding
that it had merely hallucinated the action. In more normal cases, the program can trace the causes of
circumstances described by its beliefs by tracing backwards through the justifications of the beliefs,
thus seeing part of their inferential sources, back to realization records, then through the realization
statements and the justifications of the intentions, thus seeing part of their causal sources. We make
use of this sort of analysis in Chapter 6.

The interpreter also makes statements of historical order relating the realization records. These
are statements which tell the temporal order in which actions were taken. These statements are of
the form

PRECEDING-ACTION(prior-realization-record, following-realization
record) .

Realization records also contain pointers to their preceding and following realization records in the
temporal order. Such statements are redundant in some versions of the interpreter, as discussed
below, when the interpreter records the order in which it acts on intentions. The meaning of these
statements might be backed up by a theory of time. This would allow the program to reason about its

109

DOYLE

history. For example, its theory of time might include facts about the transitivity of PRECEDING-
ACTION, about the linearity of that ordering (if it is linear), about (as Section 1.4.2 suggested) the
non-occurrence of deliberate actions which do not appear in realization records, etc. Just what the
program’s theory of time and its actions should be is still an open question. Rescher and Urquhart
[1971] survey many temporal logics. Hayes [1970] (and to a lesser extent, also [McCarthy and
Hayes 1969]) surveys temporal logics with an eye to applications in reasoning programs.

It is often possible to recover considerable information about the history of a particular attitude
by examining the complete set of reasons concerning it. Since primitives change attitudes by de-
feating previous justifications on the basis of realization records, changes in the status of an attitude
can be inferred from a justification for it in terms of one action, a justification defeating the first
in terms of a later action, a justification defeating the second in terms of yet a later action, etc. It
remains for future studies to pursue a careful development of such techniques.

However, some interpreters may not record temporal orderings of actions. Humans frequently
cannot recall the order in which certain actions occurred, or that they took some action rather than
another, or that they took some action at all. These failures need not all be failures of memory.
Sometimes plans or primitives will employ executives which, for efficiency perhaps, simply do not
record all of this information. For example, the temporal order in which justifications are con-
structed is usually not recorded, although these justifications actually record actions taken by prim-
itives. While it may be possible to introduce such temporal records in a serial computer, there is
reason to suspect that the parallel computations which may ultimately be necessary (and which may
be used by humans) will rule out having complete temporal records.

4.11 The Frontier

We partition the set of intentions (current or not) into three segments: thepast, the present, and
the future. The past consists of all the finished or discarded intentions, the present of all active
intentions, and the future of all pending intentions. In addition, we further subdivide the future into
the frontier andblue sky. The frontier consists of all enabled pending intentions, and blue sky all
blocked pending intentions. The past thus contains all intentions that have been either discarded
or, more commonly, carried out, the present all intentions currently being carried out, the future all
current intentions yet to be carried out, the frontier those current intentions which can be worked on
directly, and blue sky those intentions which depend on the successful completion or satisfaction of
prior intentions. The terminology blue sky is meant to recall that the opportunity to work on blue
sky intentions depends on everything going well, on no unforeseen circumstances arising which
lead to the premature abandonment of the intentions due to impossibility or inappropriateness. We
make these distinctions because the program normally acts only on the intentions on the frontier.

4.12 A Careful, Meta-Circular Interpreter

How does the program act on the basis of its desires and intentions? This question has many an-
swers, for interpretation of the current mental state is an activity itself, and like other activities, can
be performed in many ways. For example, the basic steps of acting on the basis of the desires and
intentions are (1) pick a desire or intention to carry out, (2) pick some way of carrying it out, (3)
carry it out via the selected means, and (4) repeat these steps. There are clearly many ways of going

110

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

about these steps. One can be very careful about what one is doing and deliberate at length in steps
(1) and (2), or one might just carelessly pick a task and tack at random, or something in between
these extremes. As another example, one might choose to work for some while only on one inten-
tion and its subordinates to the exclusion of all other independent activities, for instance, exclusively
pursuing thesis-writing and its subactivities to the exclusion of social and educational activities. In
fact, this provides a way of viewing primitive programs as extremely specialized executives, execu-
tives which start with one intention and singlemindedly pursue it and its subactivities (although the
subactivities of primitives are usually not explicit intentions but rather further primitive calls). Thus
there is an extremely wide range of executives employed by the program, and the typical operation
of each of these is to exercise control of the program’s actions until it interprets an instruction to
hand over control to some other executive.16

This section describes a very careful and general interpreter. This interpreter is particularly
interesting in that it is ameta-circularinterpreter, one written in the language that it interprets. In
this case, the standard way to do things carefully is to plan them, and this interpreter, or TORPID as
we will call it, follows this strategy by being a plan containing a set of plans, method statements, and
policies for interpreting the current state of mind, and so plans how to carry out its own intentions.
The heart of TORPID is the following plan, whose steps are outlined in Figure 10.

IN TORPID: (implicitly in all the following)

(DEFPLAN MACRO-TORPID ;Defplan, Choose, Aspect - explained below
(INTENTION I-1 () ()

((CHOOSE (ASPECT=AIM) (INTENTION= ∃I INTENTION(I))) () ()))
(INTENTION I-2 () (INTENTIONS)

(FIND-FRONTIER-INTENTIONS () (INTENTIONS)))
(ANTECEDES I-1 I-2)
(INTENTION I-3 (INTENTIONS) (CHOSEN-INTENTION)

((CHOOSE (ASPECT=CHOSEN-INTENTION) (INTENTION=I-7))
(INITIAL-OPTIONS) (OUTCOME)))

(INTENTION I-4 (CHOSEN-INTENTION) (METHODS)
(FIND-INTENTION-METHODS (INTENTION) (METHODS)))

(INTENTION I-5 (METHODS) (CHOSEN-METHOD)
((CHOOSE (ASPECT=CHOSEN-METHODS) (INTENTION=I-7))

(INITIAL-OPTIONS) (OUTCOME)))
(INTENTION I-6 (CHOSEN-INTENTION) ()

(ACTIVATE-INTENTION (CHOSEN-INTENTION) ()))
(ANTECEDES I-5 I-6)
(INTENTION I-7 (CHOSEN-INTENTION CHOSEN-METHOD) ()

(EXECUTE-INTENTION (INTENTION) (METHOD)))
(ANTECEDES I-6 I-7)
(INTENTION I-8 () () (CONTINUE () ()))
(ANTECEDES I-7 I-8))

16This sort of approach to program executives is sometimes called continuation-passing style [Steele and Sussman
1976].

111

DOYLE

Form intentions from desires

Select intention to act on

Select procedure for carrying out intention

Activate intention

Execute procedure

Continue: normally, repeat

?

?

?

?

?

�

Figure 10: The TORPID Procedure

112

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Here we have used a syntactic macro to make a somewhat less verbose syntactic form for defining
plans.17 In DEFPLAN, one first specifies the name of the theory, MACRO-TORPID, and then in the
body of the macro specifies the desires, intentions, and other parts of the plan with further syntactic
extensions. The syntax for intentions specifies first the name of the intention in the plan, then the list
of names of input variables, the list of output variable names, and finally the aim. The aim consists
of the type of the aim theory, together with two lists of names. These should be names of parts
of the aim theory, to be identified, respectively, with the lists of input variable names and output
variable names of the intention to set up the keyword mapping of variables. In addition, the macro
automatically sets up dataflow policies between all similarly named intention and plan variables,
unless the names are mentioned in explicit dataflow policies.

What does this plan say? MACRO-TORPID’s first step is to deliberate on things to do, to
form intentions from some of its desires. This decision is formulated as an intention to choose
aims (and, actually, variables as well, but that is left out for simplicity) for some unspecified in-
tention. The intention is identified as a decision intention by the aim keyword “CHOOSE.” The
“ASPECT” statement indicates what part of the unspecified intention is to be filled in with a value.
As its second step the interpreter finds the current set of frontier intentions, and names this with
the plan-variable INTENTIONS. The third step is to choose one intention from this set and call
it CHOSEN-INTENTION. This decision is formulated as a choice of a value for the variable
CHOSEN-INTENTION of I-7. Fourth, the plan retrieves a list of methods relevant to carrying
out the chosen intention, and calls this METHODS. Fifth, it selects one of these methods by using
an intention to select a value for the variable CHOSEN-METHOD of I-7. The sixth step activates
the chosen intention by changing its status. Seventh, it realizes the selected intention via the selected
method. Eighth and finally, it continues interpreting.

MACRO-TORPID, to work as we have indicated, must be supported by a number of other plans,
the appropriate method statements, and policies.

The first step of MACRO-TORPID relies on a careful deliberation procedure. The next chapter
presents one of these. In this step, it is used to decide if any new intentions should be formed to
pursue current desires.

The second step of MACRO-TORPID gathers up the current frontier intentions by means of a
simple primitive program (omitted here) which scans the set of intentions for frontier intentions.
(Alternatively, the actual implementation maintains a list of all frontier intentions, and modifies
the list’s contents when intentions and ordering policies are added and realized.) This primitive
is declared to be the default method for this intention by a policy. Here we employ further syn-
tactic macros to define Lisp functions as primitive concept attachments (DEFPRIMITIVE), to de-
clare construct method statements for aims and procedures (DEFMETHOD), and to declare policies
(DEFPOLICY) by giving the antecedent and consequent of their aim, the consequent being a list of
instructions to be carried out (as the next chapter explains).

(DEFPRIMITIVE BASIC-FIND-FRONTIER-PRIMITIVE () (INTENTIONS)
... omitted ...)

(DEFMETHOD BASIC-FIND-FRONTIER-METHOD
(AIM [AIM T-2 INTENTIONS MACRO-TORPID])
(PROCEDURE BASIC-FIND-FRONTIER-PRIMITIVE))

17The exact details of this macro and syntax are yet to be worked out, but the main points should be clear. If something
in the following seems underspecified, it is.

113

DOYLE

(DEFPOLICY BASIC-FIND-FRONTIER-DEFAULT-POLICY
(IF ([AIM PURPOSE DECISION] =

(CHOOSE-METHODS [AIM T-2 INTENTIONS MACRO-TORPID])))
(THEN (DEFAULT BASIC-FIND-FRONTIER-METHOD)))

All of the following steps of MACRO-TORPID are carried out by similarly described primitives,
which we will not give here, except for the last step of continuing execution. In this case, the default
method for continuing execution is MACRO-TORPID itself.

(DEFMETHOD BASIC-CONTINUE-METHOD
(AIM [AIM T-8 INTENTIONS TORPID])
(PROCEDURE MACRO-TORPID))

(DEFPOLICY BASIC-CONTINUE-DEFAULT-POLICY
(IF ([AIM PURPOSE DECISION] =

(CHOOSE-METHODS [AIM T-8 INTENTIONS MACRO-TORPID])))
(THEN (DEFAULT BASIC-CONTINUE-METHOD)))

This TORPID plan is all well and good, but how does the program get going in the first place?
The answer is that it contains a primitive executive specially tailored for interpreting MACRO-
TORPID. This executive is the following LISP18 primitive program.

(DEFPRIMITIVE MICRO-TORPID ()
(PROG (INTENTIONS INTENTION METHODS METHOD)

(SETQ INTENTIONS (MICRO-TORPID-FIND-FRONTIER-INTENTIONS-PROCEDURE))
(SETQ INTENTION (BASIC-CHOOSE-NEXT-INTENTION-PROCEDURE INTENTIONS))
(SETQ METHODS (BASIC-FIND-INTENTION-METHODS-PROCEDURE INTENTION))
(SETQ METHOD (BASIC-CHOOSE-INTENTION-METHOD-PROCEDURE INTENTION

METHODS))
(BASIC-ACTIVATE-INTENTION-PROCEDURE INTENTION)
(COND ((PRIMOP? METHOD)

(BASIC-INTENTION-EXECUTION-PROCEDURE INTENTION METHOD))
(T (BASIC-INTENTION-REDUCTION-PROCEDURE INTENTION METHOD)))

(MICRO-TORPID)))

MICRO-TORPID has roughly the same steps as MACRO-TORPID, but with the defaults of TOR-
PID built into place. It calls the TORPID primitives directly, except for the decision of what inten-
tion to work on next, for which MICRO-TORPID uses a procedure which looks only for intentions
resulting from an instantiation of MACRO-TORPID. Also, MICRO-TORPID does not deliberate
on what to do because it only looks for intentions resulting from an instance of MACRO-TORPID.

Let us see how this works.
1. We start up the program by constructing an intention to CONTINUE and executing MICRO-

TORPID.
2. Because there are no other intentions, MICRO-TORPID picks this intention as the next step,

finds its default method, namely MACRO-TORPID, and reduces the intention to the new plan, a
copy of MACRO-TORPID. MICRO-TORPID then begins work on MACRO-TORPID.

18Actually, SCHEME would be better. The recursive call of the last line would have to be replace by a loop for it to
work in LISP.

114

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

3. MACRO-TORPID’s first step is to deliberate on what to do. For this it uses a careful deliber-
ation procedure as described in the next chapter. This deliberation procedure finds possible courses
of action by means of a policy to fulfill the desires if possible. The ordering policies between the
desires, and other policies as well, provide reasons for and against these options. When this delib-
eration is finished, all options that have good reasons for them and none against them are used to
form new intentions.

Intention formation seems to be ill-studied, to the best of my knowledge. The approach taken
here is no more than an initial, and likely unsatisfactory, proposal for how this might be done. In
MACRO-TORPID, normally all desires eventually are pursued by forming intentions to pursue their
aims. This step is the means by which intention formation occurs. No intentions might be formed,
or several might be formed, depending on what sorts of policies enter into the decision-making.
For example, policies which reflect on the resource limitations implied by the program’s current
intentions might rule out forming any new intentions. Policies which reflect on the consistency of
desires and intentions may rule out some desires but not others. Or at the other extreme, the program
might find unchallenged reasons to pursue all its desires, and form intentions from all of them. This
subject deserves more serious attention than I have been able to give it.

It might seem that this step could be combined with MACRO-TORPID’s third step of picking
an intention to carry out, but this cannot be, for two reasons. First, one can decide to pursue a
desire, but not an intention. It makes no sense to intend to intend to do something. Second, if one
deliberated about desires and intentions simultaneously, one would need values comparing desires
and intentions, which also makes no sense. In fact, one way to compare intentions might be to
compare the strengths of the desires they were formed from, if there were any, but intentions cannot
be compared with desires directly.

4. MACRO-TORPID’s second step is to find the frontier intentions. At this point, there are no
frontier intentions, because the only other intentions are those in MACRO-TORPID itself, which
are blocked for lack of input variable values. Thus when MICRO-TORPID retrieves and deliberates
on methods for this intentions, it not only finds the default primitive, but also the following backup
primitive.19

(DEFPRIMITIVE INPUT-NEW-INTENTIONS-PRIMITIVE () (INTENTIONS) ...)
(DEFMETHOD INPUT-NEW-INTENTION-METHOD

(AIM [AIM I-2 INTENTIONS MACRO-TORPID])
(PROCEDURE INPUT-NEW-INTENTIONS-PRIMITIVE))

(DEFPOLICY INPUT-BACKUP-POLICY
(IF ([AIM PURPOSE DECISION] =

(CHOOSE-METHOD [AIM I-2 INTENTIONS MACRO-TORPID])
∧ (BASIC-FIND-FRONTIER-INTENTIONS-PRIMITIVE) = NIL))

(THEN

19This should be done in some better way, such as reflecting on how to proceed as does NASL with reformulation
intentions, but I have not attended to this problem yet. If done properly, we could just call MICRO-TORPID at the
start and let it ask for the initial MACRO-TORPID CONTINUE intention. This primitive also shows the paucity of
communication of the program with its environment. If all new information is gathered unconsciously by primitives or
added by the user while the program’s operation has been interrupted, then the program is unconscious of its environment.
To have the program be conscious of its environment as well as merely self-conscious, it must have information about its
sensory and effective mechanisms so that it can use its communication channels deliberately, rather than simply reacting
to their automatic functioning.

115

DOYLE

(CON (OPTION ’BASIC-FIND-FRONTIER-INTENTIONS-METHOD)
(SL (INPUT-BACKUP-POLICY) ()))

(PRO (OPTION ’INPUT-NEW-INTENTIONS-METHOD)
(SL (INPUT-BACKUP-POLICY) ()))))

The backup primitive INPUT-NEW-INTENTIONS-PRIMITIVE queries the user for some intention
to work on and waits for a reply. The backup policy leads MICRO-TORPID to select and execute
this primitive for finding new intentions rather than the normal one which just looks at the frontier.

5. At this point, we enter construct some intention along with procedures for carrying it out. We
ignore the details of this, for our concern is primarily with watching TORPID.

6. The backup method now returns the new intention as the frontier. This frontier is recorded
as the value of the plan variable INTENTIONS. Thus while executing TORPID, the program leaves
behind records of the intentions it saw at some past step of interpretation. This is an important piece
of historical information useful in the skill modification processes discussed later.

7. Next, MACRO-TORPID presents the frontier intention of choosing which intention to work
on from INTENTIONS. MICRO-TORPID sees both this intention and the non-TORPID intention
on its frontier, but restricts itself to working only on intentions stemming from instances of MACRO-
TORPID, so works on MACRO-TORPID’s third step.

8. MICRO-TORPID carries out MACRO-TORPID’s third intention by the default method,
which is a general deliberation procedure. MACRO-TORPID’s third step is not one of forming any
number of intentions, but rather one of deciding on a single value for an aspect of a current intention,
namely the variable CHOSEN-INTENTION of I-7 in the current instance of MACRO-TORPID.
The deliberation procedure sets up the frontier intentions transmitted through INTENTIONS as the
initial options. It proceeds to find reasons for and against carrying out each of the intentions next.
Finally, it decides on one, and attaches that value to the specified variable of I-7.

Actually, we have been needlessly redundant in MACRO-TORPID for the sake of clarity. The
policies relating intentions that determine the frontier actually enter into this deliberation, so we
can just as well dispense with step I-2 (and similarly, I-5) by beginning deliberation with a policy to
make all pending intentions options, and then forming reasons for and against these options from the
policies. This would also make unnecessary the complex system of justifications between intention
statuses used to compute the frontier.

All in all, the deliberation procedure subsumes all the special case information mentioned above.
The list of options of the deliberation record shows what intentions were considered at this time,
and the list of considerations shows the extant policies. In addition, there may be other policies
relevant to this decision besides the policies. In fact, some of the current ordering policies might be
defeated by special-case policies, so the frontier as seen from looking just at the temporal ordering
policies is not always completely accurate.

At any rate, the deliberation procedure in this case chooses the sole non-TORPID intention as
its outcome, and so the plan variable CHOSEN-INTENTION is given this value.

9. Next, MACRO-TORPID retrieves a list of methods for carrying out the chosen intention
and stores the list in METHODS. It then deliberates to find a method as the value of CHOSEN-
METHOD. As above, the deliberation step actually subsumes the prior retrieval step.

10. MACRO-TORPID’s next step performs some bookkeeping functions, primarily to change
the status of the chosen intention to active.

11. MACRO-TORPID then has the step of realizing the chosen intention by the chosen method.
It performs this realization either by executing the procedure selected as the method or by adding

116

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

the method plan to the current state of mind. This intention of MACRO-TORPID forms the realiza-
tion statement connecting the intention and its realization, obviating the need for the interpreter to
make such a record specifically. In addition, since the ordering for the steps of MACRO-TORPID
is a standard linear order, we also get historical ordering records between the realization records
automatically.

12. Finally, MACRO-TORPID again presents the intention of continuing, and the process starts
again. The connection between this intention and the new instance of MACRO-TORPID then forms
the next part of the chain of historical order.

This concludes the example of TORPID’s operation.
The program need not operate solely by using TORPID as the interpreter, but might use at dif-

ferent times a number of interpreters. In fact, the program can employ a slight generalization of
MICRO-TORPID which records the desired records (or not) without going to the extremes of de-
liberation met in TORPID. The program can switch between “careful” mode and a normal heedless
mode which does not record as much information by the following technique. Say that the plan to
be executed is to carefully perform some action. Then the first step of the plan is to switch to the
careful interpreter by means of a CONTINUE intention. The remainder of the plan then is executed
by MACRO-TORPID. In addition, the plan sets up the return mechanism by having its last step
be one which temporarily changes the default method for CONTINUE to the standard interpreter
(or whatever executive is desired next). Since MACRO-TORPID will be careful in reducing its
continuations, it will resume with the specified executive rather than MACRO-TORPID.

117

DOYLE

118

Chapter 5

DELIBERATION

How do we ever manage to make decisions? The overwhelming fact of our lives is the dilemmas
and near dilemmas that confront us, the difficult decisions which force us to sacrifice one hope for
others. We are constantly torn between seemingly incompatible principles of action. To decide
what to do we must reconcile these principles to choose the moral, the kind, the expedient, or the
comfortable thing to do.

