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Abstract

Commonsense sometimes predicts events to be likely or unlikely rather than merely
possible. We extend methods of qualitative reasoning to predict the relative likelihoods of
possible qualitative behaviors by viewing the dynamics of a system as a Markov chain over
its transition graph. This involves adding qualitative or quantitative estimates of transition
probabilities to each of the transitions and applying the standard theory of Markov chains to
distinguish persistent states from transient states and to calculate recurrence times, settling
times, and probabilities for ending up in each state. Much of the analysis depends solely
on qualitative estimates of transition probabilities, which follow directly from theoretical
considerations and which lead to qualitative predictions about entire classes of systems.
Quantitative estimates for specific systems are derived empirically and lead to qualitative
and quantitative conclusions, most of which are insensitive to small perturbations in the
estimated transition probabilities. The algorithms are straightforward and efficient.

1 Introduction

Qualitative dynamical reasoning seeks to predict the global behavior of a complex dynamic
system by partitioning its state space into a manageable number of regions and characteriz-
ing its behavior by the sequences of regions that it can go through. Although considerable
progress has been made toward automating such reasoning, some important prediction
problems have not been addressed. In particular, this methodology is too weak to describe
the limiting behavior of dynamic systems. For example, a damped pendulum eventually
must approach equilibrium either directly below or directly above its pivot (Fig. 1). The
first possibility is almost certain, whereas the second almost never occurs. Qualitative sim-
ulation discovers both equilibria, but neither can determine their relative likelihoods nor
rule out the possibility that the pendulum will spin forever. Yet qualitative considerations
suffice for both conclusions, independent of the numeric details of the system.

Such limiting behaviors are global characteristics of a system. To understand them, we
must look beyond individual transitions to sequences of transitions. We must assign each
sequence a probability ranging from impossible to definite. The probability of a particular
limiting behavior equals the total probability of the subset of possible histories in which the
corresponding sequence of transitions occurs. For example, the probability that the pendu-
lum approaches its unstable equilibrium when released in arbitrary position is zero because
the set of sequences that either start or terminate at the unstable equilibrium has measure
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Figure 1: Equilibria of a damped pendulum.

zero. Calculating the probabilities is straightforward in systems whose exact limiting be-
havior is known for all initial conditions. The challenge is to estimate the probabilities when
the limiting behavior is unknown. This can occur in qualitative reasoning where the un-
derlying equations are incompletely specified or in quantitative reasoning about intractable
systems.

In this paper, we describe a method for predicting the relative likelihoods of the limiting
behaviors of such dynamic systems. The method provides a formal justification for com-
monsense conclusions about relative likelihoods and an efficient algorithm for deriving them.
It also provides numeric likelihood estimates for fully specified systems. The method rests
upon the simplifying assumption that the system forms a Markov chain over its transition
graph, i.e. that the next state of the system is a time-independent probabilistic function
of its current state. This assumption agrees with the standard qualitative reasoning model
in which the next qualitative state of a system depends only on its current state, not on
its past. It extends that model by assigning probabilities to branching states instead of
treating all branches uniformly. Markov theory is then employed to derive the probabilities
of the transition sequences.

The central step of the analysis, in which we assign transition probabilities and derive
probability estimates for the possible asymptotic behaviors, applies to every extant form of
qualitative dynamics, including ones generated by qualitative simulation. For concreteness,
we illustrate the method by using the classical mathematical theory of dynamic systems to
derive a set of qualitative states and transition graph from the phase space of a system,
following Sacks [14].

Our method can derive useful results at many levels of detail, ranging from the abstract
level of the qualitative reasoning formalisms in the AT literature to fully specified ordinary
differential equations. It can process qualitative probability estimates in the {0, (0,1),1}
quantity space, symbolic estimates such as p or ¢+r, and numeric estimates. Markov theory
blends the available information into a unifying framework that provides the best possible
conclusions about asymptotic behavior given the evidence. Qualitative information leads
to qualitative predictions about entire classes of systems, such as all damped pendulums
or all instances of a parameterized equation. Quantitative information leads to qualitative
and quantitative predictions about individual systems.

