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Abstract

An infinite sequence on two symbols is constructed with no three adjacent
identical blocks of symbols and no two adjacent identical blocks of four or
more symbols, refuting a conjecture of Entringer, Jackson and Schatz. It is
further demonstrated that there is no infinite sequence two symbols with no
three adjacent identical blocks of symbols and no two adjacent identical blocks
of three or more symbols.

Let M be a finite set of symbols (an alphabet), and let Seq(M) denote the set of
all finite or infinite sequences of one or more elements of M . The finite sequences
in Seq(M) are also called blocks. Let A = a1, a2, a3, . . . be a sequence in Seq(M)
and let B = b1, . . . , bn be a block of length n. Then the sequence A contains an
occurrence of the block B if ai+j = bj for some i ≥ 0 and all j such that 1 ≤ j ≤ n.
We say that A contains a k-block of length n if A contains k adjacent occurrences of
some block of length n (e.g., 101010 contains a 3-block of length 2.) The block C
is an initial (final) segment of the block B if B contains an occurrence of C which
contains the first (last) term of B. Finally, B ∼ C means that the blocks B and C
are identical.

Thue [5 and 6] constructed an infinite sequence on three symbols with no 2-
blocks and an infinite sequence on two symbols with no 3-blocks. Erdos [3, p. 240]
questioned the existence of an infinite sequence on two symbols with an upper bound
on the length of 2-blocks, a property which Thue’s examples lack. Entringer, Jackson
and Schatz [2] answered this question by constructing an infinite sequence on two
symbols with no 2-blocks of length 3 or greater. Their example contains 3-blocks,
however, and they conjectured that there exists no infinite sequence on two symbols
with no 3-blocks and an upper bound on the length of 2-blocks. Theorem 1 of this
paper shows this conjecture to be false by constructing an infinite sequence on two
symbols with no 3-blocks and no 2- blocks of length 4 or greater. Theorem 2 shows
the upper bound on the length of 2-blocks obtained in Theorem 1 to be the smallest
possible.
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For the remainder of this paper, the sequences in Seq({0, 1}) will represent all
sequences on two symbols. These sequences will be called binary sequences.

Theorem 1 There exists an infinite binary sequence with no 3-blocks and no 2-
blocks of length 4 or greater.

Proof: Consider the sequences R0, R1, R2, . . . on the alphabet {a, b, c}where R0 =
a and Ri+1 is obtained from Ri by replacing each symbol in Ri by a block as follows:

a → abcab

b → acabcb

c → acbcacb.

Pleasants [4] proved that the infinite sequence R obtained as the limit of R0, R1, R2, . . .
has no 2-blocks. The present proof will use a variant of this sequence. Let S0, S1, S2, . . .
be sequences on {a, b, c, d} such that S0 = a and Si+1 is produced by replacing each
symbol in S1 as follows:

a → abcab

b → acabdb

c, d → adbcadb.

Note that the sequence S obtained from S0, S1, S2, . . . is the same as the sequence R
except that certain occurrences of the symbol c have been changed to occurrences of
the symbol d. It is clear that if S contains a 2-block then so does R; hence S contains
no 2-blocks. In fact, S has the following stronger property:

(1) S contains no two adjacent blocks which differ only in c-d mismatches.

Let A, B, C, D and E be binary blocks as follows:

A = 10110010100110
B = 0110100100110
C = 10100
D = 10100101
E = 1011001001.

Let T be the infinite binary sequence obtained by replacing a, b, c and d in S by the
blocks AE, BE, CE and DE, respectively. This sequence will be represented in the
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following discussion as T = X1Y1X2Y2X3Y3 . . . where each Xi is identical to one
of A, B, C or D, and each Yi ∼ E. We claim that T has no 3-blocks and no 2-blocks
of length 4 or greater.

The proof will make use of the following properties of the sequence T . Both are
easily verified.

(2) There exist no i ≥ 0, n ≥ 1 such that

Xi+1 . . . Yi+n ∼ Xi+n+1 . . . Yi+2n.

(3) If Z is an occurrence of the block E in T , then Z = Yi for some i.

To prove the theorem, it suffices to show that T has no 3-blocks of length 3 or less
and no 2-blocks of length 4 or more. The reader may observe that T contains no 3-
blocks of length 3 or less by examining the blocks EAE, EBE, ECE and EDE, in
which any such 3-block must be contained. A further observation left to the reader is
that T contains no 2-blocks of the form Q1Q2 (Q1 ∼ Q2) of length 4 or greater such
that Q1 does not contain an occurrence of the block E. In view of property (3) and
the method of construction of the sequence S, this may be verified by checking the
blocks EAEBE, EAECE, EAEDE, EBEAE, EBECE, EBEDE, ECEAE
and EDEBE for such 2-blocks

The remainder of the proof consists of showing that T contains no 2-blocks of
the form Q1Q2 such that Q1 contains an occurrence of the block E. The proof of
this property is by contradiction. Assume that T has a 2-block of the form Q1Q2

(Q1 ∼ Q2) such that Q1 contains, for some positive n, exactly n occurrences of the
block E. We will show that this assumption implies that T contains a 2-block of the
form Xi+1 . . . Yi+n ∼ Xi+n+1 . . . Yi+2n contradicting property (2).