Dilemmas and difficult decisions involve reasons for conflicting courses of action, reasons for-
mulated in disjoint vocabularies and value systems. To resolve dilemmas, whether they be mighty
or mundane, the decision-maker needs to reflect on these conflicting reasons, to consider what
value-systems each reason belongs to, and to judge which reasons take precedence over which other
reasons. We must be content to make these precedence judgements in a case by case fashion without
absolute principles or reductions relating the disjoint value-systems like “Any moral reason takes
precedence over any economic reason.” This chapter explores such a decision-making method called
reasoned deliberationin which the deliberation procedure can reflect on the reasons for and against
courses of action, and make judgements about these reasons specific to each particular decision and
its circumstances.

The basic idea of reasoned deliberation builds on the mechanisms developed in the preceding
chapters. The program first formulates its intention to make a decision as adecision intention. It
then makes the decision by executing adeliberation procedure, which is retrieved as a method for
carrying out the decision intention. There are many sorts of deliberation procedures corresponding
to the many sorts of decisions to be made, but the typical general-purpose deliberation procedure
constructs a set ofoptions, a set of relevant policies (calledconsiderations), and a set ofreasons.
The policies retrieved from the current set of intentions as being relevant to the decision are carried
out to construct reasons for and against the options, and to augment the set of options with new
options. However, each reason constructed by carrying out a policy for a particular decision is a
non-monotonic assumption. Each policy represents an intention to reason in a certain way, and
this intention is satisfied by constructing the appropriate reasons. The policy’s putative effect may
fail to be realize because the policy’s application in a particular decision may be defeated by other
policies concerning special cases, exceptions, or preferential relations among types of reasons. The
deliberation procedure reflects on each new reason to find further policies relevant to the new reason.
These further policies might construct reasons against the original reason. Since the reasons are non-
monotonic assumptions, these new reasons defeat the original reason, defeating the application of
the original policy in this particular case. Of course, these defeating reasons can in turn be defeated.

119

DOYLE

Finally, the deliberation procedure reflects on the entire set of reasons to decide whether to make a
decision on the basis of the constructed reasons, to postpone the decision, to deliberate further, or
to reject the decision.

Reasoned deliberation plays an important role in the operation of the program. For example, in
some cases this sort of reflective decision-making is used by the interpreter to form the intention to
pursue some desire, to select which intention to carry out next, or which method to use in carrying
out the selected intention. In Chapter 6 we will indicate further applications of reasoned deliberation
in deciding how to revise or modify the program’s sets of beliefs, concepts, desires, intentions,
values, and skills.

Of course, not all decisions are made by procedures of the complexity outlined above. In many
cases, one has decided in advance how one will make a type of decision in certain circumstances,
and when such occasions arise, one simply executes that procedure. These prior decisions with their
built-in presuppositions can fix assumptions or the use of particular policies in a specialized decision
procedure, so that the special-case procedure need not be as complex in operation as the general
procedure which has to retrieve and decide how to apply assumptions and policies on the spot. In
fact, this deciding how to decide is a common activity. Since the plans and primitives of the program
are really specialized executives making certain types of decisions, the choice of which method to
use in carrying out some intention constitutes a decision about which further decisions to make and
how to make them. This is clearest in the case of deciding what procedure to use in carrying out
a decision intention. Since the library of procedures is organized hierarchically, these decisions
about decisions are made in a similar hierarchical fashion. This can be viewed as analogous to the
practice in large corporations and other organizations in which each level of management makes
some decisions itself, but spends a good bit of effort in deciding how to delegate decisions, that is,
who should make the lower level decisions. Eventually someone makes decisions about concrete
matters, but his position is the result of many prior decisions about who should make decisions.

5.1 The Variety of Decisions and Ways of Making Them

There are many different sorts of decisions one makes, and different decisions call for different
procedures for making them. For example, we can imagine different procedures for buying a can of
tuna, for buying a car, for selecting one’s job, and for thinking of what to do tonight.

Example 1: Grocery shopping. When shopping for some item in a supermarket, say a can of
tuna, my standard procedure is to buy the same brand and size as I bought before, unless prices
seem to have changed or there is a sale on some comparable item. On some occasions, my use of a
product previously has made me dissatisfied with it, so I do not even bother to check for a sale, but
rather use a completely different procedure from the start: to compare all the available brands and
sizes, their reputation and looks and specifications, and choose something different from before,
even if just to experiment. A further different way of buying a product, which I only employ in
exceptional circumstances, is to go in, compute which product is cheapest in unit price, and buy
that.

Example 2: Buying a car. In contrast to grocery shopping, buying a car is never routine, but is
always a major decision. This is reflected in the ways of choosing what to buy in the extra care, prior
experimentation, and time allotted to making this decision. Where I might be content to experiment
on my own to find my preferred brand of tuna, I am likely to begin a search for a car by talking with
friends to get their experiences, by reading car magazines andConsumer Reports, by making the

120

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

subdecision of whether to buy a new or used car, and by visiting several vendors, kicking tires, and
making road tests of several models.

Example 3: Choosing a job. Assuming one’s financial situation leads one to take a job, one faces
different problems in choosing one than in buying tuna or cars. Here any prior experimentation with
the job becomes part of the job, so one cannot perform prior experimentation in the same way as
with cars. Instead, the major bases are, for example, one’s self-analysis of what one likes, what
opportunities are to be had or made in different lines of work, and how one’s favorite role models
earn a living. These deliberations sometimes involve considerations which in essence reject or
postpone the choice, such as choosing a deliberately temporary occupation to be rethought later or
to continue schooling.

Example 4: What to do tonight. This question is much like the question of what to do next that
the interpreter faces at every step of its process. However, for humans, deliberating on this question
usually involves not just a selection between current intentions, but invention of options by, for
example, looking in a newspaper or asking friends to see what is in town, or walking through a
bookstore or library to see if there is anything interesting to read, as well as thinking about standard
possibilities like visiting friends, museums, ice-cream parlors, or coffeehouses.

These examples illustrate several different procedures for making specific sorts of choices. The
actions involved in these procedures range from making simple arithmetical calculations to running
extensive physical tests on machinery to mental tests of oneself or others. While one might use
an abstract deliberation procedure in novel situations, efficiency dictates that we employ special
purpose procedures in routine cases. Such specialization might restrict the options involved so that
we do not waste time searching for unusually creative ways of procuring tuna (placing wantads in a
paper, for example), or might restrict the sorts of reasons we take for choosing which option, such
as computing the cheapest unit price instead of physically inspecting a fishing fleet or cannery.

Aside from classification by types of decision, the major general classification of decision pro-
cedures is whether the procedurechoosesor deliberates. This distinction is traditional in discussions
of decision-making, and attempts to draw an (admittedly hazy) line between reflective (deliberation)
and non-reflective (choosing) decisions. For example, at a party someone offers you a tray full of
drinks, and you pick one without thinking about it. This is called choosing, as it did not involve
considering all the option and reasons in detail. One might also perform choosing if one has sequen-
tial preferences for ice-cream flavors, and one always orders a flavor by checking the parlor’s list of
available flavors and taking the one highest on one’s own list. However, one is deliberating if one
picks the drink after first considering “Should I have another? Who is driving home?” or picks the
flavor by trying several samples and deciding which one is the most intriguing. Thus in choosing,
one follows a routine procedure which has only fixed variability, or whose variables depend on the
external world and not on one’s store of guidelines. Deliberation, on the other hand, varies with
what principles one has adopted and retrieves upon thinking about the question.

We only briefly discuss choosing, about which we just recall the earlier suggestion that choosing
procedures are programs “compiled” by fixing in advance the policies to use as implicit assump-
tions. For example, one might employ a policy in buying tuna which computes the unit prices and
constructs a reason for the tuna with the lowest unit price. If one decides in general to act on this
policy alone, one can take the policy and computation code used to carry it out to produce a proce-
dure which simply makes the computation and justifies its answer, to be used instead of the general
procedure which would have had to retrieve, apply, and defend this policy.

The remainder of this chapter concentrates on deliberation.

121

DOYLE

5.2 Decision Intentions

Decisions are mediated throughdecision intentions, which are intentions to make certain decisions.
Decision intentions are just like other intentions, except that their aim is to make some decision. De-
cisions are all of the form of choosing between alternate actions, although the actions may be men-
tal, such as believing something, as well as physical. Thus the aims of the decision intentions are
all of the form(CHOOSE aspect-name action-description) , to be interpreted as the
intention to find a value for theaspect-name of action-description . But action descrip-
tions are really potential intentions, so the aim of the decision intention really reads as(CHOOSE
aspect-name intention) . From the hierarchy of aims of intentions and the related hierar-
chy of intentions, we so derive yet another hierarchy, that of decisions. In the aim of a decision
intention,aspect-name can be any term referring in the intention theory. If the aspect name is
AIM, then the aim of the decision intention is to find an aim for the intention, that is, what to do,
the most general question of action. If the intention theory already has an aim, then the aspect name
might refer to some term in the aim theory or in one of its subtheories. Thus we might have the
following hierarchy of decisions corresponding to a hierarchy of intentions described by a hierarchy
of aims.

DECISIONS
What to do

What to buy Where to go
What food to buy Where to go this summer
What tuna to buy Where to go in Disneyland this summer

INTENTIONS
Do THING

Buy THING Go PLACE WHEN
Buy FOOD Go PLACE this summer
Buy tuna Go PLACE in Disneyland this summer

AIMS
AIM of intention

Object of (Buy) AIM Location of (GO) AIM
Object of (Food-Buy) AIM Location of (GO with WHEN=this summer) AIM
Object of (Tuna-Buy) AIM Location of (GO with WHEN=this summer

AREA=Disneyland) AIM

5.3 Deliberation Records

We introduce the convention that the important information concerning a deliberation is recorded in
adeliberation record. A deliberation record is a theory constructed by deliberation procedures, and
can be thought of as a record of the basic variables common to all deliberation procedures along with
their values in the deliberation at hand. A deliberation record theory has several parts: a purpose,
a list of options, a list of considerations, a list of reasons, a list of reflections, and an outcome.

122

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Intention to decide
(purpose) Policies

Relevant policies
(considerations)

Options Reasons

Intention to specify
(outcome)

?

?

? ?

6

Figure 11: Information Flow in Deliberations

We explain these parts in turn. See Figure 11 for a picture of how these pieces of information are
related.

Thepurposeof the deliberation record is simply the decision intention being carried out by the
deliberation procedure. Deeper purposes or reasons for why the program is making the decision are
found by pursuing the reasons for this decision intention.

Thelist of optionslists the objects being decided among, the possible values for the aspect of the
intention being deliberated about. The interpreter, for example, makes decisions whose options are
the desires to pursue next, the possible values (or identities) of some variable, the methods retrieved
for some intention, or the possible revision of belief which restore consistency. They need not be
exclusive in any sense.

The list of reasonslists the reasons for and against choosing the several options. In addition,
the reasons themselves are treated as things to reason about, so the set of reasons also contains the
reasons for and against the reasons as well. All reasons are recorded as explicit, defeasible justifi-
cations as described in Section 3.11. Reasons for and against options are made as justifications for,
respectively, statements of the formPRO(option) andCON(option) in the theory describ-
ing the list of options, whereoption is the name of an option in that theory. Reasons for and
against other reasons are made justifications supporting or defeating the other reasons. RMS then
determines the status of the arguments comprising these reasons.

The list of considerationslists intentions to apply the policies retrieved as relevant to the delib-
eration record’s purpose. Typically these policies produce one or more reasons in the set of reasons,
or add to or otherwise modify the set of options. Considerations are kept separate from the reasons
they produce, because policies may be relevant even if they lead to no reasons. One sometimes says

123

DOYLE

something is a consideration even if it implies no reason or option in the particular situation at hand,
but does when in slightly different situations.

Thelist of reflectionsof the deliberation record lists the higher-level deliberation records created
by deliberations reflecting on the progress of the decision intention. We will explain these reflective
deliberations soon. These reflections are not used by the deliberation record itself, but rather aid the
reflecting deliberations in accessing the results of previous reflecting deliberations.

Theoutcomeof the deliberation record is the chosen option, if and when one is chosen.
These pieces of information are represented as attachments to the terms PURPOSE, OPTIONS,

CONSIDERATIONS, REASONS, REFLECTIONS, and OUTCOME in the deliberation record the-
ory. PURPOSE is attached to the decision intention, and this attachment is justified in terms of the
realization record of the deliberation procedure carrying out the intention. The outcome, when it is
found, is attached to OUTCOME with a similar justification. OPTIONS, CONSIDERATIONS, and
REASONS are all attached to theories whose languages include the numerals 0, 1, 2, etc. Each of
successive option, consideration, and reason is attached in these theories to one of these numerals,
in the order of their discovery, thus recording something of the temporal order of the deliberation.
Options and reasons are constructed by policies in the set of considerations, and their justifications
reflect the policies and other facts used in applying the policy. Considerations are attachments to
intentions (as explained in the next section), and these attachments are justified in terms of the
retrieval procedure used and the data the retrieval procedure accesses, such as the purpose of the
deliberation record and other beliefs. Note that the reasons constructed by a consideration depend
only on the policy, and not on how it was retrieved.

5.4 Policy Execution

Policies are intentions with hypothetical aims, and as such, cannot be carried out directly. Instead,
when conditions arise which might satisfy the condition of the hypothetical aim, the policies are
used to form further intentions, intentions whose aims are to check if the policies are indeed appli-
cable in the current circumstances, and if so, to carry out the consequential actions specified in the
aims of the policies.

Policies are retrieved by procedures which scan the current set of intentions for policies whose
aims have a condition subsuming the aim of the decision intention. Actually, the details of how
this should be done have yet to be worked out, for the conditions specified by policies can include
information other than that of the decision intention’s aim, such as current beliefs, other intentions,
etc. However, the retrieval procedures are not burdened with determining actual applicability of
the policies, but mere relevance. This lesser requirement might be discharged by using explicit
statements that certain classes of policies are relevant to certain classes of decisions, or by other
means, but we leave this question to be answered by future study.

For each relevant policy retrieved, a new intention is formed. The new intention’s aim is to
apply(or consider) the policy in the current circumstances. The intention is made a subordinate of
the decision intention, and is justified in terms of the policy, the decision intention, and the relevancy
procedure. The new intention is added to the list of considerations of the deliberation record.

Each consideration intention is carried out as usual by the interpreter. A consideration may be
carried out by any of several sorts of procedures. The common function of these procedures is to
first check if the policy is actually applicable in the current decision, and if so, to carry out the

124

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

policy’s consequent instructions. Theseapplication proceduresdiffer primarily in how careful they
are in checking applicability and in carrying out the consequent instructions.

The default procedure for applying policies is a primitive which acts as follows. It first checks
to see if the policy is applicable by applying to the policy’s aim’s antecedent a standard procedure
for evaluating whether a logical formula holds in the current state of mind. For example, the FOL
evaluator [Weyhrauch 1978] might be used. This procedure need not be perfect, for the default
procedure is intended only for use in the simple routine cases. Since the policy’s aim’s antecedent is
just a logical formula expressing some condition of the program’s state, this test results in answers
of either “it holds,” “it doesn’t hold,” or “can’t tell.” Whatever the answer, a statement to that
effect is recorded in the deliberation record, justified by the information and procedure used in the
evaluation. This might permit later reconsideration of a policy whose applicability could not be
determined earlier for lack of information. If the policy is inapplicable, or if its applicability cannot
be determined, no further action is taken. If the policy is applicable, its consequent is interpreted as
a sequence of instructions for actions to be taken. The vocabulary of these instructions is given in
Section 5.6. They are carried out immediately by calling other primitives.

If a policy is not routine and deserves more careful treatment than this, other, more complex
application procedures can be supplied to override the default application procedures. The care
with which policies are applied can be increased in many different ways. We sketch two of these.

A policy might be applied by carefully checking applicability and routinely executing its actions.
That is, the applicability procedure is a plan of two steps. The first step is an intention to determine
whether or not the policy is applicable. By making this step an explicit intention, the full power
of the reasoner can be applied to carrying it out, rather than relying on a fixed and strongly limited
evaluation procedure. The second step of the plan is an intention to act on the answer determined.
This step is carried out by a primitive which acts like the default procedure, checking the answer
and if it is that the condition holds, then calling primitives to carry out the policy’s consequent
instructions.

Another way to increase the care with which a policy is applied is to treat the consequent of the
policy’s aim as a plan. In such an applicability procedure, if the policy is applicable, then all of the
instructions would be converted into new intentions and added to the current state of mind.

Policies might be applied by a combination of these refined procedures, or by yet other refine-
ments.

5.5 Policy Applicability

Conditions of applicability typically refer to the superiors and other reasons for the purpose of
the deliberation, to other intentions (such as the brothers of the purpose), to current beliefs, their
reasons, and to the reasons and state of the arguments for and against the options in the deliberation
record. For example, a policy to hold doors for ladies might be applicable only if the program
currently believes it is near a door and whether there is a lady approaching. A policy not to act
for chivalrous reasons might be applicable only if one of the reasons in the deliberation record is a
repercussion of policies having to do with chivalry.

We again digress briefly to discuss deontic logic. We previously mentioned how retrieval of
methods for carrying out intentions is related to the question of what commands or obligations are
entailed by a command or obligation. Another question addressed by deontic logic is when com-
mands or obligations can be inferred from beliefs together with previous commands or obligations.

125

DOYLE

This is closely connected with the question of policy application. Policy application involves in-
ferring a number of intentions (commands, obligations, etc.) from beliefs, intentions, and other
aspects of the current state of mind. However, our approach makes this question trivial in princi-
ple, one purely of the validity of a logical statement about the current state of mind. Many deontic
logics are complicated by the need to account for the defeasibility of reasons produced by policies.
Our treatment suggests that this should not complicate the inference of intentions from policies,
but should be separated into the treatment of the reasons constructed in carrying out these derived
intentions.

5.6 Policy Actions

The actions of a policy either add new intentions as subordinates of the decision intention, options
to the list of options, considerations to the list of considerations, or reasons to the list of reasons.
We describe a few of these sorts of actions which form an initial vocabulary for decision-making
activities.

The first sort of action is that of constructing a new subordinate of the decision intention. Subor-
dinate addition is done with the command(SUBORDINATE intention justification) .
The intention is the theory describing the intention to be added to the current state of mind.
The justification is the justification to be used for the new subordinate. The justification usually
mentions the policy, the application procedure, the realization record of the deliberation procedure,
and any beliefs or other items used in determining applicability of the policy.

The second sort of action is that of adding new reasons to the set of reasons. One
can add reasons either for or against either options or reasons. We write these sorts of
actions as(PRO options/reasons justification) and (CON options/reasons
justification) . In these and the following actions, options and reasons are referred to by
their names in the lists of options and reasons, which are picked up by the condition of the policy.

Another action on the set of reasons is(PREFER O X ...Z justification) , where
each of O, X, . . . , and Z are options. Preference is translated as “Any good reason for O is a reason
against any of X, . . . , Z,” so that a lesser option will have a good reason against it as long as a good
reason holds for the preferred option and no special exceptions are being made (for example by
some other policy reasoning against the preference statement). Preferences add a new policy to the
list of considerations and to the current set of intentions whose aim is to reason against any reason
for the lesser options (using CON above) whenever a reason for the preferred option is found.

A related action is(DEFAULT option justification) , which means that option is to
be the default outcome. This is interpreted by giving the option a PRO (as above), and then to
use any good reason for any other option in a reason to defeat this pro reason. This similarly is
implemented by constructing a new policy.

A further action along these lines is(BACKUP O1, O2 ... justification) which
is the policy to make O1 the default, and to make On+1 the default if On is defeated.

One might restrict the set of options, by providing a reason against any options not
in the restriction. We say this with either(RESTRICT X ...Z justification) ,
or (DECIDE-BETWEEN X ...Z justification) , where X, . . . , Z are options. A
preferential restriction, (PREFERABLY-RESTRICT X ...Z justification) or
(PREFERABLY-DECIDE-BETWEEN X ... Z justification) , uses any reason for
any restriction option as a reason against each outside option. These also construct policies.

126

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

We add new options with(OPTION X justification) or (OPTIONS X ...Z
justification) , where here X, . . . , Z can be any objects of the sort required by the purpose.

An action operating on both reasons and options is(REPLACE W ...X Y ...Z
justification) , where each of W, . . . , X, is an option and Y, . . . , Z can be anything, and
are added as options. This means to replace the former set of options by a new set of options by pre-
ferring each of the replacing options to each of the replaced options. However, no new reasons for
the replacing options are constructed. The action(COMBINE X ...Y Z justification)
prefers Z to X . . . Y and constructs a PRO reason for Z in terms of the policy and the reasons for the
combined options. This is useful, for example, when reformulating options along a new dimension,
when some options are each partly right and partly wrong, and a synthesis is possible which retains
the good parts and discards the bad parts. This sort of case crops up very frequently when options
are suggested on the basis of only a part of the problem. For example, when deciding what textbook
to buy for some class, one might think of one book which is relevant for part of the class’s charter,
and another which is good for another part, but might then discover that some book covers both of
these parts (such as the one written by the class’s instructor).

