
Reset reproduction of article published in Computational Intelligence, Vol. 7, No. 1 (February 1991),pp. 1{10. Reprinted July 1994. Reprinting c Copyright 1989, 1990, 1991, 1994 by Jon Doyle andElisha P. Sacks.Markov Analysis of Qualitative Dynamics�Jon DoyleLaboratory for Computer Science, Massachusetts Institute of Technology545 Technology Square, Cambridge, Massachusetts 02139Elisha P. SacksDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544AbstractCommonsense sometimes predicts events to be likely or unlikely rather than merelypossible. We extend methods of qualitative reasoning to predict the relative likelihoods ofpossible qualitative behaviors by viewing the dynamics of a system as a Markov chain overits transition graph. This involves adding qualitative or quantitative estimates of transitionprobabilities to each of the transitions and applying the standard theory of Markov chains todistinguish persistent states from transient states and to calculate recurrence times, settlingtimes, and probabilities for ending up in each state. Much of the analysis depends solelyon qualitative estimates of transition probabilities, which follow directly from theoreticalconsiderations and which lead to qualitative predictions about entire classes of systems.Quantitative estimates for speci�c systems are derived empirically and lead to qualitativeand quantitative conclusions, most of which are insensitive to small perturbations in theestimated transition probabilities. The algorithms are straightforward and e�cient.1 IntroductionQualitative dynamical reasoning seeks to predict the global behavior of a complex dynamicsystem by partitioning its state space into a manageable number of regions and characteriz-ing its behavior by the sequences of regions that it can go through. Although considerableprogress has been made toward automating such reasoning, some important predictionproblems have not been addressed. In particular, this methodology is too weak to describethe limiting behavior of dynamic systems. For example, a damped pendulum eventuallymust approach equilibrium either directly below or directly above its pivot (Fig. 1). The�rst possibility is almost certain, whereas the second almost never occurs. Qualitative sim-ulation discovers both equilibria, but neither can determine their relative likelihoods norrule out the possibility that the pendulum will spin forever. Yet qualitative considerationssu�ce for both conclusions, independent of the numeric details of the system.Such limiting behaviors are global characteristics of a system. To understand them, wemust look beyond individual transitions to sequences of transitions. We must assign eachsequence a probability ranging from impossible to de�nite. The probability of a particularlimiting behavior equals the total probability of the subset of possible histories in which thecorresponding sequence of transitions occurs. For example, the probability that the pendu-lum approaches its unstable equilibrium when released in arbitrary position is zero becausethe set of sequences that either start or terminate at the unstable equilibrium has measure�This paper extends and improves on the earlier paper [3]. Authors listed alphabetically.
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Figure 1: Equilibria of a damped pendulum.zero. Calculating the probabilities is straightforward in systems whose exact limiting be-havior is known for all initial conditions. The challenge is to estimate the probabilities whenthe limiting behavior is unknown. This can occur in qualitative reasoning where the un-derlying equations are incompletely speci�ed or in quantitative reasoning about intractablesystems.In this paper, we describe a method for predicting the relative likelihoods of the limitingbehaviors of such dynamic systems. The method provides a formal justi�cation for com-monsense conclusions about relative likelihoods and an e�cient algorithm for deriving them.It also provides numeric likelihood estimates for fully speci�ed systems. The method restsupon the simplifying assumption that the system forms a Markov chain over its transitiongraph, i.e. that the next state of the system is a time-independent probabilistic functionof its current state. This assumption agrees with the standard qualitative reasoning modelin which the next qualitative state of a system depends only on its current state, not onits past. It extends that model by assigning probabilities to branching states instead oftreating all branches uniformly. Markov theory is then employed to derive the probabilitiesof the transition sequences.The central step of the analysis, in which we assign transition probabilities and deriveprobability estimates for the possible asymptotic behaviors, applies to every extant form ofqualitative dynamics, including ones generated by qualitative simulation. For concreteness,we illustrate the method by using the classical mathematical theory of dynamic systems toderive a set of qualitative states and transition graph from the phase space of a system,following Sacks [14].Our method can derive useful results at many levels of detail, ranging from the abstractlevel of the qualitative reasoning formalisms in the AI literature to fully speci�ed ordinarydi�erential equations. It can process qualitative probability estimates in the f0; (0; 1); 1gquantity space, symbolic estimates such as p or q+r, and numeric estimates. Markov theoryblends the available information into a unifying framework that provides the best possibleconclusions about asymptotic behavior given the evidence. Qualitative information leadsto qualitative predictions about entire classes of systems, such as all damped pendulumsor all instances of a parameterized equation. Quantitative information leads to qualitativeand quantitative predictions about individual systems.Markov theory provides some sorts of essentially qualitative information that qualitativesimulation does not, including a partition into persistent and transient states (transient2