Markov theory provides some sorts of essentially qualitative information that qualitative
simulation does not, including a partition into persistent and transient states (transient
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states are always improbable as asymptotic behaviors) and a partition of the persistent
states into the probable and the improbable. Many of these facts follow directly from qual-
itative estimates of transition probabilities, and may be derived through purely qualitative
algorithms. Other qualitative conclusions, though derived from numeric estimates of tran-
sition probabilities, are insensitive to small perturbations in these estimates. The theory
also provides quantitative refinements of these qualitative conclusions, including the mean
and variance of settling times. Unlike the qualitative conclusions, the quantitative results
are in some cases sensitive to variations in the input probabilities. The algorithms are
straightforward, principally consisting of a topological sort of the transition graph and a
few matrix operations on the transition probabilities, and require time at most cubic in the
number of regions. The numeric analysis goes through for symbolic probability estimates,
although at the price of exponential-time worst-case performance.

The next section describes our approach to dynamics, which is based on the classical
mathematical theory of dynamical systems, and shows how the sorts of dynamics employed
in other AT approaches to qualitative reasoning may be translated into ours. The following
section shows how to model dynamic systems as Markov chains. There we state and defend
the requisite simplifying assumptions. Section 4 describes the algorithms for analyzing
Markov chains. Section 5 demonstrates our methods on several examples, including the
damped pendulum and the quadratic map. The final section draws conclusions and discusses
some possible extensions and generalizations.

2 Qualitative dynamics in phase space

Our qualitative dynamics builds upon the phase space representation developed by Poincaré.
The phase space for a system of first-order differential equations

x;:fz(x177$n>,7,:177n (1)

is the Cartesian product of the x;’s domains. One can convert higher-order equations to first-
order ones by introducing new variables as synonyms for higher derivatives. Points in phase
space represent states of the system. Curves on which the equations (1) are satisfied, called
trajectories, represent solutions. The topological and geometric properties of trajectories
characterize the qualitative behavior of solutions. For instance, a point trajectory, called
a fized point, indicates an equilibrium solution, whereas a closed curve indicates a periodic
solution. A fixed point is stable if every nearby trajectory approaches it asymptotically and
unstable otherwise. More generally, the basin of a fixed point is the set of trajectories that
approach it asymptotically.
A phase diagram for a system depicts its phase space and trajectories graphically. For
example, the standard model for a damped pendulum is
0"+ Lo+ Lsing =0,
m l
with @ the angle between the arm and the vertical, [ the length of the (weightless rigid)
arm, m the mass of the bob, ¢ the gravitational constant, and p the damping coefficient
(Fig. 2). The phase diagram of the pendulum appears in Figure 3. The phase space is
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Figure 2: A damped pendulum.
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Figure 3: Phase diagram for the damped pendulum.
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Figure 4: Phase space regions of the qualitative states of the damped pendulum.

cylindrical, since angles that differ by 27 are physically indistinguishable. Two trajectories
spiral toward the unstable fixed point at (7, 0); the rest spiral toward the stable fixed point
at (0,0).

A complete qualitative description of a system consists of a partition of its phase space
into sets of qualitatively equivalent trajectories. The equivalence criterion depends on the
problem task. Mathematicians generally focus on topological equivalence, whereas coarser
relations are more useful in engineering applications. We follow standard AI practice and
equate all trajectories that go through a specific sequence of regions in phase space. Our
qualitative dynamics consists of a partition of phase space into regions along with a graph
of possible transitions between regions. Sacks [12, 13] presents a system that automatically
identifies such regions and the possible transitions between them for second-order systems
of ordinary differential equations. Most of the ideas extend directly to larger systems.

Sacks [14] shows how to translate traditional qualitative reasoning into our qualitative
dynamics without loss of information or increase in complexity. Qualitative states corre-
spond to rectangular regions in phase space, and qualitative simulation amounts to finding
the possible transitions between regions. A transition occurs from region A to region B if
the derivative of the system on the boundary between the regions points into B. A transi-
tion occurs from a region to a neighboring fixed point unless all the eigenvalues of the fixed
point have positive real part, as explained in the next section. For example, automatic
analysis of the damped pendulum equation results in six qualitative states corresponding
to four rectangles ({(£,+)) and two fixed points ((0,0),(m,0)), as shown in Figure 4. (The
complete dynamics includes the degenerate rectangles (0,+) and (+,0), which we ignore
for simplicity. Including them complicates the results without affecting the analysis or the
conclusions.) Figure 5 shows the transition graph over these qualitative states.

3 Transforming flows into Markov chains

A Markov chain is a process whose state at time ¢ + 1 is a time-independent probabilistic
function of its state at time t. We model dynamic systems as Markov chains whose states
are regions and fixed points in phase space, or equivalently qualitative states. The transition
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Figure 5: Qualitative state transition graph of the damped pendulum.

probabilities express the likelihood of the system’s state moving from one region or fixed
point to another in unit time. We employ Markov theory to infer properties of the trajec-
tories from properties of the transition probabilities. Each inference applies to all systems
with the necessary properties. Inferences that require only qualitative properties apply to
an entire class of systems, whereas inferences that rest on numeric probability estimates
apply only to “nearby” systems, as explained in the next section.