5.7 A Very General Deliberation Procedure

In this section we present a deliberation procedure of considerable generality. Few situations call
for as general a procedure, principally just novel situations and important decisions.

The procedure is, in essence, just that of repeatedly retrieving a relevant policy, carrying it out,
and then reflecting on the results until the judgment is made during reflection to halt with a decision.
This is of course a very cautious way of proceeding, and very time consuming, but sometimes this
is necessary.

5.7.1 The Deliberation Plans

We first sketch the structure of the procedure as a set of informal plans, and then discuss its operation
in detail using these plans as the framework. Figure 12 displays the basic steps of the plans.

DP-1: Input: PURPOSE Output: OUTCOMES
1. Scan the set of intentions for relevant policies. For each one

construct a new intention to consider it as a subordinate of
PURPOSE, and add it to the list of considerations.

2. Perform DP-2.
3. Policy: Prefer step 2 (DP-1.2) to all the new subordinates of

PURPOSE just constructed.

DP-2:
1. Reflect carefully on what to do next

(select the aim of step 2 (DP-2.2)).
Options: Delay, Reject, Decide, Continue

Delay: Prefer non-DP tasks to DP ones until ‘‘later’’
Reject: Abandon (defeat) PURPOSE
Decide: Set OUTCOMES, abandon unfinished subordinates

127

DOYLE

Form reasoning intentions
from policies

Reflect on what to do next

Carry out a consideration

New reasons?

Reflect on reasons

Halt
with outcome

Delay

Reject

Pursue
subordinate

Yes

No

?

?

?

?

�

-

-

-

-

-

Figure 12: The Deliberation Procedure

128

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Continue: Perform DP-3 for one of the pending subordinates
2. ___________. (Filled in by step 1 (DP-2.1).)

DP-3: Input: SUBORDINATE
1. Perform DP-4 for SUBORDINATE.
2. Perform DP-2.
3. Policy: Prefer step 2 (DP-3.2) to all original (DP-1)

considerations.

DP-4: Input: SUBORDINATE
1. Carry out SUBORDINATE.
2. Scan the set of intentions for relevant policies. For each one

construct a new intention to consider it as a subordinate of
this step (DP-4.2) and add it to the list of considerations.

3. Policy: Prefer all intentions constructed in step 2 (DP-4.2)
to all other DP intentions.

This deliberation procedure divides into two major aspects: the first-order reasoning, and the
second-order reasoning. The second-order reasoning reflects on the first order reasoning to decide
how to proceed with the decision-making process. We discuss each of these separately.

5.7.2 First-order Deliberation

1. Create the deliberation record:The first step towards making the decision is to construct a
deliberation record, whose purpose is the decision intention being worked on by the deliberation
procedure. If the intention (rather, the plan of which it is a part) also specifies initial options and
defaults, these are entered into the deliberation record as well with justifications mentioning their
source.

2. Retrieve policies:The second step is to search the set of intentions for relevant policies, using
the purpose of the deliberation record as a means of determining relevancy.

Each policy retrieved adds a new intention to the set of considerations with the relevancy pro-
cedure and its arguments in its justification. The list of considerations will be scanned in Step 4
to carry out these policies one at a time. The new intention is that of applying the policy in this
decision.

3. Reflect on how to proceed:The deliberation procedure is a UNTIL-REPEAT loop, repeti-
tively considering policies until the decision is made to stop. This step asks the UNTIL question
about how to proceed. It is the intention to reflect on the current progress of the deliberation and
to decide whether to make a decision, to continue deliberating, or several other possible courses of
action. In one sense, this step is much like the ordinary step of the interpreter of deciding what to
do next, except that this decision is to be made relatively carefully itself. Its aim is not simply that
of selecting one intention over another, but rather that of selecting between some intentions (the
considerations and other subordinates) and some possible but not actual intentions, that is, courses
of action yet to be made into intentions by the deliberation procedure.

The interpreter sees at this point a frontier including this reflection intention, the unrealized
subordinates of the original decision intention, and any other independent intentions, and it chooses
one of these to work on. However, the deliberation procedure has set up policies to guide the

129

DOYLE

interpreter by preferring the reflection intention to any other subordinates of the purpose. This
preference will not be overridden by the decision intention or any of its subordinates, but might be
overridden by independent intentions that have higher priority than further deliberation.1

At any rate, the third step is to invoke a second-order deliberation procedure to consider the
problem of how to proceed with the original decision. As in first-order deliberation, the actions of
the second-order deliberation procedure are to first create a deliberation record and then deliberate
in that deliberation record. We postpone description of these steps for the next subsection, and
proceed now with the rest of the first-order deliberation steps.

4. Apply one policy:The next step is to carry out an unrealized consideration as selected during
reflection. The interpreter retrieves application procedures for carrying out the policy, selects one,2

and executes it if it is a primitive, or added to the current state of mind if it is a plan. In the latter
case, it is given priority over all other DP-related activities.

Alternatively, the previous reflection may have selected some non-consideration subordinate of
the purpose, and in this case, that subordinate is carried out.

Part of what is properly second-order deliberation is built into the policy actions in the following
way. If the actions add new options, the deliberation procedure retrieves and forms considerations
for all policies relevant to the new option and the purpose, but does not carry them out yet. However,
if the actions add new reasons to the set of reasons, then the deliberation procedure retrieves and
forms considerations for all the policies relevant to the new reason and the purpose, and then carries
out each of these new considerations the same way. This process of reflecting on new reasons
continues until no more reason-relevant policies can be found.

Does this uncontrolled iteration always halt? If things are properly organized, yes. This can
be seen by a simple argument. The conditions of these reason-reflecting policies are all basically
of the form “If the decision is about X and a reason R of type T has been found for or against{a
reason Ri of type Ti for or against}* an option O”, where the starred, bracketed phrase may be
repeated any number of times. That is, successively retrieved policies refer to successively longer
arguments debating some option. Therefore, unless the system has infinitely many policies, this
reason-reflection iteration must terminate.3

5. Repeat:The deliberation procedure now keeps repeating steps 3 and 4 until the decision is
made to halt deliberation in one of the ways described in the next subsection.

5.7.3 Second-order Deliberation

1. Construct the second-order deliberation record:The purpose of this deliberation record is the
second-order decision intention. This deliberation record is also added to the list of reflections of
the first-order deliberation record.

2. Engage in second-order deliberation:The second-order deliberation procedure retrieves and
forms considerations from all policies relevant to the second order decision. It then carries out
each of these intentions, reflecting on each new option or reason to find newly relevant policies,
but without reflecting on how to proceed. That is, these considerations are simply carried out one

1I do not specify how this selection is made. I expect that it is normally much simpler than the decisions made by the
careful procedure.

2Again, I have not worked out in detail how this choice is made.
3Of course, this “proof” has holes, but further investigation requires a working program and concrete examples. I do

not foresee any serious difficulties.

130

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

after the other, barring interruptions from independent intentions, until all considerations have been
realized and no more can be retrieved. We need not fear non-termination because of the limited and
non-constructive nature of the policies applicable to the second-order decision.4

5.7.3.1 Second-order Options

There are a number of standard policies for this second-order deliberation. Some of these construct
options and reasons standard in every second-order deliberation, others construct other options and
reasons of sorts standard in every second-order deliberation, and yet others construct decision-
specific options and reasons. The standard options are as follows.

Option A: Delay further work on the decision in favor of working on other intentions. This
means to retain the original decision intention as an active, in-progress intention, whose execution
will be resumed later. Taking this option means halting second-order deliberation after adding a
policy which will preferably restrict the next step taken by the interpreter to some activity unrelated
to the decision. Of course, there is a wide range of types of delays, from just avoiding the deci-
sion for one activity, to avoiding it until many other activities have been undertaken, to avoiding
it until all other activities have been finished, to avoiding it until certain information is discovered.
Formulating this sort of vocabulary is an area for future study.

Option B: Reject the decision. This means to discard the first-order decision intention, to defeat
the intention to make the decision.

The options and policies of standard sorts are as follows.
Option C: Halt deliberation by deciding on the currently best option as the outcome. This

means both setting the value of the plan variable for the outcome, and also defeating all unrealized
considerations. This option is created by a policy that computes which first-order option has a good
“overall” reason, plugs it into the form of this option, justifies this new option, and then creates a
reason for this option, the reason being that the selected “overall” reason is a good “overall” reason.

When second-order deliberation decides to terminate the first-order deliberation by taking some
first-order option as the outcome, it does so by finding some good reason “all things considered.”
There are several ways of interpreting what this means, and the one which we adopt here is that
in the current set of reasons as interpreted by RMS, the selected option has a valid pro reason and
no valid con reasons. The second-level reason for this second-level option actually comes in two
forms, those in which the option is picked because it is the only such option, and those which pick
the option randomly from several such options. These will be explained shortly.

In some cases, the deliberation procedure can return several outcomes rather than just one. The
different restrictions are enforced by second-order policies about multiple “good” options. There
can be a policy to return them all (as in deliberating on which desires to pursue), to pick one ran-
domly (as in selecting the intention to carry out next), or to force just one outcome. This last
restriction could be effected by a policy which defeats against each option on the basis of good
reasons for any other options.

Option D: Continue deliberation by carrying out consideration intention I. An option of this
form is created for each unrealized consideration I, and decision-specific policies may provide the

4An interesting direction for further exploration of these ideas is to develop a modification of this procedure so that
the second-order deliberation procedure is the same as the first-order procedure. This would be a completely uniform,
arbitrarily reflective deliberation procedure. Some sort of termination policies would be needed, or perhaps the default of
halting rather than further reflection once the second level was reached.

131

DOYLE

option of reconsidering some previous policy. Reconsideration amounts to reapplying all of the
relevant considerations and looking for further relevant policies and other new information.

Option E: Continue deliberation by carrying out non-consideration subordinate I of the deci-
sion intention. An option of this form is created for each unrealized subordinate I of the decision
intention.

Option F: Reformulate the decision as I, that is, abandon the current decision intention, add
the new intention I, and resume interpretation, which will eventually work on I afresh. This sort
of option is never constructed by a general policy, only by domain-specific policies. Option B is
the domain-independent form of this option. Option F is meant to cover the case in which thinking
about one question leads to the discovery that the presuppositions of the decision are wrong. For
example, one is trying to decide on an outline for a paper, and realizes that the important question is
not about which organization is best, but about who is the intended audience of the paper. One then
discards the active intention to decide on an outline, only later forming a similar intention after the
audience decision has been made.

5.7.3.2 Second-order Policies

Along with these standard options, the standard second-order policies construct a number of reasons.
These reasons for and against the second-order options involve a number of factors, including PC
reason analysis, completeness information, compatibility information, time and resource pressure,
and others. This subsection explains some of these sorts of factors and the policies involving them.

PC reason analysisclassifies the options into four sets; PNC, containing those options with a
valid pro reason and no valid con reasons (that is, those options O with the statements PRO(O)in and
CON(O)out); PC, containing those options with both valid pro and con reasons; CNP, containing
those options with a valid con reason but no valid pro reasons; and NPNC, containing those options
with no valid reasons pro or con.

PC reason analysis is by itself insufficient for making decisions. The naive policies involving it
alone might read as follows.

POLICY-1: If PNC contains exactly one option, take that as the outcome
of the first-order deliberation record.

POLICY-2: If PNC contains more than one option, pick one randomly as the
outcome of the first-order deliberation record.

However, with the deliberation procedure as we are outlining it, these policies are flawed, as
there is no guarantee that more than one option has been considered, so that these policies might
lead to an overly hasty decision. To remedy this problem, these policies must be modified to take
the history of the deliberation into account. For example, Alfred P. Sloan Jr. refused to allow the
GM executive officers to come to a decision simply on the basis of unanimity. He required that no
decision be taken unless there had been prior arguments over possibilities, disagreements showing
that several points of view had been considered, that not everyone was overlooking the inevitable
flaws of any proposed plan.

To be able to take such historical factors into the decision-making, this information must be
recorded somewhere. The details of this are still open, and there are several obvious paths to in-
vestigate. In the first method, policies are always represented as plans, and the temporal orderings

132

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

on the execution of the intentions in these plans provides the required information. This, however,
seems too baroque, and a second possibility is to analyze the set of reasons to tell if good arguments
have occurred. A third, even simpler possibility is to just record the sets PNC, PC, CNP, and NPNC
in each second-order deliberation record. This summarized information can then be consulted by
examining previous reflections to see if options moved from one classification to another. By using
these reflection records, POLICY-1 and POLICY-2 above might be replaced as follows. Here the
predicate DEFENDED means that the option in question is now in PNC (CNP) but at some past
time was either PC or CNP (PNC).

POLICY-3: If there is exactly one option in PNC and it is DEFENDED,
then take it as the first-order outcome.

POLICY-4: If PNC contains more than one option, and at least one of these
is DEFENDED, then pick a defended option randomly as the
first-order outcome.

POLICY-5: If no options are yet DEFENDED, then do not make a decision.

This notion of DEFENDED might be used in another similar policy for cases in which all options
seem bad.

POLICY-6: If all options are in CNP and are defended,
then reject the decision.

In addition to this general rejection policy, I expect each domain would incorporate reformulation
policies which would suggest specific reformulations of the decision intention or replacement of
options if all options are in CNP or PC respectively. These more specific policies should override
the general one.

Of course, this notion of DEFENDED is too weak. What really seems desired here is a re-
finement of DEFENDED which incorporates some restriction on the completeness of the set of
considerations with respect to the relevancy procedures and resource limitations. The techniques
discussed in [Moore 1979] may be useful in these investigating such refinements.

In general, one should consider all possibilities when making a decision. Hence the following
two policies for continuing deliberation.

POLICY-7: If there is an unrealized consideration,
then carry out the oldest one as the default.

POLICY-8: If there is an unrealized, non-consideration subordinate,
then carry out the oldest one as the default.

POLICY-9: Prefer defaults created by POLICY-7 to those created by POLICY-8.

In some cases, policies will construct inconsistent preferences among the options. Further poli-
cies must be supplied to guide the revision of these inconsistencies. For example, POLICY-9 above
rectifies the initially inconsistent policies 7 and 8, both of which declare some option to be the low-
est in the partial order. However, their inconsistency would not be very serious, for RMS would just

133

DOYLE

accept as the default whichever came first. But in more complicated cases (involving odd-length
cycles), such as each of O1, O2, and O3 having a good reason for them, to which the policies Prefer
O1 to O2, Prefer O2 to O3, and Prefer O3 to O1 are added. RMS would discover an apparently
unsatisfiable circularity, and create an intention to revise these inconsistent reasons, that is, to defeat
one of the preferences involved. Thus in cases like this, additional conflict-resolution policies must
be supplied.

In many cases, however, there will not be enough information to argue about the options to
produce a defended option. In other cases, there may be no policies which will resolve conflicts, so
that to the best abilities of the program, the best options are those in PC. These are irreconcilable
dilemmas for the program, and to act it might have policies like the following.5

POLICY-9: If there is pressure to decide,
and all information has been considered,
and there are still no PNC options
but there are some PC options,

then pick one of the PC options randomly.

POLICY-10: If there is pressure to decide,
and all information has been considered,
and there are still no PNC or PC options
but there are some NPNC options,

then pick one of the NPNC options randomly.

POLICY-11: If there is pressure to decide,
and all information has been considered,
and there are still no PNC, PC, or NPNC options
but there are some CNP options,

then pick one of the CNP options randomly
or reject the decision.

It is difficult to say much more about these sorts of policies in the abstract, since most policies
of these kinds are likely to be domain specific. Much experimentation and experience is necessary
here.

This concludes the digression on second-order policies, and we continue with the steps of the
second-order deliberation procedure.

5.7.3.3 Second-order Decisions

3. Choose the second-order outcome:The next step of the deliberation procedure, after retrieving
and applying all the second-order policies, is to choose some second-order option as the second-
order outcome. This choice is made by selecting the first second-order option that is in PNC in the
order of preference of options D, E, C, A, B, that is pursue a consideration, pursue a subordinate,
decide on an outcome, delay, and reject. It would be elegant to develop some way of making this
third-level decision uniform with the second-order decision, perhaps by termination policies which
always decided unless the second-order policies conflicted. There are many subtleties here, such as

5These policies all act on a paucity of information, similar to NASL’s QUIESCENCE choice rules.

134

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

the fact that the third-order options are basically the same as the second-order options, that make
this an intriguing question for further study.

4. Act on the second-order outcome:If the outcome is to pursue a consideration (D), this means
returning to Step 4. If it is to pursue a subordinate (E), this means to add a deliberation continuation
intention along with ordering policies making the selected subordinate the only intention on the
frontier. If it is to delay (A), then add a deliberation continuation intention with ordering policies
preferring current frontier intentions to it. If it is to reject (B), then defeat the decision intention.
If the outcome is to act on a first-level option (C), then an execution procedure is retrieved for
doing this, as different sorts of decisions involve different actions. For example, if the decision is
about whether to form intentions from desires, then if some desires are chosen, new intentions are
constructed with the aims of the desires, and added to the set of intentions. If the decision is to pick
some intention to work on next, it is handed over to the interpreter for carrying out. If the decision
is about some aspect of a current intention, the chosen value is inferred in that intention theory.

5.8 An Example Reworked

In the beginning, Robbie’s interpreter is carrying out the currently active intention of passing
through a door. Robbie has reached the door and is considering how to proceed, the next step
of his plan being to open the door. At this point, Robbie’s visual system detects an object moving
towards him, and identifies the object as a woman. Robbie has a policy of normally interrupting
whatever he is doing to consider what to do about approaching objects, since such object are often
important to survival, either as food or as dangers. This policy suggests that he decide what to do
about the woman, and defeats his first thought to continue what he was doing, namely to proceed
with the next step of his previous plan and open the door.

So Robbie decides to consider what to do about the woman rather than to open the door. He
begins work on the following plan.

(INTENTION I-1 () (AIM) (CHOOSE (ASPECT=AIM) (INTENTION=I-2) () (OUTCOME)
[OBJECT AIM] = VISUAL-OBJECT-DESCRIPTION))

(INTENTION I-2 () () AIM)
(ANTECEDES I-1 I-2)

Here the aim of I-1 means to decide what to do about the approaching object. It takes in the object
description as passed in from the visual system and outputs an aim for I-2.

The interpreter begins work on I-1 which it carries out by a deliberation procedure DP based on
the above. The first thing DP does is to create a deliberation record DR. DP declares that I-1 is the
purpose of DR. It then tries to retrieve the set of policies relevant to the purpose and current state of
affairs. This means that the database retrieval procedures take as arguments I-1 (the purpose), DR
(the current state of the deliberation), and ME (the current state of the program in general).

The first thing retrieved is the policy “A gentleman always holds the door for a lady.” DP adds
a consideration for this policy to the list of considerations of DR. More formally, this policy is as
follows.

POLICY-1: If A: the aim of the purpose of DR is to choose an aim
and the object of the aim is a lady-like-appearing female,
and there is a current intention with active progress status

135

DOYLE

and the aim of that intention is to open a door,
then (PRO (OPTION ‘‘hold door for OBJECT’’)

(SL (POLICY-1 A) ()))

Here we have taken the liberty of writing an English description of the condition and the option. Ac-
tually, the condition is a logical statement of just what is said, in terms of the descriptions involved
and their parts.

Following a brief reflection which decides to continue deliberation (since nothing has been done
yet), DP applies this policy by evaluating its condition to see that it holds, and then executes the
actions in the consequent of the policy. The first action adds an option O-1 to the (currently empty)
list of options of DR, the option of holding the door open for the woman. The second action says
that POLICY-1 and the application condition A form a reason for O-1, and adds this reason, R-1, to
the list of reasons of DR.

DP then re-interrogates the database to see if any new considerations can be found relevant to
the new items. In this case, the new option does not lead to any new considerations, but the new
reason does. Since that time long ago when Robbie was initially programmed, chivalrous reasons
for actions have become socially unacceptable. Robbie has learned to watch out for temptations to
act chivalrously. He does this by means of the policy POLICY-2.

POLICY-2: If A: R is a reason in the deliberation record
of the current decision

and R’s reason involves POLICY-1,
then (CON R (SL (POLICY-2 A) ())).

The condition of this policy holds, so DP executes the action, which adds a reason R-2 to DR, a
reason against R-1. This invalidates R-1, so now O-1 has no good reason. DP sees it is without
a good option in reflection, continues to scan the database, and finds a third relevant policy. After
further reflection it applies this policy, which also has a true condition.

POLICY-3: If A: the aim of the purpose of DR is to choose an aim
and the object of the aim is a non-threatening person
and there is an active intention with active progress status
and the aim of that intention is to open the door)

then (PRO (OPTION ‘‘hold the door for OBJECT’’)
(SL (POLICY-3 A)))

Executing this policy’s first action adds another reason for O-1 being an option, and the second
action adds a new reason, R-3, for taking O-1. DP now finds no more policies, and again enters
second-order deliberation. RMS shows that of the three reasons in DR, R-2 is valid, so R-1 is
invalid, and R-3 is valid. Thus, all things considered, O-1 has a valid pro reason, so DP takes it
as the outcome of the deliberation. Intention I-2 thus gets an aim to hold the door for the woman,
which the interpreter then carries out, so Robbie holds the door for the woman.