Markov Analysis of Qualitative Dynamicsstates are always improbable as asymptotic behaviors) and a partition of the persistentstates into the probable and the improbable. Many of these facts follow directly from qual-itative estimates of transition probabilities, and may be derived through purely qualitativealgorithms. Other qualitative conclusions, though derived from numeric estimates of tran-sition probabilities, are insensitive to small perturbations in these estimates. The theoryalso provides quantitative re�nements of these qualitative conclusions, including the meanand variance of settling times. Unlike the qualitative conclusions, the quantitative resultsare in some cases sensitive to variations in the input probabilities. The algorithms arestraightforward, principally consisting of a topological sort of the transition graph and afew matrix operations on the transition probabilities, and require time at most cubic in thenumber of regions. The numeric analysis goes through for symbolic probability estimates,although at the price of exponential-time worst-case performance.The next section describes our approach to dynamics, which is based on the classicalmathematical theory of dynamical systems, and shows how the sorts of dynamics employedin other AI approaches to qualitative reasoning may be translated into ours. The followingsection shows how to model dynamic systems as Markov chains. There we state and defendthe requisite simplifying assumptions. Section 4 describes the algorithms for analyzingMarkov chains. Section 5 demonstrates our methods on several examples, including thedamped pendulum and the quadratic map. The �nal section draws conclusions and discussessome possible extensions and generalizations.2 Qualitative dynamics in phase spaceOur qualitative dynamics builds upon the phase space representation developed by Poincar�e.The phase space for a system of �rst-order di�erential equationsx0i = fi(x1; : : : ; xn); i = 1; : : : ; n (1)is the Cartesian product of the xi's domains. One can convert higher-order equations to �rst-order ones by introducing new variables as synonyms for higher derivatives. Points in phasespace represent states of the system. Curves on which the equations (1) are satis�ed, calledtrajectories, represent solutions. The topological and geometric properties of trajectoriescharacterize the qualitative behavior of solutions. For instance, a point trajectory, calleda �xed point, indicates an equilibrium solution, whereas a closed curve indicates a periodicsolution. A �xed point is stable if every nearby trajectory approaches it asymptotically andunstable otherwise. More generally, the basin of a �xed point is the set of trajectories thatapproach it asymptotically.A phase diagram for a system depicts its phase space and trajectories graphically. Forexample, the standard model for a damped pendulum is�00 + �m�0 + gl sin � = 0;with � the angle between the arm and the vertical, l the length of the (weightless rigid)arm, m the mass of the bob, g the gravitational constant, and � the damping coe�cient(Fig. 2). The phase diagram of the pendulum appears in Figure 3. The phase space is3
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Figure 2: A damped pendulum.

Figure 3: Phase diagram for the damped pendulum.
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Figure 4: Phase space regions of the qualitative states of the damped pendulum.cylindrical, since angles that di�er by 2� are physically indistinguishable. Two trajectoriesspiral toward the unstable �xed point at (�; 0); the rest spiral toward the stable �xed pointat (0; 0).A complete qualitative description of a system consists of a partition of its phase spaceinto sets of qualitatively equivalent trajectories. The equivalence criterion depends on theproblem task. Mathematicians generally focus on topological equivalence, whereas coarserrelations are more useful in engineering applications. We follow standard AI practice andequate all trajectories that go through a speci�c sequence of regions in phase space. Ourqualitative dynamics consists of a partition of phase space into regions along with a graphof possible transitions between regions. Sacks [12, 13] presents a system that automaticallyidenti�es such regions and the possible transitions between them for second-order systemsof ordinary di�erential equations. Most of the ideas extend directly to larger systems.Sacks [14] shows how to translate traditional qualitative reasoning into our qualitativedynamics without loss of information or increase in complexity. Qualitative states corre-spond to rectangular regions in phase space, and qualitative simulation amounts to �ndingthe possible transitions between regions. A transition occurs from region A to region B ifthe derivative of the system on the boundary between the regions points into B. A transi-tion occurs from a region to a neighboring �xed point unless all the eigenvalues of the �xedpoint have positive real part, as explained in the next section. For example, automaticanalysis of the damped pendulum equation results in six qualitative states correspondingto four rectangles (h�;�i) and two �xed points (h0; 0i,h�; 0i), as shown in Figure 4. (Thecomplete dynamics includes the degenerate rectangles h0;�i and h�; 0i, which we ignorefor simplicity. Including them complicates the results without a�ecting the analysis or theconclusions.) Figure 5 shows the transition graph over these qualitative states.3 Transforming ows into Markov chainsA Markov chain is a process whose state at time t + 1 is a time-independent probabilisticfunction of its state at time t. We model dynamic systems as Markov chains whose statesare regions and �xed points in phase space, or equivalently qualitative states. The transition5
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Figure 5: Qualitative state transition graph of the damped pendulum.probabilities express the likelihood of the system's state moving from one region or �xedpoint to another in unit time. We employ Markov theory to infer properties of the trajec-tories from properties of the transition probabilities. Each inference applies to all systemswith the necessary properties. Inferences that require only qualitative properties apply toan entire class of systems, whereas inferences that rest on numeric probability estimatesapply only to \nearby" systems, as explained in the next section.Determination of suitable qualitative states and time scales for the Markov analysis is adi�cult problem. We discuss some of the issues involved below, but do not present any newmethods for automatic model construction, as the probabilistic analysis techniques studiedhere may be applied in conjunction with any model construction method. Extant approachesto automatic model construction do not always yield the best models, but in many casesthe errors introduced by suboptimal models can be treated exactly as ordinary stochasticbehavior. The strength of the Markov analysis is that it provides the best predictionspossible given the model used.Transition probabilities have one meaning for transitions between regions and anothermeaning for transitions involving �xed points. The transition probability from region A toregion B expresses the fraction of points in A whose