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Abstract: Probabilistic rules and their variants have recently supported several successful applications of
expert systems, in spite of the difficulty of committing informants to particular conditional probabilities
or “certainty factors,” and in spite of the experimentally observed insensitivity of system performance to
perturbations of the chosen values. Here we survey recent developments concerning reasoned assumptions
which offer hope for avoiding the practical elusiveness of probabilistic rules while retaining theoretical
power, for basing systems on the information unhesitatingly gained from expert informants, and recon-
structing the entailed degrees of belief later.
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The “Probability” Problem

§1. Recent successes of “expert systems” stem from much hard work of designers and experts in elicting,
encoding, and examining the normally tacit rules of reasoning employed by the experts. These three tasks
of elicting, encoding, and examining rules of reasoning influence each other. The designer must be able to
encode the rules elicted, the encoding must facilitate examination of the rules in operation, and the sorts
of information elicted must seem important to the expert lest examination seem pointless. Much current
practice employs so-called judgmental rules for encoding the informant’s rules of reasoning. Judgmental
rules, for example those in MYCIN, incorporate both propositional and “probabilistic” information. An
investment advisor system, for instance, might be given a rule

IF: 1. The client’s income bracket is 50%,
and 2. The client carefully studies market trends,

THEN: 3. There is evidence (0.8) that the investment should be in high-technology.

(from [Davis 1979]) and would use the rule to draw conclusions whose “certainty factors” depend on the
observed certainty factors of the hypotheses (lines 1 and 2) and the certainty factor (0.8) of the rule itself.
Though few expert systems actually treat these numerical grades of certainty as Bayesian probabilities and
conditional probabilities, their interpretation usually approximates that of Bayesian probabilities, namely
as subjective degrees of belief. Although simple, these judgmental rules have supported development of
many impressive applications.

§2. In spite of the fruitfulness of this approach, its practitioners express discomfort with several of its
requirements. One difficulty is that while it is relatively easy to elict tentative propositional rules from
experts and from people in general, it is considerably harder to get commitment to particular grades of
certainty. That is, one’s human informant might quickly suggest the propositional part of the above rule
“IF 1 and 2, THEN 3” but might try to avoid assigning 0.8 or any other number to the rule. Worse still,
individual informants frequently vary in their answers to a repeated question depending on the day of the
week, their emotional state, the preceding questions, and other extraneous factors. This further aggravates
the sensitivity of answers to the phrasing of questions noted by Tversky and Kahneman.

Another difficulty stems from these. Noticing the hesitancy of their informants, system designers
test the sensitivity of the system’s performance to the set of numbers used. Reported experiments show
the numbers to not actually mean exactly what they seem to mean, for the performance of most systems
remains constant under all sorts of small (< 30%) perturbations in the precise values used. Understandably,
expert system designers have difficulty justifying their use of the numerical judgments in face of these
indications of psychological and pragmatic unreality. Unfortunately, they have had to stick to their guns,
since no satisfactory alternative has been apparent.

§3. One hope for giving expert system designers what they want is to investigate their practice, to
seek simpler but equipotent sorts of information and operations which capture the “grain of truth” in
the probabilistic approach. Something might explain both the designers’ intuitions and their systems’
successes. Since that something is clearly not standard Bayesian probability theory or its certainty factor
variants, can we find what really underlies current practice?

This paper answers “Yes.” Recent developments concerning reasoned assumptions suggest an
approach which allows familiar sorts of rules of reasoning, judgments of certainty of conclusions, and more
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besides — all without the unreality of the probabilistic approach. In the following, we explain the modified
approach together with its practical and theoretical attractions. Related discussions of Bayesianism can
be found in [Minsky 1975], [Shortliffe and Buchanan 1975], [Duda, Hart, and Nilsson 1976],
[Szolovits 1978], and [Szolovits and Pauker 1978].

Reasoned Assumptions

§4. The approach of reasoned assumptions modifies the standard treatment of uncertainty, not the
treatment of propositional information. Thus in the investment rule above, we change only the certainty
factor information, and leave the propositional information intact. Although our approach accommodates
representational systems based on “frames” and “units” as easily as systems based on “assertions,” for ex-
pository simplicity we pretend the database consists of elementary logical sentences, and leave restatement
of the approach in one’s favorite representational system as an exercise for the reader. For terminological
simplicity, we label all the numerical approaches as “Bayesianism,” and use MYCIN as our standard of
comparison. Strictly speaking, MYCIN is not Bayesian, but the differences are immaterial in the following
discussion.