Determination of suitable qualitative states and time scales for the Markov analysis is a
difficult problem. We discuss some of the issues involved below, but do not present any new
methods for automatic model construction, as the probabilistic analysis techniques studied
here may be applied in conjunction with any model construction method. Extant approaches
to automatic model construction do not always yield the best models, but in many cases
the errors introduced by suboptimal models can be treated exactly as ordinary stochastic
behavior. The strength of the Markov analysis is that it provides the best predictions
possible given the model used.

Transition probabilities have one meaning for transitions between regions and another
meaning for transitions involving fixed points. The transition probability from region A to
region B expresses the fraction of points in A whose corresponding trajectories are in B
after one time unit. For nondegenerate A of finite measure, this is just

w(Aneé '(B))
1(A)

where o is Lebesgue measure and ¢ is the flow over unit time. Regions which have infinite
or zero measure, such as (+,4) and (0, —), call for different treatment. One approach to
regions of infinite measure, which suffices for any physically realizable system, is to replace
each infinite region in equation (2) with a large, but finite, subregion. This amounts to
defining the transition probability as a limit of equation (2) over a monotone increasing
sequence of finite subsets. One could similarly replace degenerate regions with small nonde-
generate regions surrounding them, which amounts to defining the transition probabilities
over monotone decreasing supersets.

Our treatment of degenerate regions extends directly to fixed points. Intuitively, the
transition probability from region A to fixed point p expresses the fraction of points in A
whose trajectories “reach” p in unit time. To justify this approach, we must resolve the
conflict between the theory of ordinary differential equations, which implies that smooth

(2)
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systems cannot reach a fixed point from another state in finite time, and everyday experi-
ence, which indicates the contrary. One can side with the theory and claim that systems
merely appear to reach a fixed point because of our perceptual limitations, or one can side
with commonsense and claim that ordinary differential equations are an imperfect model of
reality. Theorists can interpret the word “reach” as entering some e-neighborhood; others
can take it literally. Indeed, since stable fixed points attract all points in some neigh-
borhood, estimates of asymptotic probability are not misguided by identifying transition
probabilities to a neighboring region with transition probabilities to the stable fixed point.

The measure-theoretic construction interprets qualitative states as lumped states, so
that the transition probabilities represent the imprecision in the qualitative model of the
dynamic system. If we were able to choose as regions the actual attractors and basins
of the system, there would be no imprecision and the transition rules would be perfectly
deterministic. The great difficulty of determining the optimal set of regions for analysis
helps motivate the stochastic approach to analyzing behaviors. Additional factors that
transition probabilities can model include (1) uncertainty about initial conditions which
induces a distribution of possible trajectories, (2) uncertainty about the parameters of the
model equations, and (3) uncertainties (or noise sources) explicitly occurring in the system’s
equations, as in stochastic differential equations.

Qualitative probability estimates follow directly from the transition graph and fixed
point types of a system. The transition probability is zero from a region to an unreachable
region by definition of the graph. By the stable manifold theorem [5, p. 13], the dimension
of the basin of a fixed point equals the number of eigenvalues of its Jacobian matrix that
have negative real parts.! Unstable fixed points have positive eigenvalues, so their basins
form lower-dimensional, hence measure zero, subspaces. This implies that the transition
probability into an unstable fixed point from any other region is always zero by equation (2).
Stable fixed points have basins of positive measure because they attract all points in some
neighborhood. Hence, there is a positive transition probability from a neighboring region
to a stable fixed point.

Numeric estimates of transition probabilities are derivable by numeric simulations or
physical experiments that sample representative points in each region and count how many
go to each region. One can also obtain subjective estimates from domain experts. Both
sampling and subjective estimates may contain errors, but as we show below, the qualitative
analysis is insensitive to minor errors in these probabilities.

In the pendulum example, the fixed point (0, 0) is stable and (7, 0) is unstable. The basin
of (m,0) is a one-dimensional curve in the two-dimensional phase space (Fig. 3) whereas the
basin of (0,0) has positive measure. The transitions to (m,0) have probability zero and
those to (0,0) have positive probability. These qualitative estimates suffice to prove that
the pendulum comes to rest at (0,0) with probability one. The exact arrival time depends
on the specific transition probabilities, which vary from system to system. We show how to
derive both the qualitative and the quantitative information in the next section.