corresponding trajectories are in Bafter one time unit. For nondegenerate A of �nite measure, this is just�(A \ ��1(B))�(A) (2)where � is Lebesgue measure and � is the ow over unit time. Regions which have in�niteor zero measure, such as h+;+i and h0;�i, call for di�erent treatment. One approach toregions of in�nite measure, which su�ces for any physically realizable system, is to replaceeach in�nite region in equation (2) with a large, but �nite, subregion. This amounts tode�ning the transition probability as a limit of equation (2) over a monotone increasingsequence of �nite subsets. One could similarly replace degenerate regions with small nonde-generate regions surrounding them, which amounts to de�ning the transition probabilitiesover monotone decreasing supersets.Our treatment of degenerate regions extends directly to �xed points. Intuitively, thetransition probability from region A to �xed point p expresses the fraction of points in Awhose trajectories \reach" p in unit time. To justify this approach, we must resolve theconict between the theory of ordinary di�erential equations, which implies that smooth6



Markov Analysis of Qualitative Dynamicssystems cannot reach a �xed point from another state in �nite time, and everyday experi-ence, which indicates the contrary. One can side with the theory and claim that systemsmerely appear to reach a �xed point because of our perceptual limitations, or one can sidewith commonsense and claim that ordinary di�erential equations are an imperfect model ofreality. Theorists can interpret the word \reach" as entering some �-neighborhood; otherscan take it literally. Indeed, since stable �xed points attract all points in some neigh-borhood, estimates of asymptotic probability are not misguided by identifying transitionprobabilities to a neighboring region with transition probabilities to the stable �xed point.The measure-theoretic construction interprets qualitative states as lumped states, sothat the transition probabilities represent the imprecision in the qualitative model of thedynamic system. If we were able to choose as regions the actual attractors and basinsof the system, there would be no imprecision and the transition rules would be perfectlydeterministic. The great di�culty of determining the optimal set of regions for analysishelps motivate the stochastic approach to analyzing behaviors. Additional factors thattransition probabilities can model include (1) uncertainty about initial conditions whichinduces a distribution of possible trajectories, (2) uncertainty about the parameters of themodel equations, and (3) uncertainties (or noise sources) explicitly occurring in the system'sequations, as in stochastic di�erential equations.Qualitative probability estimates follow directly from the transition graph and �xedpoint types of a system. The transition probability is zero from a region to an unreachableregion by de�nition of the graph. By the stable manifold theorem [5, p. 13], the dimensionof the basin of a �xed point equals the number of eigenvalues of its Jacobian matrix thathave negative real parts.1 Unstable �xed points have positive eigenvalues, so their basinsform lower-dimensional, hence measure zero, subspaces. This implies that the transitionprobability into an unstable �xed point from any other region is always zero by equation (2).Stable �xed points have basins of positive measure because they attract all points in someneighborhood. Hence, there is a positive transition probability from a neighboring regionto a stable �xed point.Numeric estimates of transition probabilities are derivable by numeric simulations orphysical experiments that sample representative points in each region and count how manygo to each region. One can also obtain subjective estimates from domain experts. Bothsampling and subjective estimates may contain errors, but as we show below, the qualitativeanalysis is insensitive to minor errors in these probabilities.In the pendulum example, the �xed point (0; 0) is stable and (�; 0) is unstable. The basinof (�; 0) is a one-dimensional curve in the two-dimensional phase space (Fig. 3) whereas thebasin of (0; 0) has positive measure. The transitions to (�; 0) have probability zero andthose to (0; 0) have positive probability. These qualitative estimates su�ce to prove thatthe pendulum comes to rest at (0; 0) with probability one. The exact arrival time dependson the speci�c transition probabilities, which vary from system to system. We show how toderive both the qualitative and the quantitative information in the next section.The qualitative analysis of the pendulum applies to any system with the same transitiongraph and types of �xed points. It is independent of whether the pendulum is underdampedor overdamped, that is whether the eigenvalues of (0; 0) are real or complex. In the real case,1This theorem applies to hyperbolic �xed points. The number of positive real parts at an arbitrary �xedpoint su�ces for our analysis. 7



Doyle & Sackstrajectories eventually approach (0; 0) directly from within h�;+i or h+;�i, while in thecomplex case, they spiral inward, forever cycling between the outer regions. This distinctionis immaterial according to both the theoretical and the commonsense views described above.Commonsense asserts that real trajectories always come to rest at (0; 0) after a �nite numberof cycles. Theory claims that they enter and remain in a small neighborhood of (0; 0); for theconclusions reached by the transition model, it is irrelevant whether trajectories continueto spiral within that neighborhood.We assume that the transition probabilities remain constant over time and that theydepend only on the qualitative state of origin, independent of past history. The �rst as-sumption holds for autonomous equations that are free of their independent variable. Onecan reduce any general system to an autonomous one by treating the independent variable,t, as a state variable governed by the equation t0 = 1. The second assumption holds tothe extent that the future trajectory of the system is insensitive to its distant past. Themost questionable case is that of conservative systems in which the volume of each region inphase space is preserved for all time by the ow, causing small di�erences between trajecto-ries to retain their signi�cance forever. Conservative systems pose problems for qualitativereasoning generally, not just for our stochastic analysis, as the regions of interest must bechosen carefully. Fortunately, most realistic systems are dissipative, hence volume shrink-ing, causing di�erences between trajectories to shrink exponentially. Figure 6 illustratesthe two cases.