We abbreviate the parts of IF-THEN rules by writing A to mean the set of antecedent sentences
of the IF part, and by writing C to mean the set of conclusion sentences of the THEN part. If the rule
simply relates concrete (ground) sentences, A and C are sets of concrete sentences. If the rule expresses
general or schematic information in terms of variables x

¯
= x1, . . . , xn, we can indicate this generality by

writing A(x
¯
) and C(x

¯
) instead. We also write ¬A to mean the set of negations of statements in A, that

is, ¬A = {¬a | a ∈ A}.

§5. We express uncertain rules of reasoning in expressions of the form

A \\ B ‖− C

and
∀x
¯

[A(x
¯
) \\ B(x

¯
) ‖− C(x

¯
)].

We read the former as “A without B gives C,” an expression informally interpreted as “conclude every
sentence in C if every sentence in A has been concluded and no sentence in B has been concluded.” We
interpret the latter expression as a schema implying all concrete instances of the form A(g

¯
) \\ B(g

¯
) ‖− C(g

¯
)

for ground terms g
¯
. We call these expressions reasons, and the conclusions derived from them reasoned

assumptions. We connect reasons with IF-THEN rules by noting that A and C act as antecedents and
consequents as before, and that B contains qualifications on the inference. Thus, ignoring uncertainty, we
can rewrite the propositional part of “IF A, THEN C” as A \\ ∅ ‖− C.

Reasoned assumptions express uncertainty in terms of the non-statistical notions of typicality
and defeasibility (English for “liability to defeat”), notions concerned with the preferences of the agent
about how to adopt assumptions in order to resolve ambiguities in its information about the problem.
Rules of typicality express the usual, normal, or initial conclusions for consideration, conclusions which
may be individually defeated if circumstances warrant. (See [Doyle 1982] for more discussion of these
notions.) Completely certain inference rules can be written as A \\ ∅ ‖− C, in which case the absence
of qualifying statements means the conclusions are always drawn from the antecedents. Rules stating
the normal or usual conclusions following from antecedents may be written either as default reasons or as
defeasible reasons. Default reasons are of the form A \\ ¬C ‖− C, meaning that the conclusions are inferred
from the antecedents only if their negations are not already known. Defeasible reasons are of the form
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A \\ {Defeated(R)} ‖− C, where R is the name of the reason itself. Thus R = [A \\ {Defeated(R)} ‖− C]
means that the conclusions are inferred from the antecedents only if the use of the reason has not been
ruled out by the presence of the statement Defeated(R) in the database. Default and defeasible reasons
are usually used in concert with other reasons expressing special cases, exceptions, and other overriding
conditions. If a particular application (instantiation) of a schematic reason produces unwanted conclusions,
we defeat the particular application, not the schematic reason itself. In other words, we ordinarily correct
errors on a case-by-case basis. If the overriding reasons cover most circumstances, the overridden reasons
serve as “catch-all” rules, guidelines for what to do about “everything else” not covered by the specific case
reasons. Moreover, independently formulated default reasons sometimes conflict on instances, and so may
require conflict resolution reasons defeating one instance in favor of another in ambiguous circumstances.
(See [Reiter 1978] and [Reiter and Criscuolo 1981] for examples.)

Comparison of the Approaches

§6. One cannot simply reformulate probabilistic rules as reasons according to their certainty factors. To
re-express a database of expertise, we require the knowledge acquisition process carried a bit further than
usual. The approach of reasoned assumptions supposes that numerical judgments of certainty often hide
more specific information not yet made explicit by the expert informant. When the expert says that “To
degree 0.3, IF A, THEN C,” this really means that many exceptional cases are familiar to the expert. One
might ask the informant to list these exceptions as a set B, in order to qualify the rule by writing it as
A \\ B ‖− C, but it is often as difficult to think of exceptions offhand as it is to think of ordinary heuristic
rules. Instead, we apply the same technique to articulating expertise as that already practiced, namely
the informant expresses what is clear, and then formulates and reformulates the missing cases, exceptions,
and generalizations by repeatedly examining the system’s performance on test problems. At bottom, we
always have rules of the form “Usually, IF A, THEN C” or “Usually, IF A, THEN ¬C,” which we express
as defeasible or default reasons, and we express the intermediate degrees of uncertainty by case analysis
and reasons stating exceptions to generalities. This of course requires more work in articulating expertise
than the probabilistic approach, since one may have to formulate several cases and conflict resolution
reasons that could be hidden in a single number, but in the long run, improving the performance of a
probability-based system requires the same sort of case and conflict analyses. That is, use of probabilities
may make the initial database smaller, but by the time expert performance has been molded from the
initial approximation, about the same information should be present in the one approach as in the other.
Since the same hard questions must be addressed in either case, and since the non-probabilistic rules can
be had with less hesitation, we conclude the total work of the reasoned assumptions approach should not
exceed that of the probabilistic approach.