The qualitative analysis of the pendulum applies to any system with the same transition
graph and types of fixed points. It is independent of whether the pendulum is underdamped
or overdamped, that is whether the eigenvalues of (0,0) are real or complex. In the real case,

!This theorem applies to hyperbolic fixed points. The number of positive real parts at an arbitrary fixed
point suffices for our analysis.
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trajectories eventually approach (0,0) directly from within (—,+) or (+,—), while in the
complex case, they spiral inward, forever cycling between the outer regions. This distinction
is immaterial according to both the theoretical and the commonsense views described above.
Commonsense asserts that real trajectories always come to rest at (0,0) after a finite number
of cycles. Theory claims that they enter and remain in a small neighborhood of (0, 0); for the
conclusions reached by the transition model, it is irrelevant whether trajectories continue
to spiral within that neighborhood.

We assume that the transition probabilities remain constant over time and that they
depend only on the qualitative state of origin, independent of past history. The first as-
sumption holds for autonomous equations that are free of their independent variable. One
can reduce any general system to an autonomous one by treating the independent variable,
t, as a state variable governed by the equation ¢ = 1. The second assumption holds to
the extent that the future trajectory of the system is insensitive to its distant past. The
most questionable case is that of conservative systems in which the volume of each region in
phase space is preserved for all time by the flow, causing small differences between trajecto-
ries to retain their significance forever. Conservative systems pose problems for qualitative
reasoning generally, not just for our stochastic analysis, as the regions of interest must be
chosen carefully. Fortunately, most realistic systems are dissipative, hence volume shrink-
ing, causing differences between trajectories to shrink exponentially. Figure 6 illustrates
the two cases.
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Figure 6: (a) Volume preserving flow. (b) Dissipative flow.
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Time-dependent transition probabilities imply that the current partition of phase space
is too coarse: differences within a prior region express themselves in the current region be-
cause the distances between points in the prior region are too great to damp out in one time
step. One approach to dealing with such time-dependence involves iterative improvement of
the model, following Hsu [7] or Sacks [13] (though unlike that work, we have not automated
this refinement process). If one observes time-dependent behavior in constructing the tran-
sition probabilities, one subdivides or otherwise refines the set of regions and starts over.
In principle, the process ends when the chain assumption appears correct for all regions,
but in practice the choice of when to accept a model as satisfactory involves a tradeoff of
model complexity against model accuracy. The aptness of the chain assumption can also
be tested against empirical observations or long term numeric simulations.

Like the choice of regions, the choice of the time unit over which transition probabilities
are measured influences the accuracy of the model. Too long a time scale, and all transitions
may appear possible; too short, and all regions may appear to be fixed points. More to the
point, the choice of a useful time unit depends on the choice of regions. Indeed, for some
sets of regions, there may be no time unit useful for all regions of phase space. The problem
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here is analogous to the problem of choosing good grid points for numeric integration or
for spline approximation to functions. We offer no new methods for choosing sampling
intervals.

4 Analysis of Markov chains

In this section we first summarize the elements of the theory of Markov chains and then
describe how to organize the analytic algorithms to yield qualitative and quantitative con-
clusions. Readers familiar with Markov theory may skip to Section 4.5. Readers unfamiliar
with Markov theory may find more details in Feller [4], Kemeny and Snell [8], or Roberts [11].
For simplicity, we will treat only finite Markov chains, and so restrict attention to systems
whose qualitative dynamics involves only finitely many regions of interest.

Let S ={s1,...,sn} be the set of states of the qualitative dynamics, that is, the set of
nodes of the dynamic digraph. Each of these will also be a state of the Markov chain. We
describe the entire chain by specifying, for each nonexclusive choice of states s; and s;, the
transition probability p;; that if the system is in state s; at one instant, it will be in state
s;j after one time unit has passed. We write P to mean the n x n transition matriz

P11 - Pin
P=| : :
Pn1 - Pnn

of all transition probabilities. P is also called a stochastic matriz, which means that all
entries are nonnegative and that each row sums to 1. Each row of P is called a probability
vector. The transition digraph of a stochastic matrix is the graph over the states with a
directed arc from s; to s; iff p;; # 0.