Figure 6: (a) Volume preserving ow. (b) Dissipative ow.Time-dependent transition probabilities imply that the current partition of phase spaceis too coarse: di�erences within a prior region express themselves in the current region be-cause the distances between points in the prior region are too great to damp out in one timestep. One approach to dealing with such time-dependence involves iterative improvement ofthe model, following Hsu [7] or Sacks [13] (though unlike that work, we have not automatedthis re�nement process). If one observes time-dependent behavior in constructing the tran-sition probabilities, one subdivides or otherwise re�nes the set of regions and starts over.In principle, the process ends when the chain assumption appears correct for all regions,but in practice the choice of when to accept a model as satisfactory involves a tradeo� ofmodel complexity against model accuracy. The aptness of the chain assumption can alsobe tested against empirical observations or long term numeric simulations.Like the choice of regions, the choice of the time unit over which transition probabilitiesare measured inuences the accuracy of the model. Too long a time scale, and all transitionsmay appear possible; too short, and all regions may appear to be �xed points. More to thepoint, the choice of a useful time unit depends on the choice of regions. Indeed, for somesets of regions, there may be no time unit useful for all regions of phase space. The problem8



Markov Analysis of Qualitative Dynamicshere is analogous to the problem of choosing good grid points for numeric integration orfor spline approximation to functions. We o�er no new methods for choosing samplingintervals.4 Analysis of Markov chainsIn this section we �rst summarize the elements of the theory of Markov chains and thendescribe how to organize the analytic algorithms to yield qualitative and quantitative con-clusions. Readers familiar with Markov theory may skip to Section 4.5. Readers unfamiliarwith Markov theory may �ndmore details in Feller [4], Kemeny and Snell [8], or Roberts [11].For simplicity, we will treat only �nite Markov chains, and so restrict attention to systemswhose qualitative dynamics involves only �nitely many regions of interest.Let S = fs1; : : : ; sng be the set of states of the qualitative dynamics, that is, the set ofnodes of the dynamic digraph. Each of these will also be a state of the Markov chain. Wedescribe the entire chain by specifying, for each nonexclusive choice of states si and sj, thetransition probability pij that if the system is in state si at one instant, it will be in statesj after one time unit has passed. We write P to mean the n� n transition matrixP = 0B@ p11 � � � p1n... . . . ...pn1 � � � pnn 1CAof all transition probabilities. P is also called a stochastic matrix, which means that allentries are nonnegative and that each row sums to 1. Each row of P is called a probabilityvector. The transition digraph of a stochastic matrix is the graph over the states with adirected arc from si to sj i� pij 6= 0.The probability that the chain is in state sj at time t given that it starts in state siat time 0 is written p(t)ij and called a higher-order transition probability. This probabilityis the i; j entry of P t, the t'th power of P . If we start the Markov chain at random,where the probabilities of starting in each state are given by an initial probability vectorp(0) = (p(0)1 ; : : : ; p(0)n ), then the probabilities of being in particular states at time t, p(t) =(p(t)1 ; : : : ; p(t)n ), are given by the equation p(t) = p(0)P t.A set C of states is closed if pij = 0 for all si 2 C and sj =2 C, that is, if once in C thechain can never leave C. A closed set C is ergodic if no proper subset is closed. A stateis ergodic if it is in some ergodic set, and is transient otherwise. A state that forms anergodic set by itself is called an absorbing state. Chains whose states form a single ergodicset are called ergodic chains, and chains in which each ergodic set is a singleton are calledabsorbing chains.The mathematical analysis of the asymptotic behavior of a Markov chain is dividedinto two parts: the behavior before entering an ergodic set, and the behavior after enteringone. One then combines these sub-analyses to get the overall asymptotic behavior. Inthe �rst step, one creates an absorbing chain by lumping all states in each ergodic setinto a single compound state. The transition probability from a transient state s to acompound state c is the sum of the transition probabilities from s to the members of c.The transition probability from c to other states is 0 by de�nition. The main result of9



Doyle & Sacksthe analysis is the long-term probability of entering each ergodic set when starting in eachof the transient states. In the second step, one analyzes each ergodic set as a separateergodic chain, una�ected by the other states. The result of the analysis is the long-termprobability of being in each of the states of the set. Combining these results yields thelong-term probability of being in each of the states of the chain. This is just the product ofthe probability of entering an ergodic set containing that state (this is zero if the state istransient) times the probability of appearing in that state once in the ergodic set. Stabilityanalysis shows that these asymptotic probabilities are insensitive to variations in the inputprobabilities.The separation of a Markov chain into ergodic sets and transient states is accom-plished by topologically sorting the strongly connected components in the transition graph.Strongly connected components with no outgoing arcs, the minimal components in thesorted graph, comprise ergodic sets. All other strongly connected components consist oftransient states. For example, the transition graph for the damped pendulum (Fig. 2) hasthree strongly connected components: fh0; 0ig, fh�; 0ig, and