136

Chapter 6

DELIBERATE CHANGES OF
MENTAL LIFE

To survive, we must change ourselves as well as the world around us.1 We must reflect on our
beliefs, concepts, desires, values, and skills to judge whether our life would be better if we held or
employed different ones.

These changes in ourselves take many forms, and are brought about for many reasons, such as to
become happier, more competent, informed, efficient, to conform with others, or to become free of
confusion, contradiction, or doubt. We sometimes decide to change to improve the correspondence
of our attitudes with the world, or with our standards for ourselves. For example, I change my
belief that a door is open because my unsuccessful attempt to walk through it points up a mismatch
between my beliefs and reality. Either I hallucinated the attempted passage through the door and
the pain in my nose, or I am wrong about the door’s being open. Or as another example, I wish to
become a mathematician, only to find that my intuitions conflict, that I believe that the irrationals
far outnumber the rationals, but infer a conflicting belief from the existence of an irrational between
each pair of rationals and a rational between each pair of irrationals. In this case I cannot give
up either of these beliefs, as they are part of what mathematicians believe, so I must give up my
inference that they conflict. Or finally, I judge my inference that I am a terrible person because I
can’t sing well to be the cause of my unhappiness, and thus of the mismatch between my observed
unhappy mental state and my standards of a happy outlook. To remedy this mismatch, I either give
up the inference that I am a terrible person, or the desire that I be happy. But these changes do not
just happen. In most cases, it is my realization of the need for change which leads me to decide to
change, to form an intention to change, and then to carry out that intention.

Deliberate adaptations perhaps play a larger role in developmental psychology than is normally
recognized. For example, many accounts of the psychological development of children are puzzled
by the apparent inexplicability of the changes undergone by the child. The answers to these puzzles
may often be that the child at some point realizes that he is frustrated by an inability to perform
some task, and simply decides to learn how to do it. Such deliberate changes are more clearly

1What is survival? If we are mutable, what is it that is surviving? Throughout this thesis we maintain the fiction that
there is something called the “self.” Chapter 2 presented some general reasons why this is desirable, but this thesis is not
the place for the discussion this question deserves. I hope to analyze this question in light of the current model in a later
paper.

137

DOYLE

recognizable in the case of adults who, for instance, decide to take classes to acquire some skill or
knowledge.

This chapter describes how to use the techniques previously developed in this thesis to delib-
erately change the content of the program’s mental life.2 In all cases, the basic recipe for change
is similar. The motives for changes come through reflection, and the implementation of changes
comes through intentions to change. The program first reflects on its set of attitudes, by using its
self-referential ability to view its current set of beliefs, desires, skills, concepts, or values, and to
infer properties of that set which indicate the desirability of change. The reflection occurs during
deliberation on what to do, and policies recognize the motivating conditions for changes. This re-
flection is followed by further deliberation and planning of what changes might be appropriate and
which changes should be taken. Further policies guide this decision of how to change, and the result
is an intention or plan for implementing the change.

For example, a policy applied during reflection may reveal an inconsistency in beliefs, or an
unexpected, erroneous effect of an action. The program may then take these realizations of con-
tradictions or bugs in procedures as cues to correct itself, and form intentions to fix the incorrect
assumptions or procedures. The program can then apply itself to deliberately tracking down which
beliefs or procedures are at fault. These changes might be carried out by simple techniques, such as
dependency-directed backtracking [Doyle 1979], automated debugging techniques [Sussman 1975],
or even asking the user for help. Its plans for carrying out these changes might be very involved.
Faults in primitive procedures can take much experimentation, simulation, and analysis to locate (as
any programmer can tell), and false beliefs can require similar searching out (as psychiatrists will
vouch).

By and large, these techniques of deliberate changes are familiar to AI, as they are the sorts of
imperative changes programs make on their own data-structures. In most AI programs, imperative
operations are used from the start and taken for granted, because most programming languages
are founded on imperatives. In contrast, imperative changes come near the end of this thesis as
applications because we concentrate on the reasons for these changes, which normal imperative
languages ignore. When one sets a variable in LISP, one rarely can tell why that change occurred.
That is part of what makes debugging programs so hard. What we aim for is ways of performing
the same operations, but so as to be able to explain and analyze them later.

The reader is cautioned that the rest of this chapter is exceedingly vague, more in the way of
hints for future research than presentation of concrete techniques. Unfortunately, time limitations
have precluded presentation of anything but a sketch of motivations and methods for change. Most
of these sketches merely refer to other works where these sorts of changes have been studied in
their own right. Casual readers are encouraged to skip to the next chapter, as the basic ideas of this
chapter have been presented in this prologue. The remainder of the chapter contains only slightly
more concrete examples.

2A large problem, if it can be called a problem for a reasoner rather than for the geneticists and psychologists of
a species, is how to change the form of one’s mental life, how to choose and invent or discard various emotions, e.g.
creating an intelligence that lacks fear, or combativeness, or other attributes. These are rarely problems for the individual
(except perhaps in Buddhists), as he is more frequently concerned with questions of how to improve his knowledge of
the world, how to stop being depressed, how to enjoy life more, how to stop smoking, how to perform his job better, etc.
It is these more circumscribed changes that we deal with here.

138

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

6.1 Motivations for Change

In this section we catalog a variety of the policies which might be employed during reflection to
lead to intentions to change the program’s attitudes. Each of the policies we describe is of the
form “If the current set of attitudes has property P, then reason for the option of making change
C.” Of course, during deliberation, the sets of attitudes are changing constantly, so the set S of
attitudes whose properties are inferred in the condition of the policy will usually not be the set of
attitudes after the policy has been applied. However, we, and the policies we write, ignore this
problem and (except for special kinds of policies mentioned later) always assume that the properties
in question are invariant under deliberation. This is usually a safe assumption for properties like “is
inconsistent” or “contains no procedure for installing light bulbs” are rarely affected by deliberation
alone.

6.1.1 Belief

The major reasons for changing one’s belief are to explain some unexpected fact, to cope with
surprises while taking actions, to resolve conflicts, and to adopt or abandon beliefs with specific
long-term consequences in actions or otherwise. Properly, the following policies describe changes
to the set of inferences recorded as justifications, since the program derives its current set of beliefs
from the current set of justifications.

B1: If someone informs me of a fact, try to explain it from my previous beliefs, or try to detect
its inconsistency with them.

In general, one always seeks to explain surprising facts, but as far as I know, no completely
adequate account has been given of what surprising beliefs are, why one wants to explain them, or
exactly what it means to explain them. Schank [1979] classifies new information by subject matter
and uses these classifications in deciding whether or not to investigate its consequences.

B2: If the observed effects of an action conflict with the effects I predicted, then try to explain
the failure of the predictions.

Observations might lead one to abandon conflicting predictions, but they rarely explain the
failure without further explanation.

B3: If at some times I seem to act as though I believed B and at other times as though I believed
¬B, try to determine which I believe and make me do so consistently.

Often one reflects on one’s actions to justify or rationalize them to oneself. This is particu-
larly true of actions carried out unconsciously (as in primitives). These rationalizations involve
constructing imaginary desires, beliefs, and intentions which would have lead to the action, that is,
pretending the action had been taken to carry out an intention directly, and asking what that intention
was and why it was held. If this process gives seemingly incompatible rationalizations on different
occasions, there may be some confusion which can be clarified.

B4: If the current set of beliefs is inconsistent, then try to remove the inconsistency.
Here the set of beliefs is inconsistent if it contains two beliefs A and B such that A∧B is contra-

dictory.
B5: If the current set of justifications contains an unsatisfiable circularity, try to make it satisfi-

able.
This is not a condition ordinarily recognized during reflection, but rather a condition noticed

by RMS. These unsatisfiable circularities can be viewed as describing paradoxical statements or

139

DOYLE

inferences that cannot be taken as either true or false, or valid or invalid. The simplest response to
this condition is to reject the final inference to paradox, to ignore it, as when one laughs upon being
told Russell’s paradox.

B6: If the current set of non-monotonic assumptions about things currently supports an unhappy,
depressed, frustrated, or other undesirable outlook, and the same set of non-monotonic inferences
can support by reinterpretation a happy or other desirable outlook, then try to switch the interpreta-
tion of these assumptions to the happy or more desirable outlook.

This policy expresses a policy similar to B4 about inconsistent beliefs. There are many reasons
one might avoid certain patterns of beliefs, not just that they are inconsistent, but also that they
have other bad qualities besides the confusion caused by inconsistency. The message of many self-
help books is that while sometimes our unhappiness results from pain and other true discomfitures,
frequently our unhappiness is merely an interpretation we needlessly impose on our beliefs, that
is, merely a set of inferences better left unmade. For example, one might feel bad because one
makes the inference “I’m a terrible person because I’m an incompetent singer.” The solution is to
recognize oneself making this inference and avoid it, in the same way one might avoid taking the
final step of the argument to Russell’s paradox. One avoids making the undesirable inference and
cultivates instead alternate inferences from the data, such as “I should take voice lessons because
I’m an incompetent singer,” or “It’s good I enjoy singing for myself, because my incompetence
would really aggravate others,” or “ I can earn tidy sums by singing until people pay me to stop or
leave.”

B7: If the current set of beliefs contains beliefs which might have undesirable effects in the
future, then try to change to beliefs which do not lead to undesirable effects.

Where B6 notices currently annoying aspects of beliefs, B7 attempts to anticipate possible future
annoyances. A contemporary example of such a change is the business executive who becomes a
Republican to avoid hindering future promotions made by Republican superiors. The classical
example of such a change of belief is Pascal’s wager. Pascal believed that if God exists, then He must
have the traits attributed to Him by the Christian Bible. Pascal reasoned that if he had faith in God,
then at worst he would miss out on life’s voluptuary pleasures, and at best he would gain admission
to Heaven, which for him was by far the most one could hope for in any mode of existence. He
reasoned further that if he withheld faith in God, at best he would sample life’s voluptuary pleasures,
and at worst would suffer infinite torment in Hell. Pascal judged the eternal possibilities more
important to him than the transitory human opportunities, and adopted the Christian faith.3

6.1.2 Concepts

Since concepts or the theories in the hierarchical database do not refer to the world, but rather are
used by attitudes in referring to the world, it does not make sense to speak of a concept as an attitude,
of a concept being incorrect because it does not match reality. If it did, we would have to conclude
Pegasus to be an incorrect concept. Rather, the following policies create and revise concepts on
the basis of completeness, efficiency, and correctness with respect to a shared vocabulary among

3His musing on this question was the cause of his faith, but not its reason. That is, his deliberation lead him to form
an intention to adopt this faith. The intention depended on the prior beliefs. The faith did not depend on the prior beliefs,
for it was purely an effect of an action taken to carry out the intention. While the intention is the cause of the action taken
to satisfy it, the action record on which the faith depends is an observation, a premise, of the program about itself, and
does not depend via reasons on the intention. There are many interesting subtleties about the nature of action here, but
we will not pursue them now.

140

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

discussants. Since there is a large literature on concept formation and revision, which suggests
many policies for these changes, I merely present a few of the most basic ones.4

C1: If the same combination of concepts (e.g. a log from one ground to another) is constructed
on two occasions for different problems (traversing a stream and a crevasse), create a new concept
(bridge) whose structure is that combination.

C2: If one concept (e.g animal) has too many specializations (dog, perch, horned toad) in
the hierarchy for efficient searching, create new intermediate concepts (mammal, fish, reptile) to
decrease the branching factor and capture commonalities.

C3: If people persistently seem to misunderstand one’s use of a concept (e.g. elephant), inves-
tigate their concept to see whether they mean the same thing (that large African quadruped with the
round face, big teeth, that spends a lot of time in the river and swims under and upsets boats).

6.1.3 Desires and Intentions

Like incorrect beliefs, unsatisfiable desires can sometimes lead to injury or frustration, so care must
be exercised in deciding which desires and habits one inculcates or breaks. Intentions are usually
more transitory than one’s basic desires, but without frequent review of one’s plans it is easy to fall
into continuing to carry out intentions whose reasons have long since departed.

D1: If a desire for the forseeable future leads only to undesirable effects, such as frustration
through one’s inability to satisfy it, and to no redeeming influences on one’s actions, then attempt
to abandon the desire.

For example, I might abandon my desire for drinking soft drinks, as they are often without
redeeming feature and not without unsavory aspects, but I might not abandon my overindulgence in
book-buying, as there are almost always good aspects of this problem.

D2: If a possible desire might have desirable influences on one’s behavior, try to inculcate it.
Many people, for example, develop a desire for regular exercise to improve their vigor.
D3: If someone admired expresses certain desires and not others, try to emulate that person by

inculcating a similar set of desires.
This sort of policy is often part of a large plan when the admired person is a potential friend, as

when one adopts new interests so as to be able to converse at length with someone.
I1: If one holds an intention because it is part of a plan, the justification (or superior) of which

has been defeated (abandoned), and the intention is not necessary for cleaning up after previously
executed intentions, then abandon the intention.

Of course, to this short list should be added the many planning techniques which rely on reflect-
ing on one’s intentions, such as those of Sacerdoti [1977] and Tate [1975]. These policies include
resolving inconsistencies in one’s desires and intentions.

I2: If one holds inconsistent intentions (e.g circular priorities between intentions), change them
to restore consistency.

6.1.4 Values

The program’s values as embedded in policies can be reflected on to increase their coherence and
completeness.

4See Winston [1975], Fahlman [1979], and Fox [1978].

141

DOYLE

V1: If one’s values have, during deliberation, proven to be inconsistent or paradoxical, then try
to modify them to avoid similar problems in the future.

Here policies are called inconsistent if they draw opposite conclusions from the same data, such
as “If it’s raining, then go inside” and “If it’s raining, then stay outside”. Policies are paradoxical
in some cases if their application leads to preferences with multiple interpretations or unsatisfiable
circularities in RMS. These paradoxes result from the fragmentation of value, from the need to
make unitary decisions based on disparate considerations. The paradoxes manifest themselves most
familiarly in non-transitive preferences between options, which make the result of deliberation de-
pend not only on the reasons for and against the options, but also on the order in which they are
considered. The typical example of such a situation is in, say, political campaigns, in which one
prefers candidate A to B, and B to C, but prefers C to A, and so prefers A if they are presented in
the order CBA, but prefers C if they are presented in the order BAC.

V2: If one’s values have, in many deliberations, proven to have consistent results after much
reasoning, then summarize the net decisions in new policies which are based on but replace in
action the previous policies.

Sometimes I find myself going through the same old arguments each time the same decision
confronts me. In these cases I often step back and decide the question once and for all (barring
irresoluteness or later information being discovered). For example, I never rehash the arguments
for and against holding doors for people, as I decided long ago to always hold doors, and to handle
problems with this approach as they (infrequently) arise.

V3: If one is frequently confronted with a dilemma which is always broken randomly, adopt
some new value to avoid the effort of this decision.

6.1.5 Skills

As in the case of belief, there are many sorts of reasons for modifying one’s set of skills, which
we will interpret to mean one’s procedures, both plans and primitives, along with their method
statements.5 Changes to the set of skills include both developing new skills and modifying existing
skills, there being a number of reasons for modifying skills.

The basic case of skill development is that of one-time construction in problem solving, when
one puts together a plan for solving a problem which may or may not be retained in the library of
procedures. New skills are constructed from old ones, either by combining several procedures in
some arrangement, or by modifying a copy of a procedure for some similar problem.

S1: If one will need in the future to achieve some aim by some means satisfying some specifi-
cations, the construct such a procedure, index it under that aim, and describe it with those specifica-
tions.

The specification of procedures, as we have touched on previously, is still an active area of
study, as these specifications can refer not only to input-output behavior, but also to complexity,
explicability, intermediate states, and other aspects of the process.

An important part of one’s skills is the description of the procedures. These descriptions serve
not only to index the procedures so that they may be considered when relevant, but also to specify
their intended and observed effects. A common cause for modification or maintenance of a skill is
when a mismatch develops between these descriptions and the reality of the procedure’s capabilities.

5Policies are parts of plans for deliberating, and the previous subsection mentioned how one might make deliberating
more efficient by reorganizing one’s set of policies.

142

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

These mismatches can result from changes in the program’s attitudes, changes in the patterns of use
of the procedure, changes in the physical realization of the program, or changes in the physical
environment of its realization. For example, I must modify my speaking skills when I find myself
committed to teaching my first class. I must modify my motor skills as I grow older and the physical
realizations of my procedures fails to match what I think they can do. I similarly must modify my
motor skills if I move to Luna, where my previous skills no longer have the intended effects. Other,
less general mismatches occur when applications of the procedures in novel circumstances discovers
failures or other unexpected results.

S2: If a skill fails to achieve its expected effects in a normal situation, then it is broken, so
modify it to restore its functionality.

S3: If a skill fails to achieve its expected effects in an exceptional or unconsidered situation,
modify the set of skills to cover this case as well.

S4: If a skill achieves its expected effects but has undesirable side-effects, repair it to avoid
those side-effects.

S5: If a skill has unexpected but desirable effects (serendipitous performance), analyze it to
extract a skill for these desirable effects.

6.2 Mechanisms of Change

As we sketched previously, the mechanisms for these changes are procedures in the library of proce-
dures. The techniques employed are based on an analysis of the reasons underlying the attitudes to
be changed, since to be an effective change the program must modify not only the attitudes directly
under consideration, but also those underlying them in their reasons.

6.2.1 Belief

The basic approach towards belief revision suggested here is that of incremental revisions guided
by policies expressing preferences between alternate partial revisions. In other terms, the policies
express the relative tenacities with which the program holds its beliefs. This means that the pro-
gram begins revising its beliefs by deciding on some particular beliefs to change. As it attempts to
change those beliefs, it discovers that further decisions must be made about how to accommodate
the changes in the remaining beliefs. These steps of decision and partial revision alternate until the
system of beliefs has been coherently modified in accordance with the intended revision.

This sort of revision accounts for the policies B2, B4, B5, and B6 above. B2, B4, and B6 are
about changing beliefs, and B5 is about fixing the set of justifications for beliefs, but since we make
all changes in beliefs by adding and defeating justifications, we can handle all of these changes
using the same techniques. We view unsatisfiable circularities as inconsistent specifications for
the set of beliefs, inconsistencies in the reflected justifications. Similarly, we view the undesirable
conditions of B2, B4, and B6 as inconsistencies. B4 concerns inconsistencies directly. B6 we
interpret as an inconsistency between actual beliefs and intended beliefs, and B2 we interpret as an
inconsistency of action or predictions of those effects, where the predictions are inferences from the
action record and the action specifications. However, matters are complicated by the ambiguity of
belief revisions. When beliefs derived by inferences or actions conflict with previous beliefs, there
are many ways of reconciling the conflicting belief. Any participating belief may be rejected, not
just the previous beliefs, and what revision is made depends on the context of the inconsistency. For

143

DOYLE

example, the ways of resolving an inconsistency are different depending on whether the program
was just thinking through an action (planning), or whether the program actually took the action. If
the action was a hypothesized part of a plan, the program might choose to discard the action and try
another. If it actually took the action, it might discard the action (and so think that the action was
hallucinated) or find some assumption about the world that must be wrong. Suppose the program
tries to lift a large object via a cable on a crane. If it lifts the crane and detects that the object still
rests in place, it might reason that either it imagined lifting the crane, or that its senses reporting that
the object remained unmoved are wrong, or that its assumption that the cable would hold the object
was wrong, that it snapped.

This problem of ambiguity of belief revision leads to one of the three forms in which the in-
terpreter makes decisions via decision intentions. If RMS reports an inconsistency following a
primitive execution, or an ambiguity in the revision necessary to incorporate the primitive’s effects,
the program reflects on this ambiguity by creating a decision intention. In the case of an inconsis-
tency, it is an intention to decide how to remove the inconsistency. In the case of a direct ambiguity,
it is an intention to decide which of the alternatives to take.6

Now primitives should rarely lead to deliberation about how to revise beliefs. If they are prop-
erly organized, they will do all the necessary belief revision directly. The basic idea here is that
“properly organized” means that the primitive action or revision procedure is a procedure compiled
from more complex deliberation procedures by specializing the processes to take into account the
usual-case information about the effects of that particular action. For example, a primitive which
updates some list kept as an attached value might justify the new attachment and defeat the justifi-
cation of the previous attachment with a justification mentioning the new attachment.

Action-specific belief revision procedures incorporate information about how the action nor-
mally affects beliefs: what sorts of beliefs are normally involved, what the normal alternate revi-
sions are, and which revision is the usual one, that is, which beliefs are normally rejected by the
action and which new beliefs normally take their place.

This information about the normal alternatives and preferences in belief revision is stated as
policies which suggest and discriminate between revisions. For example, one might tell a human
“If you feel cold after taking this drug, it is because of the drug and not because it is cold outside.”
This policy would be very useful in explaining conflicts between a feeling that it is cold outside and
observations of a thermometer and the sweltering of others indicating that it is hot.