The probability that the chain is in state s; at time ¢ given that it starts in state s;
at time 0 is written pgt-) and called a higher-order transition probability. This probability
is the 4,j entry of P!, the t'th power of P. If we start the Markov chain at random,
where the probabilities of starting in each state are given by an wnitial probability vector

pl0) = (pgo), - ,p%o)), then the probabilities of being in particular states at time ¢, p() =

(pgt), - ,pg)), are given by the equation p() = p(®) pt,

A set C of states is closed if p;; = 0 for all s; € C' and s; ¢ C, that is, if once in C' the
chain can never leave C. A closed set C' is ergodic if no proper subset is closed. A state
is ergodic if it is in some ergodic set, and is transient otherwise. A state that forms an
ergodic set by itself is called an absorbing state. Chains whose states form a single ergodic
set are called ergodic chains, and chains in which each ergodic set is a singleton are called
absorbing chains.

The mathematical analysis of the asymptotic behavior of a Markov chain is divided
into two parts: the behavior before entering an ergodic set, and the behavior after entering
one. One then combines these sub-analyses to get the overall asymptotic behavior. In
the first step, one creates an absorbing chain by lumping all states in each ergodic set
into a single compound state. The transition probability from a transient state s to a
compound state ¢ is the sum of the transition probabilities from s to the members of c.
The transition probability from ¢ to other states is 0 by definition. The main result of
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the analysis is the long-term probability of entering each ergodic set when starting in each
of the transient states. In the second step, one analyzes each ergodic set as a separate
ergodic chain, unaffected by the other states. The result of the analysis is the long-term
probability of being in each of the states of the set. Combining these results yields the
long-term probability of being in each of the states of the chain. This is just the product of
the probability of entering an ergodic set containing that state (this is zero if the state is
transient) times the probability of appearing in that state once in the ergodic set. Stability
analysis shows that these asymptotic probabilities are insensitive to variations in the input
probabilities.

The separation of a Markov chain into ergodic sets and transient states is accom-
plished by topologically sorting the strongly connected components in the transition graph.
Strongly connected components with no outgoing arcs, the minimal components in the
sorted graph, comprise ergodic sets. All other strongly connected components consist of
transient states. For example, the transition graph for the damped pendulum (Fig. 2) has
three strongly connected components: {(0,0)}, {(m,0)}, and the remaining nodes. The first
two are ergodic; the third is transient.

4.1 Analysis of absorbing chains

The first step in analyzing an absorbing chain is to reorder its states so that the absorbing
states appear first, thus converting the transition matrix to the canonical form

I 0

P ( - ) (3
with I an identity matrix, R the matrix of transition probabilities from transient states
to absorbing states, and ) the matrix of transition probabilities from transient states to
transient states. The matrix I — (@ has an inverse,? denoted by N. The quantities of interest
may all be computed from N and R. The probability that the system eventually enters an
absorbing state is 1. The expected number of steps 7; from the ith transient state until
absorption equals the sum of the entries in the ith row of N. The variance o; of this mean
is given by the ith entry in (2N — I)7 — 7%, where TZ-<2> = (7;)2. The probability of reaching
the jth absorbing state from the ith transient state is b;;, where B = {b;;} is given by
B = NR.

4.2 Analysis of ergodic chains

The analysis in this section applies to reqular ergodic chains, that is, chains that contain
at least one nonzero diagonal element in their transition matrix. Absorbing states are the
trivial case of regular chains. All the examples in this paper are regular. One can expect
qualitative analysis of continuous dynamics to yield regular chains. The analysis must
construct at least one region of positive measure. One can always make the chain regular by
choosing a time scale short enough that most points in this region cannot escape in one step,
thus giving the region a positive probability of transition to itself. This usually happens

2This I is an identity matrix of the same dimensions as Q. It may differ in dimension from the identity
matrix in equation (3).

10
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in practice. Even when the natural time scale for modeling yields a non-regular chain,
the analysis involves only a few additional calculations, not any new ideas or additional
computational complexity. See Roberts [11] for details.
The powers P! of the transition matrix of an ergodic chain approach a stochastic matrix
W as t approaches infinity. The rows of W are identical, each consisting of the unique
probability vector w = (wy,...,w,) satisfying the n equations
Y wipij = wy; j=1,...,n—1
This implies that as t approaches infinity the probability of being in state ¢ at step t

approaches w; independently of the initial state. Correspondingly, the expected period of
recurrence of state i is just 1/w;.

4.3 Stability of the analysis

By combining the two preceding analyses, we see that when each of the ergodic chains in
P is regular, the powers P! approach a limiting stochastic matrix P> as ¢ — oo, with Piy
representing the asymptotic probability of the system being in state j when starting in state
i. If state j is transient, then p?? = 0. Otherwise j is in some ergodic set .J, and p7} is the
asymptotic probability of entering J (which we might write as b;7) times the asymptotic
probability of being in j within J (which we might write as w;(.J)).