the remaining nodes. The �rsttwo are ergodic; the third is transient.4.1 Analysis of absorbing chainsThe �rst step in analyzing an absorbing chain is to reorder its states so that the absorbingstates appear �rst, thus converting the transition matrix to the canonical formP =  I 0R Q ! (3)with I an identity matrix, R the matrix of transition probabilities from transient statesto absorbing states, and Q the matrix of transition probabilities from transient states totransient states. The matrix I�Q has an inverse,2 denoted by N . The quantities of interestmay all be computed from N and R. The probability that the system eventually enters anabsorbing state is 1. The expected number of steps �i from the ith transient state untilabsorption equals the sum of the entries in the ith row of N . The variance �i of this meanis given by the ith entry in (2N � I)� � � h2i, where � h2ii = (�i)2. The probability of reachingthe jth absorbing state from the ith transient state is bij, where B = fbijg is given byB = NR.4.2 Analysis of ergodic chainsThe analysis in this section applies to regular ergodic chains, that is, chains that containat least one nonzero diagonal element in their transition matrix. Absorbing states are thetrivial case of regular chains. All the examples in this paper are regular. One can expectqualitative analysis of continuous dynamics to yield regular chains. The analysis mustconstruct at least one region of positive measure. One can always make the chain regular bychoosing a time scale short enough that most points in this region cannot escape in one step,thus giving the region a positive probability of transition to itself. This usually happens2This I is an identity matrix of the same dimensions as Q. It may di�er in dimension from the identitymatrix in equation (3). 10



Markov Analysis of Qualitative Dynamicsin practice. Even when the natural time scale for modeling yields a non-regular chain,the analysis involves only a few additional calculations, not any new ideas or additionalcomputational complexity. See Roberts [11] for details.The powers P t of the transition matrix of an ergodic chain approach a stochastic matrixW as t approaches in�nity. The rows of W are identical, each consisting of the uniqueprobability vector w = (w1; : : : ; wn) satisfying the n equations( Pni=1wipij = wj ; j = 1; : : : ; n� 1Pni=1wi = 1:This implies that as t approaches in�nity the probability of being in state i at step tapproaches wi independently of the initial state. Correspondingly, the expected period ofrecurrence of state i is just 1=wi.4.3 Stability of the analysisBy combining the two preceding analyses, we see that when each of the ergodic chains inP is regular, the powers P t approach a limiting stochastic matrix P1 as t! 1, with p1ijrepresenting the asymptotic probability of the system being in state j when starting in statei. If state j is transient, then p1ij = 0. Otherwise j is in some ergodic set J , and p1ij is theasymptotic probability of entering J (which we might write as biJ) times the asymptoticprobability of being in j within J (which we might write as wj(J)).The classi�cation of states into transient and ergodic states is stable under any variationin probabilities that does not change a positive probability into a zero probability or viceversa. Since the system ends up in ergodic states with probability 1, this means that thebasic classi�cation of asymptotic behaviors is very stable. In addition, the asymptotic prob-abilities P1 are stable with respect to smaller perturbations in the transition probabilitiesP . To see this, notice that the matrix P1 is a continuous function of P . Since the set of alln � n stochastic matrices is a compact, convex subspace of Euclidean space, the functionP1 is absolutely continuous over this subspace, with a Lifschitz constant of nC, where C isthe maximum absolute value of any of the partial derivatives of P1 with respect to entriesin P . Hence for any � > 0, varying the entries in P by less than �=nC will not cause changeslarger than � in the entries in P1.Unlike the probabilities of asymptotic behaviors, the settling times � and the relativelikelihoods biJ=biK of absorption by di�erent ergodic sets J and K can be sensitive toperturbations in P , especially when the direct probabilities of absorption are low (that is,when the norm of R is close to 0). The pendulum example of Section 5.1 illustrates thesesensitivities in parametric form.4.4 Initial conditionsMost treatments of qualitative prediction presuppose ignorance about the exact initial stateof the system. Such ignorance is naturally viewed as assuming a uniform distribution overinitial states, in which each state is equally likely to be the starting state. In this case, we getasymptotic probabilities for ending in each state by averaging the asymptotic probabilities11



Doyle & Sacksof transitions into that state from all states, so thatp1i = nXj=0 p1ji :We can model knowledge about the initial states as a probability distribution �(si) overqualitative states. This distribution may be viewed as derived from a distribution � overphase space, with �i � �(si) = Rsi �. Knowledge of initial conditions modi�es the proba-bilities of asymptotic behaviors very simply, with p1 = � � P1, that isp1i = nXj=0�(sj)p1ji :For example, a common case is when the initial state is known to occur in some subset S0of S, with the modeler ignorant about which state in S0 it is. This might be modeled as adistribution uniform over S0 and zero over S�S0. In this case, the asymptotic probabilitiesare given by equation (4), in which k = jS0j and states have been relabeled so that all statesin S0 appear before states in S � S0. p1i = k�1 kXj=0 p1ji (4)4.5 Analytic procedure and algorithmsWe divide the computation of predictions into qualitative and quantitative stages. Thequalitative stage derives the basic judgments of asymptotic probability