As another example, assume that the program is being used to solve problems of manipulating
a set of blocks with a one-arm manipulator. Here we might give the program information about
the normal effects of the manipulation primitives. Two different such policies to guide its decision
might be as follows.

(1) When a block is moved from one place to another, give up the belief that it occupies the
current location rather than rejecting the conflicting belief that it now occupies the new location.
(Of course, this looks much like the add list/delete lists used in STRIPS.)

(2) When planning actions rather than taking them, if a block is moved and a conflict arises
between the belief about the block’s new location and the location of some other block (a collision),
give up the action and its effects rather than the belief about the other block, and then plan a different
action (perhaps one to get rid of the obstacle block followed by the current action).

6It would be a very interesting task to encode RMS largely as policies guiding deliberate changes of beliefs, so
that RMS would take the form of a MACRO-RMS/MICRO-RMS combination analogous to MACRO-TORPID/MICRO-
TORPID. This might be developed into a belief system closer to human belief systems than the current RMS.

144

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

There are similarities in spirit between this formulation of action effects and some previous
approaches to belief revision. As mentioned above, Strips’ add and delete lists [Fikes and Nilsson
1971] were essentially policies which specified which of the several possible revisions to take.
Rather than just using a modal statement of the action effect, e.g. After A, P is true and Q is false,
and letting these two statements conflict with the existing database statements, the add and delete
lists say, e.g. After A, take P rather than¬P,¬Q rather than Q.

Another technique is the use of “gripe handlers” (or “complaint departments”) introduced in
BUILD [Fahlman 1974]. These are procedures provided explicitly to discriminate between the
revisions possible following the discovery of an inconsistency. The gripe handler of the procedure
taking some action might be invoked with the information that the action caused a collision (a
conflict between two beliefs about block locations), or an unstable structure either at the source
or at the target of the moved block, or other errors. The gripe handlers in BUILD never rejected
beliefs about the blocks in question, but always rejected some action or actions in the current plan.
The gripe handlers would classify the error type (collision, instability, etc.) and would either reject
some action itself, or would look at the goal structure of the plan and pass the problem off to the
gripe handler of some specific other action. These gripe handlers seem very similar in conception
to revision procedures, save that they only reject actions in the plan rather than beliefs in general.

A final technique for comparison is that of resolution rules as developed in AIMDS [Sridha-
ran 1976, Sridharan and Hawrusik 1977]. These are also close in spirit to our revision procedures.
AIMDS splits belief revision into two sorts of rules: recognition rules, which are statements of
logical and causal dependencies between the primary effects of the action and other beliefs, and
resolution rules, which are rules for selecting one of the revisions possible given the related beliefs
computed by the recognition rules. While it is claimed possible for AIMDS to generate the recog-
nition rules itself (by rephrasing the logical axioms describing the domain to summarize chains of
inferences), the examples presented do not contain all dependencies, and thus do not allow any be-
lief to be rejected. Also, the system does not use the resolution rules as a way of deliberating about
what change of belief to make, but interprets them as imperatives. That is, if there are a number
of (possibly incompatible) resolution rules, AIMDS tries them one-by-one until the action of some
rule is not rejected by the database, rather than realizing that there is a decision to be made about
which resolution rule to use. Also, how the database decides to reject a proposed change is not
spelled out, although this involves values implicitly.

I have nothing to suggest about how to handle policies like B3, as it deserves further study.
B7 describes a “leap of faith.” This can be implemented by justifying the belief as a premise

and by adopting policies to defend the belief during belief revision. Thus if the program wishes
to have faith in the statement “I believe in God,” it first asserts this belief as a premise. (Actually,
the adopted belief depends only on the realization record for the belief-adoption action. In this way
the adopted belief is recalled as having been adopted, but does not depend on other beliefs, such
as those which lead to its adoption.) The program similarly can adopt policies as premises which
defend the belief against change in any inconsistency, action, or other revision process. Perhaps
much of the difficulty humans have in adopting new positions and making them stick stems from
the relative ease of adopting a belief as opposed to adopting also all the policies and procedures
necessary to make the belief enter effectively into actions and decisions.

145

DOYLE

6.2.2 Concepts

I will not go into techniques for revising the set of concepts at all, as this topic is adequately covered
in numerous other works, as far as it has been explored. As usual, however, alternate ways of revis-
ing the set of concepts will be the subject of deliberation and policies will embody the program’s
values concerning organizations of its database.

6.2.3 Desires and Intentions

Sacerdoti [1977, 1979] explains a number of techniques for reflecting on ordering policies and
other intentions in planning. Shrobe [1979b] discusses how reflection on desires and intentions
allows their revision upon satisfying one particular desire or intention, using reason-analyzing tech-
niques, but without deliberation. Basic desires and policies are much like premise beliefs, and the
techniques for inculcating and abandoning them are similar to those for leaps of faith, although they
normally need not require further defensive policies.

6.2.4 Values

The question of how to revise values and their embodiments in policies is unexplored as far as I
know, and neither have I pursued it here.

6.2.5 Skills

HACKER [Sussman 1975] learned procedures for manipulating hypothetical blocks with a hypo-
thetical one-armed manipulator. It started its career with a couple of primitives for the manipulator,
a store of general programming and planning tricks, a few facts about the world of blocks and
about its manipulator, and a store of general ways to analyze and correct bugs in programs. When
presented with a problem, HACKER would either remember or construct a program for solving
it. If it constructed the program, it did so either by generalizing a piece of code used for solving
a similar problem in some other program, or by using general planning techniques to combine its
own primitives to achieve complex conditions. If the remembered or constructed program worked,
Hacker remembered it and went on to the next problem to be solved. If the program failed, how-
ever, HACKER performed a ritual self-examination to correct the program if possible. It would first
construct a description of the “process” in which the error occurred, this including the history of the
executed actions, their effects, their teleology, and the intentions being carried out. It would then
ask several questions about this process model to determine the bug type. Some questions were
counterfactuals, i.e. could such-and-such a step have been inserted without conflicting with other
goals at that time? Other questions matched certain abstract process models against the actual pro-
cess model to see if it realized the bug type associated with the abstract process model. The answer
to these questions was the type of bug underlying the error. HACKER then searched the library of
bug-patches with this bug type and with the patch located patched the failing program. HACKER
repeated the tryout and fix cycle until either the program worked or until no way could be found to
solve some problem, in which case HACKER gave up.

However, the trouble HACKER went to in analyzing its bugs resulted in large part from its
lack of the sorts of techniques we have developed in this thesis for representing the reasons and
intentions of the program. For example, all of the information HACKER painfully sifted from

146

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Conniver contexts and control stacks in building its process models is exactly the sort explicitly
available in justifications, the sets of desires and intentions, and the action history.

Since skill modification is such an important part of efficient and effective action, especially in
a program whose careful operations are as complex as ours, we illustrate the ideas developed in the
previous chapters by reformulating HACKER using our techniques. This reformulation also raises
a number of topics for future research, particularly hypothetical reasoning and historical reconstruc-
tion, which we hint at but have not pursued in the detail they deserve.

HACKER involves three major plans:

1. DEVELOP - for developing a new skill from scratch,

2. CRITICIZE - for patching a known bug in a program under development, and

3. DEBUG - for fixing a program manifesting an error.

We present these plans informally in English.

DEVELOP
1. If the skill is in the procedure library, DEBUG.
This step retrieves a procedure for an intention via the usual method statement techniques used

by the interpreter. DEBUG will carefully test the procedure to see if it works, and patch it if it does
not.

2. Otherwise, construct a new procedure.
HACKER uses two methods to construct new procedures.
The first method is to generalize or variabilize part of a plan used to solve some previously

encountered similar problem, and make this a new plan. At the same time, this part of the plan is
replaced in the plan it was extracted from by a call to the new plan with the appropriate arguments.
In this way, any improvements made to the new plan are automatically shared by the original plan.

The second procedure construction method is to apply general problem solving techniques of
problem reduction, etc. to come up with a new plan by combining other plans. We won’t go into
this familiar subject.

More learning occurs when the first of these techniques is used, for in it many procedures are
simultaneously improved and extended. The second method is more difficult than the first. Not
only are the general problem solving techniques quite expensive, but in addition debugging a new
program is more difficult, since several bugs may be introduced at the same time, thus making bug
localization and analysis very complex.

3. PerformCRITICIZE.
4. PerformDEBUG.
5. Compile the working program.Just as programs in ordinary programming languages can be

compiled into machine code, plans can be compiled into more specialized plans and into primitives.
The basic idea is just to take a plan and some restricting conditions, such as expected initial circum-
stances, or a particular library of procedures and policies, and then to symbolically execute the plan
under these restrictions and make a more specialized plan or primitive from the decisions made and
actions taken in the symbolic execution. Plan compilation involves all the techniques standard in
ordinary compilation, such as constant folding, dead code elimination, loop optimizations, etc. In
addition, the plan compiler uses policies about when to coerce independent steps of a plan into a
sequence, when to replace deliberations by conditionals computing the outcome of the deliberation,

147

DOYLE

when to substitute subplans or primitives into plan steps, and when to transform information passed
through plan variables into information stored in local data-structures.

CRITICIZE
1. If there are criticisms of the program, patch it.The program critics of HACKER and the plan

critics of NOAH had essentially the same form, that of looking for occurrences of subplans and
replacing the faulty subplan with a new one. For example, HACKER would look for steps in the
wrong order and reverse them, while NOAH would look for improperly unordered steps and order
them. We phrase these sorts of criticisms as policies. Thus this step consists of a decision intention
to formulate and choose between possible revisions of the program. To avoid incompatible changes,
only one revision is selected, and the plan recurses to effect further necessary modifications.

2. If it was modified, CRITICIZE.

DEBUG
1. If it works, done.A proposed program is tested to see if it works not by direct execution,

which would leave no information to analyze an error with, but instead by symbolic execution.
In symbolic execution the temporal situations occurring before and after each program step are
modeled as theories copying the current state of mind. The initial conditions are stated in the
initial situation, and the actions are simulated by applying their specifications or descriptions. This
involves, for example, taking a Floyd-Hoare specification P→[a]Q, trying to infer P in the prior
situation, and if successful, concluding Q in the subsequent situation. All specifications of each
action are so applied, and a directed acyclic graph of situations results.7 The symbolic execution
halts either when the simulation is complete or when an inconsistency or other problem is inferred
in one of these situations.

It would be more attractive to simply use the interpreter to carry out this simulation directly,
without recording explicit temporal situations. However, this would then necessitate the ability to
reconstruct past situations from finished intentions and the action history. As Chapter 7 explains,
this is a difficult problem awaiting solution.

2. Classify the bug.
This procedure analyzes the reason for the error by asking questions about the structure of

reasons and actions leading to the error. The goal is to take the surface manifestation of the error
and reconstruct the underlying bug type. This is done by asking certain hypothetical questions about
the surface manifestation and by matching the surface manifestation against a variety of abstract
“process models” to determine the appropriate classification of the bug type.

There are four basic types of surface manifestations of errors:unsatisfied prerequisites, in which
some condition necessary for the application of some primitive did not hold at the appropriate
time; protection violations, in which one action interferes with conditions protected by some other
ongoing action;failed actions, a catch-all category which ought to be refined, intended to include
mechanical breakdowns, slippages, overlimits, hardware errors, etc.; anddeja vu, my version of
HACKER’s double move “error.” This is really not an error as such, but humans seem to be very
good at recognizing certain types of repeated or similar situations, and get a lot of mileage out of
recognizing them. This is generalized to any noticed similar repetition, from HACKER’s which
only caught repeated movements of the same block.

7Shrobe [1979a] explains this technique in detail.

148

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

There are five basic underlying bug types:prerequisite clobbers brother(PCB), in which achiev-
ing one prerequisite of some action undoes the previous achievement of some other prerequisite of
that action;prerequisite missing(PM), in which the plan lacks actions to achieve some condition
prerequisite for taking some action;prerequisite clobbers brother goal(PCBG), in which achieving
a prerequisite of one action undoes the effect of some other action which together with the first
action worked to achieve some complex end;strategy clobbers brother(SCB), in which performing
one strategy uncovers new information which might allow a previously failed strategy to succeed;
andanomalous, a catch-all bug type for those errors unclassifiable as any of the preceding, which
should be refined into useful categories.

Sussman presents the flowchart shown in Figure 13 for performing the classification of surface
manifestations into bug types. The decisions are as follows:

1. Would U.-P. being true now conflict with the current goals?

2. Was the U.-P. ever true before in this problem?

3. Pattern-match to see if PCBG.

4. Pattern-match to see if SCB.

5. Several pattern-matches to see if PCB.

6. Pattern-match to see if PCB or PM.

These questions are answered by much the same techniques as used in HACKER, and I won’t go
into the details of just what sorts of patterns the various policies recognize.

3. If it is memorable, summarize the bug.
One should not bother remembering dismissed errors or trivial mistakes like fingers slipping

while dialing a telephone number. In this step, the program deliberates on whether to record the bug
as a policy which will recognize and patch its future occurrences in new programs. This involves
trying to explain the error as a one-time affair, or a something that is likely to recur. As far as I
know, no one has explored grounds for making these decisions.

4. Patch the bug.
This step just applies the selected critic policy to the plan being criticized.
5. PerformCRITICIZE.
6. PerformDEBUG.

149

DOYLE

Symptom Diagnosis

Deja Vu

Unsatisfied
Prerequisite

Protection
Violation

Dismiss

PCB

PM

PCBG

SCB

Anomalous

PCB?

PCB?

UP true
before?

UP/goal
conflict?

PCBG?

SCB?

-

-

-

-

? -

? -

-

-

-

6

6

?

?

Y

N

Y

N

N

N

Y

Y

N

N

Y

Y

Figure 13: HACKER’s Debugging Flowchart

150

Chapter 7

DISCUSSION

If it is not true, it is a happy invention.
Anonymous, 16th century

In this thesis, I have attempted to present some problems and viewpoints I feel are central to
the task of designing intelligences. I will be satisfied if the preceding has succeeded in conveying
the nature and importance of these problems and viewpoints. The techniques presented here are
admittedly rudimentary and ill-explored, but they have been developed sufficiently to indicate the
feasibility of this approach. However, none of the details of any technique herein is suggested as
the final word; they all deserve to be superseded by more careful analyses, further experimentation,
and application.

This chapter is in six parts. The first two parts summarize the key ideas and the principal tech-
nical contributions of the thesis. The third section lists a number of directions for future research.
The chapter closes with three rather speculative sections concerned with the relation of affect and
intellect, the limits of self-knowledge as seen in this approach, and the meaning of the program to
itself.

7.1 Summary of the Key Ideas

The primary idea of the thesis is that of an architecture for a reasoner which can refer to, reason
about, and modify any aspect of its own organization and behavior. Thisself-conscious, adaptive
architectureis motivated by the need to carefully consider what to do when solving difficult prob-
lems and when carrying out complex tasks. The self-referential abilities of the reasoner are based on
a meta-theoretical database, explicit reasons for attitudes, and explicit sets of the reasoner’s beliefs,
desires, intentions, and skills. Themeta-theoretical databaseallows both self-reference in the large
(the reasoner referring to itself as a whole) and self-reference in the small (the reasoner referring to
its parts). Self-reference in the small allows the program to treat its own concepts and descriptions
as objects. This permits not only treatment of a number of classical problems in representation the-
ory, but also allows the efficient organization of the database into a hierarchy of concepts. Explicit,
non-monotonic reasonsform the basis of the reasoner’s self-representation of its reasoning actions.
These are used indefeasible reasonsin a form of decision-making calledreasoned deliberation,
which reflects on these reasons to conductdialectical argumentationabout the possible outcomes
of the decision. Non-monotonic reasons also form the basis of the reasoner’s self-explanatory and

151

DOYLE

self-modifying abilities. Theexplicit sets of attitudesform the basis of the reasoner’s actions. The
program reflects on itself and its current state of mind as captured in its current sets of attitudes
to take actions including revising of the sets of beliefs to remove an inconsistency, forming an
intention to pursue a desire, or carrying out an intention by means of some procedure (either a
plan or a primitive) in the hierarchical procedure library. This procedure library contains part of
the self-description of the program in the form ofmeta-circular interpreters, giving the reasoner
a representation of its own procedures in its own language of problems and actions. Unlike many
traditional studies in AI, we separate the notions of goal intodesiresandintentions, to make clearer
the processes involved in complex problem solving reasoning and actions. Certain intentions, called
policies, act as intentions to reason in certain ways during deliberations, and so embody thevalues
of the program.

7.2 Summary of the Principal Contributions

The main contribution of this thesis, I feel, is in a coherent, if incomplete, synthesis of a number of
important ideas developed by a number of authors. I hope that this synthesis points up directions
for future investigation, and that it helps articulate some of the ideas I believe have been held by the
authors I draw from. In addition to the synthesis of many important ideas, the thesis has presented
novel technical contributions on the following topics, in order of their appearance.

Chapter 2 presented the basis of the correct interpretation of virtual copies of descriptions in log-
ical terms, namely as substitution and inference of meta-theoretical statements. This was used in the
construction of propositional attitudes, and in the correct interpretation of “context” mechanisms,
wherein concepts and beliefs augment the current set of concepts and attitudes.

Chapter 3 presented uniformly defeasible reasons, the correct basis for adaptive and reflective
reasoning programs.

Chapter 4 emphasized the advantages of desires and intentions over ambiguous “goals,” the
interpretation of policies as intentions to reason in certain ways during deliberations, and the correct
interpretation of of procedures as partial states of mind which in execution augment the current state
of mind. We also presented a meta-circular reasoning program.

Chapter 5 introduced reasoned deliberation, the first class of formal decision-making procedures
to correctly account for reasons, dialectical debates, reflection, and the fragmentation of values.

Chapter 6 introduced deliberate changes of the mental state and their importance in explainable
and correctable self-modifications.

The last part of Chapter 7 will draw a new conclusion about the paradox of human existence.

7.3 Directions for Future Research

As mentioned earlier, almost every concrete technique developed here should be viewed with suspi-
cion of shortcomings. The preceding chapters have on occasion mentioned some of these shortcom-
ings, and this section catalogues some of the incompletenesses not mentioned in detail previously.
These topics deserve further study, and in some cases are crucial to the construction of a fully op-
erative program, but I have not had the time or inclination to pursue all of them in this thesis. I am
convinced that none of these holes harbors a homunculus, but that is something only experimenta-
tion can demonstrate.

152

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

1. Make “virtual” copies virtual: SDL, as implemented, actually copies all its copy theories,
resulting in a real pile of data-structures here and there, and the ensuing costs in storage space.
This may be unavoidable, but it seems almost certain that specialized accessing algorithms can
allow these copies to be virtual, that is, temporarily constructed, interrogated, and discarded only
when necessary, so that the long-term storage requirements do not exceed that used for the basic
information being represented. Fahlman [1979] has developed algorithms of this sort, but for a
slightly different set of data-structures, and without the use of a RMS. I have tried to avoid making
design decisions which would rule out algorithms approximating his, for his suggestion of radically
parallel database organizations seems very attractive for the long view of information retrieval.

2. Reorganize the RMS interface:RMS was designed as an independent subsystem, and in
the absence of more comprehensive techniques of control, was vested with a substantial amount of
responsibility for choosing among alternate belief revisions, responsibility it should not bear and
that this thesis has tried to relieve. The rather haphazard interface between RMS and the decision-
making procedures is one result of this. In addition to those questions about RMS suggested for
study in [Doyle 1979], the overall organization of RMS should be rationalized in light of its actual
role in the larger reasoning program architecture.

3. Develop convenient syntaxes:There should be a better syntax to facilitate the input and
output of information. This thesis hides some of the ugliest of the reality of using what exists of the
program.

4. Encode information about the world in the database:I could not even attempt to present
an impressive display of the powers of this approach to reasoning because I lack an encoding of a
sizable body of information about some problem domain other than the program itself, which is of
considerably simpler structure than the rest of the world. Again, I share this problem with others,
although there are currently appearing a number of database of facts (but few procedures) about
domains.

5. Encode plans in the plan library:Of course, this is a subproblem of the previous problem, as
any competent program needs not only the facts but know-how.

6. Catalogue various deliberation procedures:In addition to encoding the values and the spe-
cialized, problem-specific decision procedures of the domains of action in the program, more study
should be applied to develop abstract deliberation procedures in several levels of generality. Ratio-
nalization and completion of the library of second-order and higher-order policies seems a primary
topic for inquiry, along with investigation of the form of fully recursive or reflective deliberation
procedures.

7. Build a better vocabulary of processes:The language of the interpreter includes only a
rudimentary vocabulary for describing plans and processes. Extensions of this vocabulary depend
in part on building up more descriptions of the external world in the database, and in part on the
progress of computer science in developing process description languages, parallel and otherwise.

8. Build a better vocabulary of deliberation:As a subproblem of the preceding, the vocabulary
of actions of policies should be extended.