The classification of states into transient and ergodic states is stable under any variation
in probabilities that does not change a positive probability into a zero probability or vice
versa. Since the system ends up in ergodic states with probability 1, this means that the
basic classification of asymptotic behaviors is very stable. In addition, the asymptotic prob-
abilities P* are stable with respect to smaller perturbations in the transition probabilities
P. To see this, notice that the matrix P> is a continuous function of P. Since the set of all
n X n stochastic matrices is a compact, convex subspace of Euclidean space, the function
P is absolutely continuous over this subspace, with a Lifschitz constant of nC, where C' is
the maximum absolute value of any of the partial derivatives of P> with respect to entries
in P. Hence for any € > 0, varying the entries in P by less than ¢/nC will not cause changes
larger than € in the entries in P™.

Unlike the probabilities of asymptotic behaviors, the settling times 7 and the relative
likelihoods b;7/bjx of absorption by different ergodic sets J and K can be sensitive to
perturbations in P, especially when the direct probabilities of absorption are low (that is,
when the norm of R is close to 0). The pendulum example of Section 5.1 illustrates these
sensitivities in parametric form.

4.4 Initial conditions

Most treatments of qualitative prediction presuppose ignorance about the exact initial state
of the system. Such ignorance is naturally viewed as assuming a uniform distribution over
initial states, in which each state is equally likely to be the starting state. In this case, we get
asymptotic probabilities for ending in each state by averaging the asymptotic probabilities

11
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of transitions into that state from all states, so that
n
P = p5-
§=0

We can model knowledge about the initial states as a probability distribution A(s;) over
qualitative states. This distribution may be viewed as derived from a distribution § over
phase space, with A; = A(s;) = [, d. Knowledge of initial conditions modifies the proba-
bilities of asymptotic behaviors very simply, with p>° = A - P, that is

n
P =Y Als;)p}-
=0

For example, a common case is when the initial state is known to occur in some subset S’
of S, with the modeler ignorant about which state in S’ it is. This might be modeled as a
distribution uniform over S’ and zero over S —S’. In this case, the asymptotic probabilities
are given by equation (4), in which k& = |S’| and states have been relabeled so that all states
in S’ appear before states in S — 5.

P =k Y05 (4)

4.5 Analytic procedure and algorithms

We divide the computation of predictions into qualitative and quantitative stages. The
qualitative stage derives the basic judgments of asymptotic probability or improbability
solely from information widely available in qualitative reasoning formalisms. We assign
positive and zero transition probabilities from adjacent regions to attractors and other
fixed points respectively, using the dimensional analysis explained in Section 3. We assign
a zero transition probability to all pairs of states that have no connecting edge in the
transition graph, such as (—, —) and (+, +) in Figure 5. We assign a positive probability to
transitions between adjacent regions, such as (—, —) and (—, +). This decision is justified by
the continuous dependence of trajectories on initial conditions and by the definition of the
transition graph [14]. Using these probabilities, we partition the associated Markov chain
into ergodic sets and transient states, drawing the qualitative conclusions that the former,
but not the latter, persist asymptotically. We employ the topological sorting algorithm
of Tarjan [1, Sec. 5.5] to find the ergodic sets. When nonuniform initial conditions are
specified, we filter the sorted graph to find the ergodic states reachable from initial states
with positive probabilities. The entire analysis takes time and space linear in the size of
the transition graph.

The quantitative stage derives symbolic or numeric refinements of the qualitative judge-
ments when corresponding estimates of the transition probabilities are available. It obtains
the mean and variance of the settling times of the system from each transient state and the
asymptotic distribution of ergodic states. All these quantities are given by simple matrix
equations and can be computed in a constant number of matrix multiplications, inversions,
and triangularizations. For numeric probability estimates, straightforward implementations

12
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Figure 7: A damped pendulum.

of these operations require O(n?) time and O(n?) space for a graph with n nodes [1, Chap. 6].
Hsu [7] implements and demonstrates the calculations on several examples including chaotic
ones.

The analysis may be carried out using probability estimates that are polynomials in in-
determinate parameters, although at the price of exponential-time worst-case performance,
since inverses of matrices with symbolic entries can have entries exponential in the size of
the original matrix. The examples presented in the next section illustrate the use of para-
metric analysis in judging the sensitivity of relative asymptotic probabilities under variation
in transition probabilities. A full sensitivity analysis using standard statistical techniques
might constitute a third stage of the analytic procedure, but we have not automated it.