or improbabilitysolely from information widely available in qualitative reasoning formalisms. We assignpositive and zero transition probabilities from adjacent regions to attractors and other�xed points respectively, using the dimensional analysis explained in Section 3. We assigna zero transition probability to all pairs of states that have no connecting edge in thetransition graph, such as h�;�i and h+;+i in Figure 5. We assign a positive probability totransitions between adjacent regions, such as h�;�i and h�;+i. This decision is justi�ed bythe continuous dependence of trajectories on initial conditions and by the de�nition of thetransition graph [14]. Using these probabilities, we partition the associated Markov chaininto ergodic sets and transient states, drawing the qualitative conclusions that the former,but not the latter, persist asymptotically. We employ the topological sorting algorithmof Tarjan [1, Sec. 5.5] to �nd the ergodic sets. When nonuniform initial conditions arespeci�ed, we �lter the sorted graph to �nd the ergodic states reachable from initial stateswith positive probabilities. The entire analysis takes time and space linear in the size ofthe transition graph.The quantitative stage derives symbolic or numeric re�nements of the qualitative judge-ments when corresponding estimates of the transition probabilities are available. It obtainsthe mean and variance of the settling times of the system from each transient state and theasymptotic distribution of ergodic states. All these quantities are given by simple matrixequations and can be computed in a constant number of matrix multiplications, inversions,and triangularizations. For numeric probability estimates, straightforward implementations12



Markov Analysis of Qualitative Dynamics

Figure 7: A damped pendulum.of these operations require O(n3) time and O(n2) space for a graph with n nodes [1, Chap. 6].Hsu [7] implements and demonstrates the calculations on several examples including chaoticones.The analysis may be carried out using probability estimates that are polynomials in in-determinate parameters, although at the price of exponential-time worst-case performance,since inverses of matrices with symbolic entries can have entries exponential in the size ofthe original matrix. The examples presented in the next section illustrate the use of para-metric analysis in judging the sensitivity of relative asymptotic probabilities under variationin transition probabilities. A full sensitivity analysis using standard statistical techniquesmight constitute a third stage of the analytic procedure, but we have not automated it.5 ExamplesEach of the following three examples illustrates a di�erent aspect of the stochastic analy-sis. The �rst example makes precise the analysis of the damped gravitational pendulum,and adds calculations of settling times and an analysis of their sensitivity to the earlierdetermination of asymptotic behavior. The second example, that of a charged pendulumin the presence of two other charges, is representative of a large class of everyday systemsin which there are several asymptotic behaviors of nonzero probability. The analysis ofthe charged pendulum calculates these probabilities, and examines the dependence of theirsizes on the magnitude of the charges. The third example, the quadratic map, illustratesthe applicability of the stochastic analysis to discrete systems, including those exhibitingchaotic behaviors.5.1 The gravitational pendulumWith the Markov theory in hand, we can make precise our intuitive analysis of the transitiongraph of the pendulum equation �00 + �m�0 + gl sin � = 0;shown in Figure 7. We begin with a qualitative analysis. Dimensional analysis provides thesigns of the transition probabilities, as discussed in Section 2. The transition probabilities13
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Figure 8: Prototypical transition probabilities for the pendulum with q = (1 � p)=2. Self-loop probabilities are not shown.into h�; 0i are zero. The transition probabilities into h0; 0i are positive in the damped case(� > 0) and zero in the undamped case (� = 0). In the damped case, the transition graphforms an absorbing chain with absorbing states h0; 0i and h�; 0i. The pendulum eventuallyapproaches h0; 0i with probability one from any transient state; it cannot cycle between thetransient states forever. In the undamped case, the transition graph decomposes into threeergodic chains: fh0; 0ig, fh�; 0ig, and fh+;+i; h+;�i; h�;�i; h�;+ig. Trajectories in thethird chain, which comprises essentially the entire phase space, oscillate around the originforever.Given additional information about the transition probabilities, we can estimate theabsorption times for the damped case and the asymptotic distribution of states in theundamped case. For example, suppose that the transition probability into h0; 0i is p andthat all other probabilities are equally distributed (Fig. 8). The matrix of absorption timesis given by equation (5) for p > 0. � = p�10BBB@ 2� p2 + p2� p2 + p 1CCCA (5)The equation shows that the settling time of the pendulum increases toward 1 as frictiondecreases toward zero. Equation (5) does not apply in the limiting case of p = 0, sinceh0; 0i ceases to be an absorbing state. Under our equiprobability assumption, trajectoriesare equally likely to be in any of the four regions in the third ergodic chain at any giventime.5.2 The two-charge pendulumThe gravitational pendulum model presupposes that the force on the bob is independentof the bob's location. The model for the variable attraction between a positively chargedpendulum bob and two negative charges is more complicated (Fig. 9). Each negative chargeexerts a force f(�; k) = k(d+ l)l�5(sin�)(d2 + dl + 2l2 � 2l(d+ l) cos�)�3=214
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Figure 9: A positively charged pendulum attracted by two negative charges.