§7. Our assessment of the relative amounts of work needed to formulate a body of expertise assumes
that the two sorts of encodings can express the same information. While the mathematical details are
inappropriate for pursuit here, recent theoretical treatment of reasoned assumptions shows how subjective
probabilities or certainty factors may be derived from sets of reasons, a project reminiscent of Savage’s
construction of quantitative subjective probabilities from qualitative subjective probabilities. The converse
derivation seems unlikely, so from a purely theoretical viewpoint, the information expressed in reasons may
be more powerful or fundamental than that expressed in probabilistic rules. We briefly sketch these ideas.

MYCIN’s probabilistic rules are interpreted by computing the “deductive closure” of the rules to-
gether with problem-specific information. This results in a single probability distribution on all statements
of interest.
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In contrast, sets of schematic and problem-specific reasons are interpreted by finding their ad-
missible extensions. The admissible extensions AExts(S) of a set S of reasons are “closed and grounded”
supersets E of S. “Closed” means that if A \\ B ‖− C is in E, and if every element of A is in E, and
if no element of B is in E, then every element of C is in E. “Grounded” means that every statement in
E either is in S or is supported by a noncircular argument from S and qualifiers not in E. (See [Doyle
1982] for the precise formulation.) We reconstruct subjective probabilities from admissible extensions by
using a probabilistic algorithm to derive admissible extensions from the initial set of reasons. Probabilistic
algorithms compute perfectly definite structures, in our case some E ∈ AExts(S), but make deliberately
randomized choices whenever there is more than one construction possible. Probabilities enter into our
observations of the computation, but not into the computation itself. We apply this idea by supposing
that all admissible extensions with the same number of elements are equally likely to be derived from the
initial set of reasons, and that the probability of derivation decreases with the number of elements in the
admissible extension. Specifically, we suppose Pr(E | S), the probability of deriving extension E from
S, to be proportional to 2−|E|. The “degree of belief” Pr(a | S) of a statement a given S is then the
normalized probability of deriving admissible extensions containing a. That is, if

N =
∑

E∈AExts(S)

2−|E|,

we can define

Pr(E | S) =
2−|E|

N
,

and
Pr(a | S) =

∑

a∈E∈AExts(S)

Pr(E | S).

For example, if S is the set of reasons
∅ \\ {¬c1} ‖− {c1}

∅ \\ {c1} ‖− {¬c1}

{c1} \\ {¬c2} ‖− {c2}

{c1} \\ {c2} ‖− {¬c2}

then S has three admissible extensions
E1 = S ∪ {¬c1}

E2 = S ∪ {c1, c2}

E3 = S ∪ {c1,¬c2}

so that Pr(c1 | S) = 1
2 , Pr(¬c1 | S) = 1

2 , Pr(c2 | S) = 1
4 , and Pr(¬c2 | S) = 1

4 . If the dependence of c2 and
¬c2 on c1 is removed, we have instead four admissible extensions

S + {c1, c2}, {c1,¬c2}, {¬c1, c2}, {¬c1,¬c2}

so that statements in S have probability 1 and c1,¬c1, c2,¬c2 each have probability 1
2 .
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§8. The preceding suggests, both practically and theoretically, that reasoned assumptions express a
more fundamental notion of uncertainty than numerical stipulations of certainty. One incompleteness in
the preceding comparison concerns objective probabilities. It may not always be reasonable to expect
that all probabilities may be analyzed into cases. The probabilities may be the results of formal physical
measurements of phenomena, or informal observations by the informant of past experience with success
of rules or reliability of data. Moreover, even if such probabilities might ultimately succumb to analysis,
their analysis may cost too much.