9. Develop a vocabulary of advice types:One aim of this thesis has been to develop mechanisms
useful in building a program which can accept, assimilate, and use facts and hint on how to use them.
But I have not explored how these pieces of advice might be best conveyed. An important problem
involved in realizing a program of this sort is in discovering a vocabulary of advice for imparting
facts, values, and skills. For example, informal hints about how to make some decision include
advice like (a) choose any one you like, (b) choose quickly, (c) keep in mind that it is raining,

153

DOYLE

and (d) give my suggestion every conceivable consideration or benefit of a doubt. A formal advice
vocabulary ought to include formal analogues of these sorts of hints. The problem of advice is
closely tied with the discourse understanding problems mentioned below, for humans frequently
give procedural or value information as declarative statements, and rely on the advisee to ask and
answer questions like What could they have possibly meant by that? and What problem do they
think I am facing that that fact would be relevant to?

10. Apply self-models in hypothetical reasoning:Many sorts of reasoning processes require
the ability to answer questions of ability and other hypotheticals. Many of these questions can be
answered by envisioning or predicting the actions and intentions described by the question. One
important topic for investigation is that of using the self-description of the program in hypothetical
reasoning. Symbolic execution of the self-description can be used to see what actions would be
taken and what their effects would be in certain circumstances, without actually taking the actions
or requiring the realization of the circumstances. Symbolic execution involves setting up a sequence
(properly, a directed acyclic graph) of temporal situations linked by actions, and asserting the effects
of an action in its final situation whenever the preconditions of the action can be proved in its initial
situation.1 In symbolic execution of the self-model, then, the program would create a new state
of mind to represent the hypothetical actions. It would then assert the initial conditions in this
frame of action, and begin executing within it. Instead of executing its primitives, it would use the
specifications of the primitives to assert their effects. The answer to the hypothetical question is
then answered by examining this record of symbolic execution.

Symbolic execution of self-models also is valuable in skill introspection and development.
Many of the studied techniques for analyzing Lisp programs into plans depend on symbolic ex-
ecution of the programs and plans. Similarly, the techniques of maintenance and compilation of
programs require symbolic execution not only for introspection, but also for compilation of primi-
tives from plans.

11. Refine the techniques for plan compilation:One important application of symbolic exe-
cution is in compiling refined plans and primitives from other plans and restricting information.
Developing the standard compilation techniques (constant folding, dead code elimination, etc.) in
this context is an important requirement for the future success of this sort of program. For example,
guidelines need to be developed for (a) when to coerce independent steps of a plan into a sequence,
(b) when to reduce deliberation to choices or conditionals, (c) when to transform plan variables to
local variables or data-structures, and (d) when to substitute subplans or primitives for tasks in a
plan.2

12. Study formal historical interpretation:Collingwood [1946] suggested that the aim of history
is not just to record annals, but to discover psychological explanations of the actions of men. This
involves not only discovering the facts of a situation, but also the ways the participants viewed the
situation and the possible actions available to them. That is, the goal of the historian is to infer
the attitudes or mental state of each of the participants in the event. The obvious difficulty in this
enterprise is the ambiguity of mental states as determined by the recorded physical actions. Even if
we have complete annals of the actions of an event, there might have been many completely different
mental states of participants which could explain these actions. Was President Nixon an amoral
criminal, was he a patriot desperately defending the security of his country, or was he neither of

1Shrobe [1979a] gives detailed examples of this technique. See also [Hewitt and Smith 1975].
2Burstall and Darlington [1977] and Clark and Sickel [1977] explore program transformations to aid efficiency, and

their techniques might be adapted to the plan-compilation task.

154

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

these? To answer questions like this, we must examine all of his actions to see if they are consistent
with one interpretation but not another (moderated by an assumption of his rationality). But it may
happen that all of our information about his actions is consistent with several interpretations, so that
we cannot answer the question.

The program must also make historical analyses of events, for example, to determine just what
error was made in some past decision or construction of a procedure when that decision or procedure
later leads to an error which must be corrected and avoided in the future. But in this the program
also faces ambiguity in reconstructing its past mental states, despite its wealth of records about
actions, inferences, and decisions. There are two major sources of this ambiguity. The first is
that justification are atemporal records of inferences, so it is difficult to tell just what the set of
justifications was at some past time. But even if this problem was overcome, a second source of
ambiguity is that a given set of non-monotonic justifications typically admits several interpretations
as distinct sets of attitudes. Of course it might be possible to determine which set of attitudes
existed from the following actions and inferences, but techniques for making these judgements are
completely unexplored. For example, one might think that this problem might be solved by keeping
some sort of history list of all inferences and actions. But this cannot work, because these records
will be subject to the same insecurity that afflicts other beliefs about the past.3

13. Apply self-models in discourse and multi-agent planning:One attractive application of
hypothetical reasoning by symbolic execution of program models is in using several such models
to describe the reasoning faculties and attitudes of other agents for use in cooperative activities like
conversations. The proposal here is to employ not just the theory ME, the program’s theory of itself,
but several copies of ME, one to represent each other person being considered, each copy modified
to reflect the differences of that person from the program in its beliefs, desires, values, and skills.
Of course the most perspicuous organization of these multiple person models is to have a theory
of the prototypical person, describing the common knowledge and skills of people, and to have all
other theories be modified copies of this prototype. Each of the particular person models would be
used for different people, and further copies of them would be used to represent different people at
different times, or in hypothetical situations as mentioned above for ME. Anonymous copies of the
prototypical person theory would be used to answer hypothetical questions about the behavior of
typical people. Finally, the program might maintain particular person descriptions as its consciences
or ideal self-models, so that during deliberation it can query these descriptions to see what is the
“right” thing to do (i.e. what would I do if I were perfect?).

How the program might develop such models of its acquaintances from a general person model,
or alternatively, develop its general person model from its models of itself and others, are interesting
unexplored topics.

14. Separate the logics of belief, desire, and intention:In the use of RMS I suggested viewing
intentions and other program structures not as embodiments or representations of intentions, but as
beliefs of the program about its intentions. This suggestion was motivated by the desire to subsume
all logics of reasoning into the single logic employed by RMS. While this view may be temporarily
useful, it may be ultimately misguided. Different attitudes have different logics, and more argument
than was presented seems to be necessary for their unification.

3It might seem that this cannot work because the recording of these actions must involve further actions which cannot
themselves be recorded on pain of an infinite regress. This may be avoided by having the actions described by the records
include the recording substeps as well.

155

DOYLE

A related drawback of this approach of viewing program attitudes as beliefs about attitudes is
that it offers a confusion about the “levels” of the program’s beliefs. For example, humans some-
times infer that they possess certain attitudes from observations of their actions, as in “I didn’t think
I wanted to eat, but looking at the amount I put away, I must have been really hungry.” But the belief
that I desire food in such a case must be different from the desire for several reasons. First, I might
be wrong in the inference, in which case my inference would hardly constitute a desire. Second, the
reasons for the belief are purely in terms of other beliefs about my actions. But the reasons for a
desire will, if the desire is not basic, in general involve both beliefs and desires.

It may be that the particular approach taken in the thesis overcomes these problems, but that is a
topic for further investigation. My guess is that the primary error is simply my interpretation of these
structures as beliefs about attitudes, rather than the more natural interpretation as the realization of
the attitudes themselves. My interpretation stems from a view of RMS as working only with a logic
of belief, rather than with several logics for different attitudes. Perhaps the only change necessary
is to change the operation of RMS so that it respects these different logics for different attitudes.

Part of this possible confusion between the attitudes seems to stem from an asymmetry between
the types of attitudes. Namely, desires and intentions are each represented as statements of the form
Desire(content) or Intention(content), where the contents are further concepts. Beliefs, however,
are represented as RMS-node(content), where a RMS-node is not a predicate symbol, and content
is not a concept. Finding some reorganization or interpretation of these attitudes would go a long
way towards cleaning up this problem.

15. Explore the relations of desires to intentions:My treatment of desires and intentions and
their relations has been most cavalier. The problem of how and when intentions are formed from
desires seems to have received scant study, at least in the parts of the literature on practical reasoning
that I have examined.

16. Investigate multiple loci of consciousness:We described the consciousness of the pro-
gram as the perceptions of the interpreter, and unconscious primitives as programs for any other
interpreter. But there may be many loci of unconscious action, as the various primitive program
interpreters may be distinct machines, as is common practice in the CPU-peripheral organizations
of modern computers. We have no similar suggestions about how consciousness might be broken
into several loci. We have suggested that there might be several interpreters, each active at different
times, and that deliberation procedures can also reflect on the current mental state. Are these prop-
erly thought of temporally distinct loci of consciousness? Can consciousness involve simultaneous
perceptions of several simultaneously operating subsystems?

7.4 Affect, Intellect, and Complex Self-Descriptions

We have presented a model for rational thought which employs only the simplest realizations of
a few mental attitudes. While these prove useful for many purposes, the next step is to formalize

156

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

a wider range of mental attitudes, such as carefulness, confusion, hesitation, and others.4 Once
formalized, these new attitudes may be put to the service of a more powerful reasoner.

Consider the mental attitudecarefulness. Carefulness has entered experimental AI programs,
including this thesis, only in an informal,ad hocway. A program often has two ways of carrying out
some activity. Of these, one procedure acts in an automatic fashion, carrying out its steps without
pause. The other procedure separates each step with checks to see if it is safe to proceed, that is,
whether certain exceptional conditions have arisen from the execution of the previous step. In such
cases, common practice is to call the former procedure the normal one, and the second procedure
the “careful” version, or “careful mode.”

Of course, in these cases the program does not call one procedure careful and the other heedless,
it is the programmer who does so. But if the program could also make these discriminations among
procedures, its planning and skill development capabilities would be substantially enhanced. When
constructing a plan in hierarchical fashion, if the intended result is to be a careful plan, the program
might make judgements about which of the steps of the plan must be realized in a careful fashion,
and so influence the design of these steps. The program might also deliberately choose to be careful
when it judges that it is acting without as much information as it normally prefers, or when it
realizes that its actions are likely to be very important or consequential. Thus it would be valuable
to formalize some notion of being careful about something so that the program can make decisions
about whether to be careful or not, rather than restricting these decisions to the programmer.

Considerconfusion. This is a very useful attitude to be able to recognize in oneself, for we all use
several plans for getting out of confusions. For example, when attempting a difficult project, such as
implementing a large program for one’s thesis, it is common to try making decision A, postponing
it when one gets stuck, working on decision B, postponing B because it seems to depend on first
deciding A, working on C until seeing that it depends on the outcome of B, working again on A
only to find that it depends on C. From personal experience, I can aver that at this point I realize
I’m confused about what to do. What do I do? I apply my realization to think of ways out of my
confusion, such as making a graph of the dependencies I perceive among the decisions, and then
trying to see if I can make one of the decisions arbitrarily so that I can proceed, and fix it later if it
doesn’t work out. Of course I try to pick the choice so that fixing it will not be hard, and so that I
will make some progress on the other decisions even if the first is wrong, but the main plan is just to
make a choice, knowing that it may not be defensible. If I can be more effective in this way because
I can recognize and act on my confusion, a program should be able to enjoy the same facility.

Finally, considerhesitation. If one can see that one is hesitating about a decision, then that is a
valuable consideration in making related choices. In particular, the related choices should be made
so that they depend as little as possible on successfully carrying through the hesitant decision. As
in the above confusion example, a deadlock breaking decision might be crucial but hesitant, and so
its correctness should not be counted on heavily by dependent decisions.

4In this section, I have been substantially impressed and motivated by the ideas of Marvin Minsky and Seymour
Papert, first in the 1978 draft of their book on the Society of Mind, and later in Minsky’s paper on affective exploitation
[Minsky 1980]. In addition to exploring the interaction (and in one sense, unity) of affect and intellect, Minsky tries to
invert a common conception of affect as complex and intellect as transparent by suggesting that intellectual mechanisms
might be built out of simpler affective mechanisms. My suggestions in this section are to study how affect might be
built from intellect. At this stage of investigation, my suggestions should not be taken as opposing Minsky’s view. Any
connection between the two paths of construction is likely to provide ways of building either sort of mental attitude from
the other. Where one starts is a matter of convenience. Since this thesis builds up much of the intellectual mechanisms of
reasoning, it is most convenient here first to build affect from intellect, and then to build intellect from affect.

157

DOYLE

How might we formalize hesitation? Dennett [1978b] suggests the following possibility. He
makes a distinction between belief and opinion, where belief is a graded feeling (possibly described
by Bayesian evolution rules) upon which action is really based, while opinion, on the other hand,
he takes to be all or none assent to linguistic statements. Hesitation (and self-deception) he explains
as cases in which one has developed opinions which do not comfortably match one’s beliefs. Thus
on the basis of a chain of inferences one might make the rational decision to take some action, but
since the beliefs involved are not completely certain one has little confidence in the conclusion of
the argument, in spite one’s avowal that it is the right thing to do. One is willing to declare one’s
intention, but when it comes down to actually taking the action, one’s action, based on the uncertain
beliefs rather than on the opinion, does not carry out the intention. Dennett’s suggestion might fit
into the presently proposed program by identifying what he calls opinions with what I call beliefs,
and what he calls beliefs with something derived from policies.

Just as one recognizes complex intellectual attitudes and employs them in deciding what to do,
one also recognizes and similarly employs one’s emotions. For example, I see myself getting tired
and unwilling to continue writing the next chapter of my thesis. To carry through with my intention
to finish the chapter by the evening, I carry out a plan which involves imagining how unpleasant
prolonged matriculation would be. The plan is based on the expectation that this thought will prove
so horrifying that I will resume writing with renewed vigor and determination.

To illustrate these ideas more concretely, but extremely simplistically, consider policies like the
following.5

If the decision is important, prefer to continue deliberating.

If the reasoner is sick, tired, debilitated, mentally impaired, or
otherwise has reason to suspect its mental faculties, try to delay the
decision.

If the decision is hateful or distasteful, try to reject the decision.

If the reasoner is angry, frustrated, or confused, try to delay the
decision and relax and reorganize.

If the reasoner is despairing of being able to decide, choose randomly.

In these I just try to indicate, without providing any mechanisms for how one might make these
judgements, of how affective or emotional considerations might enter into the decision-making
process. If one’s mind and body are on the fritz, one shouldn’t think unless forced to. If one can’t
stand making the choice, one frequently finds reasons to impugn the choice, to reject it. If one
merely finds the choice annoying or distasteful, one just avoids it until time pressure sets in or until
it goes away. If one is confused, angry, or frustrated, one delays and relaxes, and perhaps engages
in other plans like making lists of options, reorganizing them, etc.

The main point I’m trying to get across here is that if one develops some way of recognizing
or observing emotional states by the program looking at itself, then I have sketched how one might
proceed to use these sorts of judgements in rational thought, particularly in the ability of thinking

5See [Carbonell 1979] for another approach towards formalizing and using attributions of emotions and complex
mental states.

158

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

rationally about one’s own psychological problems. Machines will probably get depressed too, and
we ought to figure out how to help them get themselves out of it.

Many emotions may prove useful to a computer program. However, this idea requires much
experimentation and study in programs with vastly different forms of their psychologies. Not only
will their specific beliefs and skills differ, but the form of their mental lives will differ. There will
the purely intellectual programs (Mr. Spock’s Revenge), intellects that can hope and fear as well,
and perhaps some programs constructed to share the full range of human emotions.

This sort of study would be an ideal laboratory for studying which parts of man’s mental life
are truly valuable for some purposes, and which parts, if any, are unnecessary accidents of evolu-
tion and physiology. Just as geneticists may someday discover enough to allow man to direct his
physiological evolution, experimental alien intelligences may help psychologists discover enough
to let him direct his psychological evolution as well.6 On a smaller scale, these experiments may
help man improve his repertoire of informal self-analysis and self-help techniques. Given man’s
age-old desire to direct his future for his own benefit, I see no reason to fear man’s obsolescence
in the shadow of superintelligent machines. He is much likelier to obsolesce in the shadow of his
children.

7.5 The Limits and Accuracy of Self-Knowledge

I have a left shoulder-blade that is a miracle of loveliness. People come miles to see it.
My right elbow has a fascination that few can resist.

Sir W. S. Gilbert,The Mikado

How much can the program know about itself? The mechanisms described in this thesis seem
to suggest the following directions for investigation.

The program has a model of, in fact direct access to, its nominal sets of concepts, beliefs,
assumptions, reasons, desires, intentions, actions, values, and skills. In spite of this, the program
can be mistaken about these attitudes because its skills, in particular those comprising the basic
operation of the program, need not be fully understood by it for it to be operable. If the program does
not correctly understand the details of its own procedures and how they affect its perception of its
attitudes, we might expect the program to be just as confused about the corrigibility of introspection
as we are, for as far as it can tell, it has incorrigible access to all of its mental states. But if the
program realizes that it has incomplete or possibly incorrect understandings of its own procedures,
then it can conclude that its need not have incorrigible access. The program’s access need not be
priviliged, for it may run on a computer which displays its entire mental state in a huge bank of
lights, and someone watching these lights with an understanding of the design of the computer
would be able to tell at least as much about the program as the program itself.

In fact, the program might have a much easier time at introspection than humans, for humans
have not clear access and knowledge of their basic mechanisms. It appears possible to give such
access and knowledge to a carefully designed machine. A growing literature on program under-
standing has been concerned with developing techniques for taking a program and analyzing it into
its intentional structure. The program under analysis is first converted into itssurface plan, which

6In fact, Wilson [1978] suggests that these two endeavors are more closely connected that is sometimes thought, that
if we wish to guide our physical evolution, we must also consider the effects on our psychological evolution.

159

DOYLE

simply indicates the data and control flow connections between the parts of the program. This sur-
face plan is then analyzed further into thedesignof the program. The design consists of thedeep
plansunderlying the surface plan together with the teleological justifications of the organization and
deployment of these plans. Thus the program understanding task takes a program and attempts to
infer the decisions and plans that went into its construction, inverting the design process.

The success of this analysis process depends primarily on (1) having a sufficiently rich library
of standard plans, and on (2) the program under analysis having some purpose. For the first require-
ment, Barstow [1977], Rich [1980], and others have developed catalogues of standard programming
plans and techniques, and the completion of this task seems to now depend on energies expended
in its pursuit rather than on overcoming unsolved problems. For the second requirement, it appears
that most analyses can be made successfully using only the information that the program has a pur-
pose, not what that purpose is. de Kleer [1979a,b] found, in the similar task of analyzing electronic
circuits into their underlying designs, that almost all analyses succeeded in finding a unique inter-
pretation of the function of the circuit and its components using only the technique of abandoning
any interpretation in which some component’s function could not be explained. And in those cir-
cuits for which multiple possible functions were determined in spite of this heuristic, the circuit
usually can be used to perform any of the several functions, and information about the context of
use of the circuit suffices to determine which of these interpretations is correct in that context.

The import of these techniques is that they can be embodied in the program just like any other
procedures, and in fact, self-applied so that by itself it can determine the structure of all of the
LISP functions making up its procedures. If the language in which these plans are phrased is the
same as that used by the plans in the plan library, this means that when the program constructs a
new procedure, the records left in its design process constitute the analysis of the new procedure.
Therefore, the program need not analyze the new procedure further, since its teleological structure
is already known.

At the next level of languages down, the program can apply the same techniques with a dif-
ferent vocabulary of surface syntax and plans to understand the machine code implementing these
LISP functions. This process can be continued, to give the program an understanding of how ma-
chine instructions are implemented in transistors and resistors, how these are implemented in semi-
conductors and conductors, and the atomic, even nuclear and subnuclear structure of these, just
as humans seek to understand their construction in anatomical, biological, chemical, and physical
terms.

In fact, just as the program can modify its own procedures at the highest levels of this chain
of implementations, there is no intrinsic barrier (given enough information and suitable sensors and
effectors) to the program changing its own construction at these lower levels, for example, by repair-
ing its circuitry, or even transmitting itself to a new computer host (with or without “terminating”
its previous “self”).7

What does all this say about the privacy, directness, and corrigibility of the program’s self-
knowledge? That apparently its mental states need not be any more private than the contents of a
normal computer; that it can have direct access to its internal processes to the machine level and not
beyond; and that it need not always be correct in its self-understanding. One might build the program
in a computer that displays its complete internal state, but neither this nor taps on these lights will

7Sandewall [1979] discusses such self-reproduction as a means towards periodically salvaging the useful attitudes
and skills of the program. His idea is that the program replaces itself with a “child” made only from all the useful stuff,
leaving all the deadwood behind.