Figure 10: Qualitative dynamics for the two-charge pendulum.along the line between it and the bob, with � the angle between that line and the pendulum,k the coe�cient of electrostatic attraction between the bob and the charge, l the length ofthe arm, and d the vertical distance from the bob's orbit to the line connecting the twonegative charges. The two-charge pendulum obeys the equation�00 + �m�0 + f(� + a; k1) + f(� � a; k2) = 0with a the angle between each pole and the vertical, k1 and k2 corresponding to the left andright charges, � > 0 the damping coe�cient, and m the mass of the bob. Figure 10 containsthe qualitative dynamics for the case of equal charges (k1 = k2). Saddles appear at (�; 0) and(0; 0) where the charges cancel each other. A sink appears where each charge is strongest.The pendulum can spin (A-B-C-D and E-F-G-H), oscillate around both negative charges(A-B-C-D-E-F-G-H), oscillate around the left charge (A-B-G-H), or oscillate around theright charge (C-D-E-F). It can also switch from spinning to oscillating and from oscillatingaround both charges to oscillating around either charge. When the charges are unequal, theunstable equilibria move away from h0; 0i and h�; 0i and the stable equilibria are positionedasymmetrically around the �0 axis, but otherwise the qualitative dynamics appears just asin Figure 10. 15
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Figure 11: Transition probabilities for the two-charge pendulum. The probabilities from theadjacent regions of si are pi. The unmarked transitions of each node have equal probabilities.The qualitative analysis of the two-charge pendulum resembles that of the gravitationalpendulum. Dimensional analysis determines that the transition probabilities are zero intothe saddles and positive into the sinks. The transition graph forms an absorbing chainwhose absorbing states are the �xed points. The pendulum eventually approaches one ofthe sinks with probability one from the remaining, transient states. It is more likely to endup at the sink with the larger charge. If the charges are equal, it is equally likely to end upat either one.To estimate the relative likelihoods of the two sinks, we assign transition probabilities ofp1 and p2 to transitions into s1 and s2 from adjacent regions and assume that the remainingtransitions are equally distributed (Fig. 11). Let p11 and p12 represent the asymptoticprobabilities of appearing in states s1 and s2, averaged over all possible transient startingstates. Calculating the ratio r1 = p11 =p12 yieldsr1 = �p1p2� (p1 � 1)p22 � (3p1 + 21)p2 + 2p1 � 14(p21 � 3p1 + 2)p2 � p21 � 21p1 � 14 !The dependence of r1 on p1 and p2 agrees with our intuitions. The ratio increases mono-tonically from 0 as p1 increases from 0 to 1 and decreases monotonically from 1 as p2increases from 0 to 1. It equals 0 when p1 = 0, 1 when p2 = 0, and 1 when p1 equals p2.5.3 The quadratic mapMarkov analysis handles discrete dynamic systems as well as continuous ones. The evolutionlaw of a discrete system maps states to their immediate successors. Given initial state x0and map f , the system is in state x1 = f(x0) at time 1, x2 = f(f(x0)) at time 2, andxi = f i(x0) at time i. The set of iterates fxig is called the trajectory of x0. Dynamicsystems theory seeks to determine the qualitative properties of a system's trajectories fromits evolution law. For example, a trajectory is �xed if f(x) = x and periodic with periodp if fp(x) = x. Devaney [2] provides a good elementary introduction to discrete dynamicsystems, including the example below.Discrete systems are useful in modeling population dynamics. Here x0 denotes an initialpopulation, xi denotes the population after i generations, and f(x) expresses the birth rate.16



Markov Analysis of Qualitative DynamicsMay [10] studies the system f(x) = ax�bx2 with a and b positive parameters that representnatural reproduction and the negative e�ects of overcrowding. The birth rate increases from0 to a maximum then decreases to 0 as x increases from 0 to a=b. Even this system, arguablythe simplest nonlinear one possible, can exhibit extremely complicated behavior.Following May, we substitute bx=a for x to obtain the canonical formf(x) = ax(1� x);which is called the quadratic map. Trajectories that leave the interval [0; 1] approach �1monotonically and f(1) = 0, implying that large enough populations always die out. Theproblem is to identify and characterize the trajectories that remain in (0; 1) forever, whichrepresent the stable patterns of population uctuation. The answer depends on a. Thepoint (a � 1)=a is always �xed. For a < 3, all trajectories in (0; 1) approach (a � 1)=aasymptotically. This means that populations below a certain size approach a stable equilib-rium, whereas larger populations die out. New phenomena arise within (0; 1) for 3 � a � 4,including periodic orbits with arbitrarily large periods and chaos, but trajectories still can-not escape because f � 1. In physical terms, the population can vary erratically, but cannotdie out. For a > 4, almost all trajectories escape and the remainder form a chaotic Cantorset; almost all initial populations die out, but some persist and vary erratically.Rigorous derivation of these conclusions requires great mathematical expertise. Morecomplicated equations defy analysis altogether. Markov analysis, although more limited,provides many of the same answers and applies uniformly to all equations. We de�ne aMarkov chain with two states [0; 1] and its complement C = (�1; 0) [ (1;1). For a � 4,we obtain two absorbing states because trajectories never cross between regions. For a > 4,we obtain an absorbing chain with absorbing state C, implying that trajectories in [0; 1]eventually escape to C with probability 1. In physical terms, the population survives fora < 4 and dies out otherwise.Markov theory also predicts the extinction time for a > 4, which equals the absorptiontime into C. The transition probability from [0; 1] to C equals the measure of the set ofpoints in [0; 1] that map directly into C. This set is the subinterval"12 �r14 � 1a ; 12 +r14 � 1a # ;so the transition probability is p = p1� 4=a. The expected absorption time equals 1=p,as explained in Section 4.1. Figure 12 compares the predicted mean absorption timeswith the average absorption times derived by numerically simulating trajectories for 20000pseudorandom initial points. The small relative error indicates that the chain assumptionapplies well.In a more re�ned analysis, we could investigate the behavior of the quadratic mapwithin the interval [0; 1] by partitioning that interval into small subintervals. Markov anal-ysis would estimate the distribution of states within each region. This approach providesa statistical understanding of systems whose individual trajectories defy analysis. For ex-ample, it demonstrates that most iterates of the map 4x(1 � x) on [0; 1] cluster near theendpoints, a result that Lasota and Mackey [9] con�rm by analytic means. In contrast,17