5 Examples

Each of the following three examples illustrates a different aspect of the stochastic analy-
sis. The first example makes precise the analysis of the damped gravitational pendulum,
and adds calculations of settling times and an analysis of their sensitivity to the earlier
determination of asymptotic behavior. The second example, that of a charged pendulum
in the presence of two other charges, is representative of a large class of everyday systems
in which there are several asymptotic behaviors of nonzero probability. The analysis of
the charged pendulum calculates these probabilities, and examines the dependence of their
sizes on the magnitude of the charges. The third example, the quadratic map, illustrates
the applicability of the stochastic analysis to discrete systems, including those exhibiting
chaotic behaviors.

5.1 The gravitational pendulum

With the Markov theory in hand, we can make precise our intuitive analysis of the transition
graph of the pendulum equation

9"+ﬁ9’+%sin9=0,
m

shown in Figure 7. We begin with a qualitative analysis. Dimensional analysis provides the
signs of the transition probabilities, as discussed in Section 2. The transition probabilities

13
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Figure 8: Prototypical transition probabilities for the pendulum with ¢ = (1 — p)/2. Self-
loop probabilities are not shown.

into (m,0) are zero. The transition probabilities into (0,0) are positive in the damped case
(i > 0) and zero in the undamped case (u = 0). In the damped case, the transition graph
forms an absorbing chain with absorbing states (0,0) and (m,0). The pendulum eventually
approaches (0, 0) with probability one from any transient state; it cannot cycle between the
transient states forever. In the undamped case, the transition graph decomposes into three
ergodic chains: {(0,0)}, {(7,0)}, and {(+,+),(+,—),(—, =), (=, +)}. Trajectories in the
third chain, which comprises essentially the entire phase space, oscillate around the origin
forever.

Given additional information about the transition probabilities, we can estimate the
absorption times for the damped case and the asymptotic distribution of states in the
undamped case. For example, suppose that the transition probability into (0,0) is p and
that all other probabilities are equally distributed (Fig. 8). The matrix of absorption times
is given by equation (5) for p > 0.

2—p
-1 2-I-p
2—p
2+0p

(5)

The equation shows that the settling time of the pendulum increases toward oo as friction
decreases toward zero. Equation (5) does not apply in the limiting case of p = 0, since
(0,0) ceases to be an absorbing state. Under our equiprobability assumption, trajectories
are equally likely to be in any of the four regions in the third ergodic chain at any given
time.

5.2 The two-charge pendulum

The gravitational pendulum model presupposes that the force on the bob is independent
of the bob’s location. The model for the variable attraction between a positively charged
pendulum bob and two negative charges is more complicated (Fig. 9). Each negative charge
exerts a force

Flon k) = k(d+ D)5 (sin o) (d? + dI + 21> = 2i(d + 1) cos o) /2
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Figure 9: A positively charged pendulum attracted by two negative charges.
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Figure 10: Qualitative dynamics for the two-charge pendulum.

along the line between it and the bob, with a the angle between that line and the pendulum,
k the coefficient of electrostatic attraction between the bob and the charge, [ the length of
the arm, and d the vertical distance from the bob’s orbit to the line connecting the two
negative charges. The two-charge pendulum obeys the equation

9W+%a+fw+a¢n+fw—amg=o

with a the angle between each pole and the vertical, k; and ks corresponding to the left and
right charges, i > 0 the damping coefficient, and m the mass of the bob. Figure 10 contains
the qualitative dynamics for the case of equal charges (k1 = ko). Saddles appear at (,0) and
(0,0) where the charges cancel each other. A sink appears where each charge is strongest.
The pendulum can spin (A-B-C-D and E-F-G-H), oscillate around both negative charges
(A-B-C-D-E-F-G-H), oscillate around the left charge (A-B-G-H), or oscillate around the
right charge (C-D-E-F). It can also switch from spinning to oscillating and from oscillating
around both charges to oscillating around either charge. When the charges are unequal, the
unstable equilibria move away from (0,0) and (r,0) and the stable equilibria are positioned
asymmetrically around the 6" axis, but otherwise the qualitative dynamics appears just as
in Figure 10.
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Figure 11: Transition probabilities for the two-charge pendulum. The probabilities from the
adjacent regions of s; are p;. The unmarked transitions of each node have equal probabilities.

The qualitative analysis of the two-charge pendulum resembles that of the gravitational
pendulum. Dimensional analysis determines that the transition probabilities are zero into
the saddles and positive into the sinks. The transition graph forms an absorbing chain
whose absorbing states are the fixed points. The pendulum eventually approaches one of
the sinks with probability one from the remaining, transient states. It is more likely to end
up at the sink with the larger charge. If the charges are equal, it is equally likely to end up
at either one.