In view of property (3), let i be such that Yi+1 is the first occurrence of E in Q1,
so that Q1 contains the block Yi+1 . . . Yi+n. Then there are two cases to consider:
either Yi+n+1 is contained in Q2, or it is split between Q1 and Q2.

First case: Assume that Yi+n+1 is contained in Q2. There are three subcases:
either Xi+n+1 is contained in Q1, or it is contained in Q2, or it is split between Q1

and Q2. If Xi+n+1 is contained in Q2, then

Q1 = Xi+1 . . . Yi+n and Q2 = Xi+n+1 . . . Yi+2n

contradicting property (2). It follows that T can contain no such 2-block Q1Q2. If
Xi+n+1 is contained in Q1, then

Q1 = Yi+1 . . . Xi+n+1 and Q2 = Yi+n+1 . . . Xi+2n+1

(Property (l) of S forbids the possibilities of

Xi+n+1 ∼ C and Xi+2n+1 ∼ D
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or vice versa.) This implies that

Xi+2 . . . Yi+n+1 ∼ Xi+n+2 . . . Yi+2n+1,

contradicting (2). Again we conclude that T can contain no such 2-block Q1Q2.
Now assume that Xi+n+1 is split between Q1 and Q2. Then there exist an initial

segment W of Q1 and a final segment Z of Q2 such that

Q1Q2 = WYi+1 . . . Yi+nXi+n+1Yi+n+1 . . . Yi+2nZ

Then either W or Z identifies one of Xi+1 or Xi+2n+1 as being identical with
Xi+n+1, the possibilities of

Xi+n+1 ∼ C and Xi+2n+1 ∼ D

or vice versa being forbidden by (1). Therefore either

Xi+1 . . . Yi+n ∼ Xi+n+1 . . . Yi+2n

or
Xi+2 . . . Yi+n+1 ∼ Xi+n+2 . . . Yi+2n+1,

and either of these possibilities contradicts (2). It follows that T can contain no such
2-block Q1Q2.

Second case: Assume that Yi+n+1 is not contained in Q2. Then there exist an
initial segment W of Q1 and a final segment Z of Q2 such that

Q1Q2 = WYi+1 . . . Yi+nXi+n+1Yi+n+1Xi+n+2Yi+n+2 . . . Yi+2n+1Z.

Furthermore, there are segments W0 and Z0 such that

W = W0Xi+1 with Xi+1 ∼ Xi+n+2

and
Z = Xi+2n+2Z0 with Xi+2n+2 ∼ Xi+n+1

(The possibilities of
Xi+n+1 ∼ C and Xi+2n+2 ∼ D

or vice versa is forbidden by (1).) But this means that

Xi+1 . . . Yi+n+1 ∼ Xi+n+2 . . . Yi+2n+2,

which contradicts (2). It follows that T can contain no such 2-block Q1Q2

This completes the proof. �
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Theorem 2 There is no binary sequence of length 30 or greater with no 3-blocks
and no 2-blocks of length 3 or greater.

Proof: Following Doyle [1], Figure 1 displays a tree of the terms of all binary
sequences starting with 0 and with no 3-blocks and no 2-blocks of length 3 or greater.
Exchanging the symbols 0 and 1 throughout Figure 1 produces the rest of the binary
sequences with these properties. The reader may observe that all alternatives and
extensions not shown produce sequences with either 3-blocks or 2-blocks of length
3 or greater. (Note: Most of the repetitions produced by alternatives or extensions
not shown are fairly short. The main exceptions occur in the longest paths where 2-
blocks of length 14 are produced.) The proof is completed by noting that the longest
of the sequences contained in Figure 1 are of length 29. �

0 0 1 1 0 0
0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1

0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1
1 0 0 1 1

0 1
1 0 0 0 0 1 1

1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0

1 1 0 0 1
1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0

0 1 1 0 0

0
0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1
0 0 1 1 0 0

0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1
1 1 0 0 1 1

1
1 1 0 0 0 0 1 1

1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0

1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1
1 1 0 0 1

0 1 1 0 0
1

Figure 1: Tree of terms of all binary sequences with no 3-blocks and no 2-blocks of
length 3 or greater.
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Postscript 2007: This paper was submitted to Journal of Combinatorial Theory A,
but the reviewer noted that its theorems 1 and 2 were essentially the same as theorems
1 and 2 of another paper the journal had already accepted for publication but not yet
published, namely F. M. Dekking, On repetitions of blocks in binary sequences, J. C.
T. A 20 (1976), 292–299.
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