Doyle & Sacksa Markov prediction Observed time % error4:1 6:40 6:49 1:44:2 4:58 4:58 0:04:5 3:00 2:98 0:65 2:24 2:22 0:96 1:73 1:75 1:1Figure 12: Stochastically predicted time for the quadratic map to leave [0; 1] compared withthe average observed time for 20000 pseudorandom starting points.the chaotic behavior of the quadratic map implies that some trajectories cross between ev-ery pair of regions, thus reducing its qualitative dynamics to a complete graph, devoid ofpredictive power.6 Conclusions and future workWe apply the theory of Markov chains to estimate the relative likelihoods of possible be-haviors of a system, thereby �lling a serious gap in the predictions of qualitative simulation.Our method provides a formal justi�cation and an e�cient algorithm for commonsense andquantitative reasoning about relative likelihoods. It enables us to draw the best possibleconclusions from the available information. We can determine the possible long term be-haviors of a system directly from its qualitative dynamics in a simple qualitative analysisthat runs in linear time. More detailed information, such as the likelihoods of the possiblebehaviors and the expected settling times for each initial state, requires estimates of thetransition probabilities between qualitative states. The estimates can be numeric or sym-bolic; the analysis is formally identical in both cases, but has O(n3) time-complexity in theformer and exponential time-complexity in the latter. We exhibit the utility of our methodin several examples, and analyze the robustness of its conclusions to perturbations in thetransition probabilities. The likelihoods of the long term behaviors are never sensitive toperturbations in the transition probabilities, whereas the expected settling times can besensitive.Markov analysis of dynamical systems has also been pursued by Hsu [7], whose analysisof \generalized cell-to-cell mappings" is similar to our analysis of dynamics over qualitativestates. Hsu develops algorithms which yield the same numerical information as ours fornumerically formulated systems. These algorithms are more limited than ours, however, inthat they cannot provide purely qualitative or symbolic conclusions from purely qualitativeor symbolic information about the dynamic system.Our current analysis is only a �rst step towards full exploitation of the stochastic ap-proach to qualitative reasoning. We have not fully explored the potential of Markov theory.Further investigation may yield simple ways of determining other qualitative propertiesof systems through application of known techniques, or purely qualitative algorithms forobtaining qualitative predictions of relative likelihoods. One might also relax the chain as-sumption underlying our treatment and instead view the qualitative dynamics as describinga more general Markov process in which transitions depend on past states. There is a rich18



Markov Analysis of Qualitative Dynamicstheory of these processes which may support many of the same conclusions as above in themore general setting.Incorporating global properties of ows into stochastic analysis is another topic for fu-ture research. Our current analysis derives the qualitative dynamics of a system from localproperties of its ow: where it vanishes and whether it crosses certain curves. Sacks [13]shows how to increase the accuracy of the qualitative dynamics by ruling out locally consis-tent behaviors that violate global constraints, thus reducing the size of a transition graph.For example, his program uses an energy argument to prove that a pendulum cannot spinforever. One could make this argument within the qualitative dynamics by partitioningphase space along level curves of the pendulum's total energy. Energy conservation thenrules out transitions from a region to higher energy regions. This dynamics eliminates thespurious behaviors of wobbling and unbounded oscillation, which the original dynamicspermits. It facilitates stochastic analysis by reducing the size of the transition graph andby providing trapping regions for sinks without the estimation problems discussed in Sec-tion 5.2. Energy conservation also implies that the pendulum cannot spin forever withoutresort to the chain assumption, thus lightening the burden on stochastic analysis. Derivingand exploiting the relations between the stochastic model and the global phase ow is amore ambitious task.Incorporating global analysis [15] with stochastic analysis is another direction for futureresearch. Global analysis considers not just one ow, but a class of ows. This is usefulwhen we do not know the exact equations describing a system, and wish to make predictionsbased on what we do know about them. One global concept is that of structurally stablesystem, all of whose perturbations have the same qualitative behavior. Global analysisformalizes such notions by considering measures over classes of ows. When the measuresconsidered are probability densities over systems, the stochastic analysis presented abovecan be directly extended to the case of indeterminate dynamics. For example, the set ofows for the Lottka-Volterra model of population sizes of competing species divides intofour classes of ows, each with qualitatively di�erent dynamics [6]. Each of these has asmall number of attractors, and can be analyzed for expected asymptotic behavior just aswas done with the charged pendulum in Section 5.2. If we can estimate (by some means)the probability that the actual system falls into each class, we can then calculate the overallprobability of each possible asymptotic behavior in each of the di�erent dynamics.Automating the model re�nement procedure for stochastic qualitative analysis is a majorchallenge. To do so requires answering some fundamental questions about the stability of thestochastic predictions under changes in the underlying qualitative graph, such as dividingphase space into overly-�ne regions. Yip [16] presents some methods for sampling andobserving the behaviors of dynamical systems. Perhaps they can be extended to the modelconstruction task. Machine learning techniques may also prove relevant.AcknowledgmentsThe authors thank William Long, Ramesh Patil, Peter Szolovits, Michael Wellman, andthe anonymous referees for helpful comments on drafts of this paper, and Kenneth Yipfor valuable suggestions. Jon Doyle is supported by the National Library of Medicine19
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