We cannot yet offer a complete solution to this difficulty. While one obvious approach is to
assume the more likely outcome as a default and expect to work to correct the outcome when wrong,
another possibility is to combine reasons and objective probabilities by making the probabilistic extension-
computing algorithm sensitive to statements of fundamental objective probabilities. Unfortunately, this
combination has not yet been adequately explored.

§9. Even if a workable combination of reasoned assumptions and objective probabilities exists, this need
not sanction continued reliance on purely probabilistic systems. The approach of reasoned assumptions
has other attractions for knowledge acquisition, attractions which recommend probabilities only as a tool
of last resort. We mention two.

One of the most important requirements placed on reasoning systems by knowledge acquisition
is that of explicability of conclusions, since informants must see how the system uses its information and
arrives at its conclusions in order to criticize and correct it. Most expert systems based on probabilities
keep track of the applications of rules used in computing derived probabilities, and so can explain the prob-
ability of a conclusion in terms of its computation. Similarly, the reasoned assumption approach explicitly
involves a notion of explanation in the groundedness requirement on admissible extensions. But the two
sorts of explanations are not of comparable power since computational histories need not be illuminating
explanations of conclusions. This is an important difference, for explanations in terms of applied rules
simply explain numbers with more numbers, while explanations in terms of assumptions explain unlikely
conclusions in terms of the assumptions needed to get them, or from the critical viewpoint, in terms of
their possible counterexamples. Compared with the probability-combination rules used in Bayesianism,
explicit computation of admissible extensions presents the informant with more fine-grained examples and
counterexamples, explanations which more readily guide formulation of special cases, exceptions, and con-
flict resolution reasons. While both approaches permit explanation, those of reasoned assumptions are
more useful.

Another attraction of reasoned assumptions is that they facilitate additive updating of databases
and supply “audit trails” pinpointing the history of rule revisions. If the informant decides a rule needs
changing in MYCIN, the rule must be deleted and replaced by the informant in cooperation with a
bookkeeping system. (We need not consider the grotesque alternative of adding an identical rule with the
equally certain but contrary conclusion.) In contrast, with defeasible reasons, the required bookkeeping is
explicitly part of the system, so that the informant can indicate reasoned retractions and replacements of
faulty reasons, with the history of database changes made explicit in the reasons themselves. For example,
if the informant decides to base a revision on a further hypothesis about the problem situation, he need
not replace the faulty reason alone, but can make the hypothesis explicit in the qualifiers of the new reason
and in the defeater of the old reason, so that the old reason will again be used when circumstances void
the informant’s hypothesis.
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Conclusion

§10. Compared with numerical judgments of subjective probability, reasoned assumptions offer both closer
correspondence with the expertise easily obtainable in practice, and comparable theoretical power. This
suggests exploring expert systems based on reasoned assumptions instead of resting content with current
systems. A variety of practicable systems for manipulating and interpreting reasons currently exist for use,
but they do not yet implement facilities for computing degrees of belief, facilities which may be necessary
for summarizing the structure of large sets of admissible extensions as well as for quantifying confidence
levels. Considerable theoretical work seems needed to identify those notions of admissible extensions and
derived probabilities which may be feasibly computed, and this may temporarily temper the attractions
of reasoned assumptions. Nevertheless, the likely practical rewards seem to justify the pursuit.

§11. Whatever the ultimately preferred treatment of uncertainty, I hope this paper encourages further
analysis of practice aiming for increased methodological simplicity. More than in some periods of its
history, current artificial intelligence involves many people building on the work of others, especially by
taking existing tools and doing something with them rather than devising speculative inventions for each
new application. But one can also build on the achievements of others by analyzing their experience
to extract the essence of their ideas and results, rather than simply assuming that the first successful
formulation is best. In such circumstances, one analyzes demonstrably practicable ideas and techniques,
not to patch them, but to rethink, understand, and possibly improve them in fundamental ways. I believe
much of artificial intelligence theory and practice ripe for this sort of analysis, not just its treatments of
uncertainty. In many other areas, artificial intelligence offers numerous alternative, seemingly incomparable
theories. Are there further “grains of truth” awaiting discovery which might connect and explain these
alternatives?
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