160

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

permit “mind-reading” without knowledge of the design of the computer and hence the meanings
of those states. The program might interpret its ability to change aspects of itself purely by thinking
down to the machine language level but not beyond as a difference between mental and physical.
And without the procedures to analyze its own procedures or information about the reliability of
its hardware, the program can be mistaken about the behavioral import of its consciously visible
attitudes. But with such self-analysis procedures and its recorded reasons for attitudes, the program
will be able to say, perhaps with much better justification than humans, things like “part of me wants
to do this, and part of me says not” by tracing its attitudes through its reasons to its procedures and
other attitudes.8

7.6 The Limits of Reason and the Absurd

If when my wife is sleeping
and the baby and Kathleen
are sleeping
and the sun is a flame-white disc
in silken mists
above shining trees, –
if I in my north room
dance naked, grotesquely
before my mirror
waving my shirt round my head
and singing softly to myself:
“I am lonely, lonely.
I was born to be lonely,
I am best so!”
If I admire my arms, my face,
my shoulders, flanks, buttocks
against the yellow drawn shades, –

Who shall say I am not
the happy genius of my household?

William Carlos Williams,Dance Russe

This final section discusses some of the most fundamental problems raised by the question
“What should I do?” in light of the architecture for a reasoner developed in this thesis. The con-
clusion is simply a heightening of the paradox of human absurdity to the paradox that absurdity is a
consequence of being best at catering to self-significance.

For the program as described to survive, it must matter to itself, it must be self-significant. The
actions of the program all involve changing itself. At each step the program packages up its current
mental state as a new object, thus entering a new state containing the reified previous state. The

8Would the construction of artificial intelligence ever occur as a problem to such a program? Perhaps its notion of
artificial intelligence would be organically and genetically developed intelligence. Perhaps AI would really be “alternative
intelligence.”

161

DOYLE

program then makes further changes in its sate on the basis of reflecting, on examination of the
reified previous state. Its continual question of what to do is always that of how to change its state.
(Any effects in the physical world of these mental changes result from the realization of the machine
as a physical device with causal connections to the rest of the physical world.) Some changes the
program can make in itself can destroy it. For example, it can abandon all its procedures without
replacing them by new ones, so that it has no means by which to act in the future. For the program
to have some way of preferring other, more sane changes to this one, it must value its own survival.
It must be self-significant.

Since the program can self-consciously discuss itself, its survival values can be justified in terms
of predicted non-survival. All of the program’s attitudes will either appear to it to be premises (de-
pending on no other attitudes), mutually supporting attitudes, or attitudes depending on attitudes
of the first two sorts. Indeed, all attitudes may be mutually supporting to some degree if hypothe-
ses can always be inferred from sufficiently many of their consequences. For either premises or
mutually supporting attitudes, the program might attempt to find further justify justifications. Such
justifications cannot be in terms of other attitudes, or the point of the effort has been missed. The
justification also cannot be in terms of the programmer or other external agents, lest the question
be begged by merely rephrasing it as a similar question of justification for the external agents. The
only sort of answer that seems to be left is a pragmatic one: that doing things one way works (leads
to continued survival), and that doing things differently is less certain of working.

For example, Quine invents the metaphor of the web for our systems of beliefs.9 Our sensory
impressions, hypotheses, theories, laws of nature, and laws of reason all populate a great web of
belief, beliefs interconnected so that changes in one lead to changes in others, so that any belief
may be changed through changes in sufficiently many other beliefs. When confronted with new
information, new entries, and changes in the web, we make further changes, either to accommodate
or to reject the new entries. Changes most frequently occur in the “sensory” beliefs at the web’s
periphery, and rarely have repercussions in the web’s interior, at the center of which reside the laws
of reason and unshakable faiths. In the web metaphor, the only difference between beliefs relevant
to their change is the tenacity to which we cling to them, and the tenacity increases as we proceed
from the web’s periphery to its center. But what is this tenacity of grip on beliefs? Quine suggest
that the reasons we hold the beliefs we do are purely pragmatic, that we change our beliefs so that
they lead to successful survival. There is nothing wrong with other changes, it is just that we die if
we make them, and along with us ends our web of belief.

But note the form of pragmatic justifications of attitudes:because holding otherwise leads to
non-survival. To formulate such justifications, the program must be able to realize the possibility
of its own non-survival as opposed to it own survival, and hence the possibility of its non-existence
as opposed to its existence. This means that the program must be able to view itself as an entity of
(possibly) limited temporal duration, and its own life-span as a segment of eternity. It must be able
to think of itself as a finite object existing in an infinite eternity, or in traditional terms,sub specie
aeternitatis.

Here enters the paradox of human absurdity. As an adaptive agent, the program must be self-
significant. But as a self-conscious agent, the program can realize its eternal insignificance, and
hence a sense of self-insignificance. It sees that while its values make it matter to itself, outside the
span of its existence its values have no meaning. Hence the program can see that the way things are

9In section 6 of [Quine 1953].

162

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

does not matter to it if it is not. Further its being not does not matter to eternity, since there are no
standards for things mattering to eternity.10

Nagel [1979a] phrases this paradox as the result of dragooning transcendent consciousness into
the service of mundane existence. Adaptiveness alone may suffice for survival, as is shown by the
lower animals and plants. But animals and plants are not absurd, because they are not both self-
conscious and adaptive. Only agents both adaptive and self-conscious are absurd, that is, permit the
possibility of encountering this paradox of simultaneous self-significance and self-insignificance.

But as this thesis has argued earlier, self-consciousness is necessary for maximal effectiveness
in adaptation. Only by self-consciously reflecting on our past and potential actions can we avoid as
many pitfalls as possible. Thus absurdity is no accident. The program must adapt to survive, must
be self-conscious to be superior at adapting, and hence must be absurd. In the terms of the theory
of evolution, the fittest are the absurd.

And nevertheless I am weary, and I know that there can be no rest for me in the heart of
this great city which thinks so much, which has taught me to think, and which forever
urges me to think more. And how avoid being excited among all these books which
incessantly tempt my curiosity without ever satisfying it? At one moment it is a date
I have to look for; at another it is the name of a place I have to make sure of, or some
quaint term of which it is important to determine the exact meaning. Words? – why,
yes! words. As a philologist, I am their sovereign; they are my subjects, and, like a
good king, I devote my whole life to them. But will I not be able to abdicate some
day? I have an idea that there is somewhere or other, quite far from here, a certain little
cottage where I could enjoy the quiet I so much need, while awaiting that day in which
a greater quiet – that which can never be broken – shall come to wrap me all about. I
dream of a bench before the threshold and of fields spreading away out of sight. But
I must have a fresh smiling young face beside me, to reflect and concentrate all that
freshness of nature. I could then imagine myself a grandfather, and all the long void of
my life would be filled....

Anatole France,The Crime of Sylvestre Bonnard

10Wheeler [1977] and others have suggested that eternity may never exist except when it is possible that some observer,
or self-significant agent might exist as part of it.

163

DOYLE

164

References

In the following,IJCAI refers to one of theInternational Joint Conferences on Artificial Intelligence,
held in odd-numbered years.

Allison, G. T., 1971. Essence of Decision: Explaining the Cuban Missile Crisis, Boston: Little,
Brown.

Anderson, R. M. Jr., 1975. Paradoxes of cosmological self-reference,Induction, Probability, and
Confirmation(G. Maxwell and R. M. Anderson Jr., eds.), Minneapolis: University of Min-
nesota Press, 530-540.

Anscombe, G. E. M., 1957.Intention, London: Basil Blackwell.

Aristotle, 1962.Nichomachian Ethics(M. Ostwald, tr.), Indianapolis: Bobbs-Merrill.

Arrow, K. J., 1967. Values and collective decision-making,Philosophy, Politics, and Society III(P.
Laslett and W. G. Runciman, eds.), London: Basil Blackwell.

Asimov, I., 1950.I, Robot, New York: Gnome Press.

Asimov, I., 1964.The Rest of the Robots, New York: Doubleday.

Aune, B., 1977.Reason and Action, Dordrecht: D. Reidel.

Austin, J. L., 1962.How To Do Things With Words, Cambridge: Harvard University Press.

Backus, J., 1973. Programming language semantics and closed applicative languages,Proc. Symp.
on Principles of Programming Languages, 71-86.

Barnard, C. I., 1938.The Functions of the Executive, Cambridge: Harvard University press.

Barstow, D. R., 1977. Automatic construction of algorithms and data structures using a knowledge
base of programming rules, Stanford AI Laboratory, Memo AIM-308.

Barth, J., 1960.The Sot-Weed Factor, New York: Doubleday.

Bell, C. G., and Newell, A., 1971.Computer Structures: Readings and Examples, New York:
McGraw-Hill.

Bell, D., 1976.The Cultural Contradictions of Capitalism, New York: Basic Books.

165

DOYLE

Belnap, N. D., 1976. How a computer should think,Contemporary Aspects of Philosophy(G. Ryle,
ed.), Stocksfield: Oriel Press, 30-56.

Bennett, J., 1964.Rationality, London: Routledge and Kegan Paul.

Bobrow, D. G., and Winograd, T., 1977. An overview of KRL, a knowledge representation lan-
guage,Cognitive Science 1, 3-46.

Boden, M. A., 1977.Artificial Intelligence and Natural Man, New York: Basic Books.

Boolos, G., 1979.The Unprovability of Consistency: An essay in modal logic, Cambridge: Cam-
bridge University Press.

Borning, A. H., 1979. Thinglab: a constraint-oriented simulation laboratory, Ph.D. thesis, Stanford
University, Department of Computer Science.

Brachman, R. J., 1978. A structural paradigm for representing knowledge, Bolt, Beranek, and
Newman, Report 3605.

Brachman, R. J., and Smith, B. C., 1980. Special issue on knowledge representation,ACM Sigart
Newsletter 70.

Brand, M., ed. 1970.The Nature of Human Action, Glenview: Scott, Foresman.

Braybrooke, D., and Lindblom, C. E., 1963.A Strategy of Decision: Policy Evaluation as a Social
Process, New York: Free Press.

Brown, A. L., 1976. Qualitative knowledge, causal reasoning, and the localization of failures, MIT
AI Laboratory, TR-362.

Brown, F., 1977. The theory of meaning, University of Edinburgh, Department of Artificial Intelli-
gence Research Report 35.

Brown, F., 1979. A theorem prover for meta theory,Proc. Fourth Workshop on Automated Deduc-
tion, 155-160.

Burstall, R. M., and Darlington, J., 1977. A transformation system for developing recursive pro-
grams,J. ACM24, 44-67.

Camus, A., 1955.The Myth of Sisyphus and other essays, New York: Random House.

Carbonell, J. G., 1979. Computer models of human personality traits, Carnegie-Mellon University,
Computer Science Department, CS-79-154.

Carnegie, D., 1936.How to Win Friends and Influence People, New York: Simon and Schuster.

Carnegie, D., 1944.How to Stop Worrying and Start Living, New York: Simon and Schuster.

Cartwright, R., and McCarthy, J., 1979. Recursive programs as functions in a first-order theory,
Stanford CSD Report 79-717.

Castaneda, H.-N., 1975.Thinking and Doing, Dordrecht: D. Reidel.

166

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Cattell, R. G. G., 1978. Formalization and automatic derivation of code generators, Carnegie-
Mellon University, Computer Science Department.

Chandler, A. D. Jr., 1962.Strategy and Structure: Chapters in the History of the Industrial Enter-
prise, Cambridge: MIT Press.

Charniak, E., Riesbeck, C., and McDermott, D., 1979.Artificial Intelligence Programming, Balti-
more: L. E. Erlbaum.

Chisholm, R., 1978. Practical reason and the logic of requirement,Practical Reasoning(J. Raz,
ed.), Oxford: Oxford University Press, 118-127.

Church, A., 1941. The calculi of lambda-conversion,Annals of Mathematics Studies 6, Princeton.

Clark, K., and Sickel, S., 1977. Predicate logic: a calculus for deriving programs,IJCAI-77, 410-
411.

Cohen, P. R., 1978. On knowing what to say: planning speech acts, Department of Computer
Science, University of Toronto, TR-118.

Collingwood, R. G., 1946.The Idea of History, Oxford: Oxford University Press.

Collins, A., 1978. Fragments of a theory of human plausible reasoning,Proc. Second Conf. Theo-
retical Issues in Natural Language Processing, 194-201.

Dacey, R., 1978. A theory of conclusions,Philosophy of Science 45, 563-574.

Davis, L. H., 1979.Theory of Action, Englewood Cliffs: Prentice-Hall.

Davis, R., 1976. Applications of meta level knowledge to the construction, maintainance and use of
large knowledge bases, Stanford AI Laboratory, Memo AIM-283.

Davis, R., 1980. Meta-rules: reasoning about control, MIT AI Laboratory, Memo 576.

Dennett, D. C., 1969.Content and Consciousness, London: Routledge and Kegan Paul.

Dennett, D. C., 1978a. Current issues in the philosophy of mind,Amer. Phil. Quarterly 15, 249-261.

Dennett, D. C., 1978b. How to change your mind,Brainstorms, Montgomery, Vermont: Bradford
Books, 300-309.

Dennett, D. C., 1978c.Brainstorms, Montgomery, Vermont: Bradford Books.

de Kleer, J., 1979a. Causal and teleological reasoning in circuit recognition, MIT AI Laboratory,
TR-529.

de Kleer, J., 1979b. The origin and resolution of ambiguities in causal arguments,IJCAI-79, 197-
203.

de Kleer, J., Doyle, J., Steele, G. L. Jr., and Sussman, G. J., 1977. Explicit control of reasoning,
Proc. ACM Symp. on Artificial Intelligence and Programming Languages, Rochester, New
York, also MIT AI Laboratory, Memo 427.

167

DOYLE

de Kleer, J., and Harris, G., 1979. Truth maintenance systems in problem solving, draft, Xerox
PARC.

Doyle, J., 1976. The use of dependency relationships in the control of reasoning, MIT AI Labora-
tory, Working Paper 133.

Doyle, J., 1977. Hierarchy in knowledge representations, MIT AI Laboratory, Working Paper 159.

Doyle, J., 1979. A truth maintenance system,Artificial Intelligence 12, 231-272.

Doyle, J., and London, P., 1980. A selected descriptor-indexed bibliography to the literature on
belief revision,SIGART Newsletter 71.

Dray, W. H., 1964.Philosophy of History, Englewood Cliffs: Prentice-Hall.

Dreyfus, H. L., 1979.What Computers Can’t Do, revised ed., New York: Harper and Row.

Drucker, P. F., 1946.Concept of the Corporation, New York: John Day.

Drucker, P. F., 1974.Management: Tasks, Responsibilities, Practices, New York: Harper and Row.

Duda, R. O., Hart, P. E., and Nilsson, N. J., 1976. Subjective bayesian methods for rule-based
inference systems,Proc. National Computer Conference, AFIPS Conference Proceedings
Vol. 45, 1075-1082.

Dummett, M. A. E., 1973. The justification of deduction,Proc. British Academy, Vol. LIX.

Edgley, R., 1969.Reason in Theory and Practice, London: Hutchinson.

Ellis, A. and Harper, R. A., 1961.A Guide to Rational Living, Englewood Cliffs: Prentice-Hall.

Enters, H., 1924. An meine Geschwister in Deutschland,Die Kleine, muehselige Welt des jungen
Hermann Enters(K. Eckert, ed.), Wuppertal: Born-Verlag 1970.

Ernst, G. W., and Newell, A., 1969.GPS: A Case Study in Generality and Problem Solving, New
York: Academic Press.

Fahlman, S. E., 1974. A planning system for robot construction tasks,Artificial Intelligence 5, 1-49.

Fahlman, S. E., 1979.NETL: A System for Representing and Using Real World Knowledge, Cam-
bridge: MIT Press.

Feferman, S., 1960. Arithmetization of metamathematics in a general setting,Fund. Math. LXIX,
53.

Fikes, R. E., 1972. Monitored execution of robot plans produced by STRIPS,IFIP 1971, Amster-
dam: North-Holland, 189-194.

Fikes, R. E., 1975. Deductive retrieval mechanisms for state description models,IJCAI-75, 99-106.

Fikes, R. E., Hart, P. E., and Nilsson, N. J., 1972. Learning and executing generalized robot plans,
Artificial Intelligence 3, 251-288.

168

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Fikes, R. E., and Nilsson, N. J., 1971. STRIPS: a new approach to the application of theorem
proving to problem solving,Artificial Intelligence 2, 189-208.

Fodor, J. A., 1968.Psychological Explanation, New York: Random House.

Fodor, J. A., 1975.The Language of Thought, New York: Crowell.

Fodor, J. A., 1978. Methodological solipsism as a research strategy in psychology, MIT Department
of Psychology, draft.

Fox, M. S., 1978. Knowledge structuring: an overview,Proc. Second Conf. Canadian Society for
Computational Studies of Intelligence, 146-155.

Fox, M. S., 1979. Organization structuring: designing large complex software, Carnegie-Mellon
University, Computer Science Department, CS-79-155.

Freud, S., 1937.The Interpretation of Dreams(A. A. Brill, tr.), New York: Macmillan.

Gaines, B. R., 1976. Foundations of fuzzy reasoning,International Journal of Man-Machine Studies
8, 623-668.

Gardiner, P., 1974.The Philosophy of History, London: Oxford University Press.

Gauthier, D. P., 1963.Practical Reasoning, London: Oxford University Press.

Giles, R., 1976. A logic for subjective belief,Foundations of Probability Theory, Statistical In-
ference, and Statistical Theories of Science, Vol. 1, (W. L. Harper and C. A. Hooker, eds.),
Dordrecht: Reidel, 41-72.

Glover, J., 1976.The Philosophy of Mind, Oxford: Oxford University Press.

Godel, K., 1931. On formally undecidable propositions ofPrincipia Mathematicaand related sys-
tems I,From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931(J. van
Heijenoort, ed.), Cambridge: Harvard University Press, 1967, 596-616.

Goldman, A. I., 1970.A Theory of Human Action, Princeton: Princeton University Press.

Goldstein, I. P., 1975. Summary of MYCROFT: a system for understanding simple picture pro-
grams,Artificial Intelligence 6, 249-288.

Good, I. J., 1952. Rational decisions,Journal of the Royal Statistical Society B 14, 107-114.

Goodman, N., 1973. The problem of counterfactual conditionals,Fact, Fiction, and Forecast, third
edition, New York: Bobbs-Merrill, 3-27.

Gordon, M., Milner, R., Morris, L., Newey, M., and Wadsworth, C., 1978. A metalanguage for
interactive proof in LCF,Proc. Fifth Symposium on Principles of Programming Languages,
199-130.

Green, C., 1969. Theorem-proving by resolution as a basis for question-answering systems,Ma-
chine Intelligence 4(B. Meltzer and D. Michie, eds.), New York: American Elsevier, 183-205.

169

DOYLE

Grice, H. P., 1969. Utterer’s meaning and intentions,Philosophical Review, 147-177.

Grosz, B. J., 1979. Utterance and objective: issues in natural language processing,IJCAI-79, 1067-
1076.

Gustafson, D. F., ed., 1964. Essays in Philsophical Psychology, New York: Anchor.

Haack, S., 1978.Philosophy of Logics, Cambridge: Cambridge University Press.

Hare, R. M., 1952.The Language of Morals, Oxford: Oxford University Press.

Hare, R. M., 1963.Freedom and Reason, Oxford: Oxford University Press.

Harel, D., 1979.First Order Dynamic Logic, Berlin: Springer-Verlag.

Harman, G., 1973.Thought, Princeton: Princeton University Press.

Harman, G., 1976. Practical reasoning,Review of Metaphysics XXIX, 431-463.

Harman, G., 1977.The Nature of Morality, New York: Oxford University Press.

Harper, W. L., 1976. Rational belief change, Popper functions, and counterfactuals,Foundations of
Probability Theory, Statistical Inference, and Statistical Theories of Science, Vol. 1, (W. L.
Harper and C. A. Hooker, eds.), Dordrecht: Reidel, 73-115.

Harrison, A., 1978.Making and Thinking: A Study of Intelligent Activities, Indianapolis: Hackett.

Hayes, P. J., 1970. Robotologic,Machine Intelligence 5(B. Meltzer and D. Michie, eds.), New
York: American Elsevier, 533-554.

Hayes, P. J., 1971. A logic of actions,Machine Intelligence 6(B. Meltzer and D. Michie, eds.), New
York: American Elsevier, 495-520.

Hayes, P. J., 1973a. The frame problem and related problems in artificial intelligence,Artificial and
Human Thinking(A. Elithorn and D. Jones, eds.), San Francisco: Josey-Bass.

Hayes, P. J., 1973b. Computation and deduction,Proc. MFCS Symposium, Czech. Acad. of
Sciences, 105-117.

Hayes, P. J., 1974. Some problems and non-problems in representation theory,Proc. Conf. Artificial
Intelligence and Simulation of Behavior, 63-79.

Hayes, P. J., 1977a. In defence of logic,IJCAI-77, 559-565.

Hayes, P. J., 1977b. The logic of frames, Department of Computer Science, University of Essex.

Hayes, Ph. J., 1977. On semantic nets, frames, and associations,IJCAI-75, 99-107.

Hayes-Roth, F., and Lesser, V. R., 1977. Focus of attention in the Hearsay-II speech understanding
system, Computer Science Department, Carnegie-Mellon University.

van Heijenoort, J., ed., 1967.From Frege to Godel: A Source Book in Mathematical Logic, 1879-
1931, Cambridge: Harvard University Press.

170

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Heinlein, R. A., 1966.The Moon is a Harsh Mistress, New York: G. P. Putnam and Sons.

Hendrix, G. G., 1975. Expanding the utility of semantic networks through partitioning,IJCAI-75,
115-121.

Hewitt, C. E., 1972. Description and theoretical analysis (using schemata) of PLANNER: a lan-
guage for proving theorems and manipulating models in a robot, MIT AI Laboratory, TR-258.

Hewitt, C. E., 1977. Viewing control structures as patterns of passing messages,Artificial Intelli-
gence 8, 323-364.

Hewitt, C. E., and Smith, B., 1975. Towards a programming apprentice,IEEE Transactions on
Software Engineering SE-1, 26-45.

Heyting, A., 1956.Intuitionism: An Introduction, Amsterdam: North-Holland.

Hilbert, D., 1925. On the infinite,From Frege to Godel: A Source Book in Mathematical Logic,
1879-1931(J. van Heijenoort, ed.), Cambridge: Harvard University Press, 1967, 367-392.

Hilpinen, R., (ed.) 1971.Deontic Logic: Introductory and Systematic Readings, Dordrecht: Reidel.

Hintikka, J., 1962.Knowledge and Belief, Ithica: Cornell University Press.

Hofstader, D. R., 1979.Godel, Escher, Bach: An Eternal Golden Braid, New York: Basic Books.

Hook, S., ed., 1963.Philosophy and History, NY: New York University Press.

James, W., 1971. The will to believe,Reason and Responsibility(Feinberg, ed.), Encino: Dicken-
son, 83-90.

Johnson, S. M., 1977.First Person Singular: Living the Good Life Alone, New York: Lippincott.

Kenny, A. J. P., 1978. Practical reasoning and rational appetite,Practical Reasoning(J. Raz, ed.),
Oxford: Oxford University Press, 63-80.

Kierkegaard, S., 1944.The Concept of Dread(W. Lowrie, ed.), Princeton: Princeton University
Press.

Kleene, S. C., 1950.An Introduction to Metamathematics, Princeton: Van Nostrand.

Kornfeld, W. A., 1979. ETHER - a parallel problem solving system,IJCAI-79, 490-492.

Kowalski, R., 1974. Logic for problem solving, University of Edinburgh, Department of Artificial
Intelligence, DCL memo 75.

Kramosil, I., 1975. A note on deduction rules with negative premises,IJCAI-75, 53-56.

Kreisel, G., 1968. A survey of proof theory,J. Symbolic Logic 33, 321-388.

Kreisel, G., 1971. A survey of proof theory II,Proc. Second Scandinavian Logic Symposium(J. E.
Fenstad, ed.), Amsterdam: North-Holland, 109-170.

171

DOYLE

Kreisel, G., 1977. On the kind of data needed for a theory of proofs,Logic Colloquium 76(R.
Gandy and M. Hyland, eds.), Amsterdam: North-Holland, 111-128.

Kripke, S. A., 1975. ”Outline of a Theory of Truth,”Journal of Philosophy, 72, 690-716.

Lakatos, I., 1976.Proofs and Refutations: the logic of mathematical discovery(J. Worrall and E.
Zahar, eds.), Cambridge: Cambridge University Press.

Latombe, J.-C., 1976. Artificial intelligence in computer-aided design: the ”TROPIC” system, SRI,
Technical Note 125.

Latombe, J.-C., ed., 1978.Artificial Intelligence and Pattern Recognition in Computer-Aided De-
sign, Amsterdam: North-Holland.

Latombe, J.-C., 1979. Failure processing in a system for designing complex assemblies,IJCAI-79,
508-515.

Lehrer, K., and Paxson, T. Jr., 1969. Knowledge: undefeated justified true belief,Journal of Philos-
ophy LXVI, 225-237.

Lehrer, K., 1974.Knowledge, Oxford: Oxford University Press.

Lenat, D. B., 1977. The ubiquity of discovery,Artificial Intelligence 9, 257-285.

Lewis, D., 1973.Counterfactuals, Cambridge: Harvard University Press.

Linsky, L., 1971.Reference and Modality, Oxford: Oxford University Press.

Linsky, L., 1977.Names and Descriptions, Chicago: University of Chicago Press.

London, P. E., 1978. Dependency networks as a representation for modelling in general problem
solvers, Department of Computer Science, University of Maryland, TR-698.

March, J. G., and Simon, H. A., 1958.Organizations, New York: Wiley.

Martin, W. A., 1979. Philosophical foundations for a linguistically oriented semantic network, MIT
Laboratory for Computer Science, draft.

McAllester, D. A., 1978. A three-valued truth maintenance system, MIT AI Laboratory, Memo 473.

McCarthy, J., 1958. Programs with common sense, reprinted inSemantic Information Processing
(M. Minsky, ed.), Cambridge: MIT Press (1968), 403-410.

McCarthy, J., et al, 1965.LISP 1.5 Programmer’s Manual, Cambridge: MIT Press.

McCarthy, J., and Hayes, P. J., 1969. Some philosophical problems from the standpoint of artificial
intelligence,Machine Intelligence 4(B. Meltzer and D. Michie, eds.), New York: American
Elsevier, 463-502.

McDermott, D., 1978. Planning and acting,Cognitive Science 2, 71-109.

McDermott, D., 1980. Non-monotonic logic II: non-monotonic modal theories, Yale University,
Department of Computer Science, Report 174.

172

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

McDermott, D., and Doyle, J., 1978. Non-monotonic logic I, MIT AI Laboratory, Memo 486.

McDermott, J., and Forgy, C., 1976. Production system conflict resolution strategies, Computer
Science Department, Carnegie-Mellon University.

McKeeman, W. M., Horning, J. J., and Wortman, D. B., 1970.A Compiler Generator, Englewood
Cliffs: Prentice-Hall.

Miller, G. A., Galanter, E., and Pribram, K., 1960.Plans and the Structure of Behavior, New York:
Holt.

Miller, M. L., 1979. Planning and debugging in elementary programming, Ph.D. thesis, MIT De-
partment of Electrical Engineering and Computer Science.

Minsky, M., 1965. Matter, mind, and models,Proc. of the IFIP Congress, 45-49.

Minsky, M., 1974. A framework for representing knowledge, MIT AI Laboratory, Memo 306,
and (without appendix)The Psychology of Computer Vision(P. Winston, ed.), New York:
McGraw-Hill, 1975.

Minsky, M., 1977. Plain talk about neurodevelopmental epistemology,IJCAI-77, 1083-1092.

Minsky, M., 1979. K-lines: a theory of memory, MIT AI Laboratory, Memo 516.

Minsky, M., 1980. Affective exploitation: a view of emotion and intellect, MIT AI Laboratory,
draft.

Minsky, M., and Papert, S., 1973.Artificial Intelligence, Eugene, Oregon: Condon Lecture Publi-
cations.

Minsky, M., and Papert, S., 1978.The Society Theory of Mind, MIT AI Laboratory, draft.

Montague, R., 1963. Syntactical treatments of modality, with corollaries on reflection principles
and finite axiomatizability,Acta Philosophica Fennica, 16, 153-167.

Moore, R. C., 1979. Reasoning about knowledge and action, Ph.D. thesis, MIT Department of
Electrical Engineering and Computer Science.

Nagel, T., 1970.The Possibility of Altruism, Princeton: Princeton University Press.

Nagel, T., 1979a. The absurd,Mortal Questions, Cambridge: Cambridge University Press, 11-23.

Nagel, T., 1979b. The fragmentation of value,Mortal Questions, Cambridge: Cambridge University
Press, 128-141.

Nagel, T., 1979c. Brain bisection and the unity of consciousness,Mortal Questions, Cambridge:
Cambridge University Press, 147-164.

Nagel, T., 1979d. What is it like to be a bat?,Mortal Questions, Cambridge: Cambridge University
Press, 165-180.

173

DOYLE

Newell, A., 1969. Heuristic programming: ill-structured problems,Progress in Operations Re-
search, Vol. III(Aronofsky, ed.), 360-414.

Newell, A., and Simon, H. A., 1963. GPS, a program that simulates human thought,Computers and
Thought(E. A. Feigenbaum and J. Feldman, eds.), New York: McGraw-Hill, 279-293.

Nilsson, N. J., 1980.Principles of Artificial Intelligence, Palo Alto: Tioga.

Norman, R., 1971.Reasons for Actions, New York: Barnes and Noble.

Nozick, R., 1974.Anarchy, State and Utopia, New York: Basic Books.

Pascal, B., 1971. The wager, fromPensees, in Reason and Responsibility(Feinberg, ed.), Encino:
Dickenson, 81-83.

Perrault, C. R., Allen, J. F., and Cohen, P. R., 1978. Speech acts as a basis for understanding
dialogue coherence,Proc. Second Conf. Theoretical Issues in Natural Language Processing,
125-132.

Post, E. L., 1943. Formal reductions of the general combinatorial decision problem,Am. J. Math.
65, 197-268.

Pratt, V. R., 1977. The competence/performance dichotomy in programming, MIT AI Laboratory,
Memo 400.

Prawitz, D., 1973. Towards a foundation of general proof theory,Logic, Methodology, and Phi-
losophy of Science IV(P. Suppes, L. Henkin, A. Joja, Gr. C. Moisil, eds.), Amsterdam:
North-Holland, 225-250.

Putnam, H., 1975. Philosophy and our mental life,Mind, Language, and Reality, Cambridge:
Cambridge University Press, 291-303.

Putnam, H., 1978. Truth and reason,Reason and History, draft.

Quine, W. V., 1953. Two dogmas of empiricism,From a Logical Point of View, Cambridge: Harvard
University Press.

Quine, W. v., 1966.The Ways of Paradox and other essays, Cambridge: Harvard University Press.

Quine, W. V., 1970.Philosophy of Logic, Englewood Cliffs: Prentice-Hall.

Quine, W. V., and Ullian, J. S., 1978.The Web of Belief, second edition, New York: Random House.

Rabin, M. O., 1974. Theoretical impediments to artificial intelligence,Information Processing 74,
Amsterdam: North-Holland, 615-619.

Rawls, J., 1971.A Theory of Justice, Cambridge: Harvard University Press.

Raz, J., 1978.Practical Reasoning, Oxford: Oxford University Press.

Rescher, N., 1964.Hypothetical Reasoning, Amsterdam: North Holland.

174

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Rescher, N., 1966.The Logic of Commands, London: Routledge and Kegan Paul.

Rescher, N., 1968.Topics in Philosophical Logic, Dordrecht: D. Reidel.

Rescher, N., 1976.Plausible Reasoning, Amsterdam: Van Gorcum.

Rescher, N., and Urquhart, A., 1971.Temporal Logic, New York: Springer-Verlag.

Reiter, R., 1978. On reasoning by default,Proc. Second Conf. Theoretical Issues in Natural
Language Processing, 210-218.

Reiter, R., 1979. A logic for default reasoning, Department of Computer Science, University of
British Columbia, TR-79-8.

Resnik, M. D., 1974. On the philosophical significance of consistency proofs,J. Phil. Logic 3,
133-147.

Reynolds, J., 1972. Definitional interpreters for higher order programming languages,ACM Annual
Conference Proceedings.

Rich, C., 1980. Inspection methods in programming, Ph.D. thesis, MIT Department of Electrical
Engineering and Computer Science.

Rich, C., and Shrobe, H. E., 1976. Initial report on a LISP programmer’s apprentice, MIT AI
Laboratory, TR-354.

Rich, C., Shrobe, H. E., and Waters, R. C., 1979. Computer aided evolutionary design for software
engineering, MIT AI Laboratory, Memo 506.

Richards, D. A. J., 1971.A Theory of Reasons for Action, London: Oxford University Press.

Rosenberg, J. F., 1978.The Practice of Philosophy, Englewood Cliffs: Prentice-Hall.

Rosenberg, R. L., 1980. Incomprehensible computer systems: knowledge without wisdom, MIT
Laboratory for Computer Science, TR-227.

Ross, W. D., 1930.The Right and the Good, Oxford: Oxford University Press.

Rubin, A. D., 1975. Hypothesis formation and evaluation in medical diagnosis, MIT AI Laboratory,
TR-316.

Russell, B., 1908. Mathematical logic as based on the theory of types,From Frege to Godel: A
Source Book in Mathematical Logic, 1879-1931(J. van Heijenoort, ed.), Cambridge: Harvard
University Press, 1967, 150-182.

Russell, B., 1930.The Conquest of Happiness, New York: Liveright.

Rychner, M. D., 1976. Production systems as a programming language for artificial intelligence
applications, 3 Volumes, Computer Science Department, Carnegie-Mellon University.

Ryle, G., 1949.The Concept of Mind, London: Hutchinson.

175

DOYLE

Sacerdoti, E. D., 1974. Planning in a hierarchy of abstraction spaces,Artificial Intelligence 5, 115-
135.

Sacerdoti, E. D., 1977.A Structure for Plans and Behavior, New York: American Elsevier.

Sacerdoti, E. D., 1979. Problem solving tactics,IJCAI-79, 1077-1085.

Sandewall, E., 1979. Biological software,IJCAI-79, 744-747.

Sartre, J.-P., 1956.Being and Nothingness(H. Barnes, tr.), New York: Philosophical Library.

Schank, R. C., 1979. Interestingness: controlling inferences,Artificial Intelligence 12, 273-297.

Schmidt, C. F., Sridharan, N. S., and Goodson, J. L., 1978. The plan recognition problem: an
intersection of psychology and artificial intelligence,Artificial Intelligence 11, 45-83.

Schwartz, S. P., ed. 1977.Naming, Necessity, and Natural Kinds, Ithica: Cornell University Press.

Scott, D., 1973. Models for various type-free calculi,Logic, Methodology and Philosophy of Sci-
ence IV(P. Suppes, L. Henkin, A. Joja, Gr. C. Moisil, eds.), Amsterdam: North-Holland.

Scriven, M., 1959. Truisms as the grounds for historical explanations,Theories of History(P. Gar-
diner, ed.), New York: Free Press of Glencoe, 443-475.

Scriven, M., 1963. New issues in the logic of explanation,Philosophy and History(S. Hook, ed.),
New York: New York University Press, 339-361.

Searle, J. R., 1969.Speech Acts, Cambridge: Cambridge University Press.

Searle, J. R., 1978.Prima facieobligations,Practical Reasoning(J. Raz, ed.), Oxford: Oxford
University Press, 81-90.

Searle, J. R., 1979. The intentionality of intention and action,Inquiry 22, 253-280.

Searle, J. R., 1980. Notes on artificial intelligence,Behavioral and Brain Sciences, to appear.

Shaffer, J. A., 1968.Philosophy of Mind, Englewood Cliffs: Prentice-Hall.

Shrobe, H. E., 1979a. Dependency directed reasoning for complex program understanding, MIT AI
Laboratory, TR-503.

Shrobe, H. E., 1979b. Explicit control of reasoning in the programmer’s apprentice,Proc. Fourth
Workshop on Automated Deduction, 97-102.

Simon, H. A., 1969.The Sciences of the Artificial, Cambridge: MIT Press.

Simon, H. A., 1976.Administrative Behavior, third ed., New York: Free Press.

Smith, B. C., 1978. Levels, layers, and planes: the framework of a theory of knowledge representa-
tion semantics, Masters thesis, MIT Electrical Engineering and Computer Science.

Smith, R. G., and Davis, R., 1978. Distributed problem solving: the contract net approach,Proc.
Second Conf. Canadian Society for Computational Studies of Intelligence, 278-287.

176

A M ODEL FORDELIBERATION, ACTION, AND INTROSPECTION

Smullyan, R. M., 1957. Languages in which self-reference is possible,J. Symb. Logic, 22, 55-67.

Smullyan, R. M., 1978.What is the Name of this Book? The Riddle of Dracula and other Logical
Puzzles, Englewood Cliffs: Prentice-Hall.

Smullyan, R. M., 1980.This Book Needs No Title, Englewood Cliffs: Prentice-Hall.

Sosa, E., 1975.Causation and Counterfactuals, London: Oxford University Press.

Sridharan, N. S., 1976. The frame and focus problems in AI: discussion in relation to the BE-
LIEVER system,Proc. Conf. Artificial Intelligence and Simulation of Behavior, 322-333.

Sridharan, N. S., and Hawrusik, F., 1977. Representation of actions that have side-effects,IJCAI-77,
265-266.

Stallman, R. M., and Sussman, G. J., 1977. Forward reasoning and dependency-directed backtrack-
ing in a system for computer-aided circuit analysis,Artificial Intelligence 9, 135-196.

Steele, G. L. Jr., and Sussman, G. J., 1976. LAMBDA: the ultimate imperative, MIT AI Laboratory,
Memo 353.

Steele, G. L. Jr., and Sussman, G. J., 1978a. The revised report on SCHEME, a dialect of LISP,
MIT AI Laboratory, Memo 452.

Steele, G. L. Jr., and Sussman. G. J., 1978b. The art of the interpreter, or the modularity complex,
MIT AI Laboratory, Memo 453.

Steele, G. L. Jr., and Sussman, G. J., 1978c. Constraints, MIT AI Laboratory, Memo 502.

Stefik, M. J., 1980. Planning with constraints, Stanford University, Computer Science Department,
Report STAN-CS-80-784.

Strawson, P. F., 1967.Philosophical Logic, Oxford: Oxford University Press.

Suppes, P., 1957.Introduction to Logic, New York: Van Nostrand.

Suppes, P., 1967. Decision theory,The Encyclopedia of Philosophy, Vol. II(P. Edwards, ed.), New
York: Macmillan, 310-314.

Suppes, P., 1977. A survey of contemporary learning theories,Foundational Problems in the Special
Sciences(R. E. Butts and J. Hintikka, eds.), Dordrecht: Reidel, 217-239.

Sussman, G. J., 1975.A Computer Model of Skill Acquisition, New York: American Elsevier.

Sussman, G. J., and McDermott, D., 1972. From PLANNER to CONNIVER - a genetic approach,
Proc. AFIPS FJCC, 1171-1179.

Tarski, A., 1944. The semantic conception of truth and the foundations of semantics,Philosophy
and Phenomenological Research IV, 3, 341-375.

Tate, A., 1975. Interacting goals and their use,IJCAI-75, 215-218.

177

DOYLE

Tate, A., 1977. Generating project networks,IJCAI-77, 888-893.

Taylor, R., 1966.Action and Purpose, Englewood Cliffs: Prentice-Hall.

Taylor, R., 1974.Metaphysics, second ed., Englewood Cliffs: Prentice-Hall.

Thompson, A., 1979. Network truth maintenance for deduction and modelling,IJCAI-79, 877-879.

Tinbergen, N., 1951.The Study of Instinct, Oxford: Clarendon Press.

Tukey, J. W., 1960. Conclusions vs decisions,Technometrics 2, 423-433.

Turing, A. M., 1936. On computable numbers with an application to the entscheidungsproblem,
Proc. London Math. Soc. Ser. 2, 42, 230-265.

Turner, R., 1978. Counterfactuals without possible worlds, Department of Computer Science, Uni-
versity of Essex.

Wason, P. C., and Johnson-Laird, P. N., 1972.Psychology of Reasoning: Structure and Content,
Cambridge: Harvard University Press.

Weinreb, D., and Moon, D., 1979. Lisp machine manual, MIT AI Laboratory.

Weizenbaum, J., 1976.Computer Power and Human Reason, San Francisco: W. H. Freeman.

Weyhrauch, R. W., 1978. Prolegomena to a theory of mechanized formal reasoning, Stanford AI
Laboratory, AIM-315.

Wheeler, J. A., 1977. Genesis and observership,Foundational Problems in the Special Sciences(R.
E. Butts and J. Hintikka, eds.), Dordrecht: D. Reidel, 3-33.

White, A. R., 1968.The Philosophy of Action, Oxford: Oxford University Press.

Wiest, J. D., and Levy, F. K., 1977.A Management Guide to PERT/ CPM: with GERT/ PDM/
DCPM and other Networks, second edition, Englewood Cliffs: Prentice-Hall.

Wilensky, R., 1978. Understanding goal-based stories, Yale University, Department of Computer
Science, Report 140.

Wilks, Y., and Bien, J., 1979. Speech acts and multiple environments,IJCAI-79, 968-970.

Wilson, E. O., 1978.On Human Nature, Cambridge: Harvard University Press.

Winston, P. H., 1975. Learning structural descriptions from examples,The Psychology of Computer
Vision(P. H. Winston, ed.), New York: McGraw-Hill, 157-209.

Yessenin-Volpin, A. S., 1970. The ultra-intuitionistic criticism and the antitraditional program for
foundations of mathematics,Intuitionism and Proof Theory(Proc. Conf. Buffalo, NY, 1968),
Amsterdam: North-Holland, 3-45.

Zadeh, L., 1975. Fuzzy logic and approximate reasoning,Synthese 30, 407-428.

178