To estimate the relative likelihoods of the two sinks, we assign transition probabilities of
p1 and po to transitions into s; and s from adjacent regions and assume that the remaining
transitions are equally distributed (Fig. 11). Let p® and pS° represent the asymptotic
probabilities of appearing in states s; and so, averaged over all possible transient starting
states. Calculating the ratio > = p3°/ps° yields

0 <&) (p1 — 1)p3 — (3p1 + 21)pa + 2py — 14
P2 (p? — 3p1 + 2)p2 — p3 — 21p; — 14

The dependence of r*° on p; and py agrees with our intuitions. The ratio increases mono-
tonically from 0 as p; increases from 0 to 1 and decreases monotonically from oo as po
increases from 0 to 1. It equals 0 when p; = 0, co when py = 0, and 1 when p; equals po.

5.3 The quadratic map

Markov analysis handles discrete dynamic systems as well as continuous ones. The evolution
law of a discrete system maps states to their immediate successors. Given initial state xg
and map f, the system is in state x1 = f(xg) at time 1, zo = f(f(xp)) at time 2, and
r; = fYx0) at time i. The set of iterates {x;} is called the trajectory of xy. Dynamic
systems theory seeks to determine the qualitative properties of a system’s trajectories from
its evolution law. For example, a trajectory is fized if f(x) = x and periodic with period
p if fP(x) = z. Devaney [2] provides a good elementary introduction to discrete dynamic
systems, including the example below.

Discrete systems are useful in modeling population dynamics. Here xy denotes an initial
population, x; denotes the population after i generations, and f(x) expresses the birth rate.
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May [10] studies the system f(z) = ax—bx? with a and b positive parameters that represent

natural reproduction and the negative effects of overcrowding. The birth rate increases from

0 to a maximum then decreases to 0 as x increases from 0 to a/b. Even this system, arguably

the simplest nonlinear one possible, can exhibit extremely complicated behavior.
Following May, we substitute bx/a for = to obtain the canonical form

f(z) = ax(l =),

which is called the quadratic map. Trajectories that leave the interval [0, 1] approach —oo
monotonically and f(1) = 0, implying that large enough populations always die out. The
problem is to identify and characterize the trajectories that remain in (0,1) forever, which
represent the stable patterns of population fluctuation. The answer depends on a. The
point (a — 1)/a is always fixed. For a < 3, all trajectories in (0,1) approach (a — 1)/a
asymptotically. This means that populations below a certain size approach a stable equilib-
rium, whereas larger populations die out. New phenomena arise within (0,1) for 3 < a < 4,
including periodic orbits with arbitrarily large periods and chaos, but trajectories still can-
not escape because f < 1. In physical terms, the population can vary erratically, but cannot
die out. For a > 4, almost all trajectories escape and the remainder form a chaotic Cantor
set; almost all initial populations die out, but some persist and vary erratically.

Rigorous derivation of these conclusions requires great mathematical expertise. More
complicated equations defy analysis altogether. Markov analysis, although more limited,
provides many of the same answers and applies uniformly to all equations. We define a
Markov chain with two states [0, 1] and its complement C' = (—o0,0) U (1, 00). For a < 4,
we obtain two absorbing states because trajectories never cross between regions. For a > 4,
we obtain an absorbing chain with absorbing state C, implying that trajectories in [0, 1]
eventually escape to C' with probability 1. In physical terms, the population survives for
a < 4 and dies out otherwise.

Markov theory also predicts the extinction time for a > 4, which equals the absorption
time into C. The transition probability from [0,1] to C' equals the measure of the set of
points in [0, 1] that map directly into C. This set is the subinterval

1 1 1 1+/1 1
2 4 a2 4 al’

so the transition probability is p = /1 —4/a. The expected absorption time equals 1/p,
as explained in Section 4.1. Figure 12 compares the predicted mean absorption times
with the average absorption times derived by numerically simulating trajectories for 20000
pseudorandom initial points. The small relative error indicates that the chain assumption
applies well.

In a more refined analysis, we could investigate the behavior of the quadratic map
within the interval [0, 1] by partitioning that interval into small subintervals. Markov anal-
ysis would estimate the distribution of states within each region. This approach provides
a statistical understanding of systems whose individual trajectories defy analysis. For ex-
ample, it demonstrates that most iterates of the map 4x(1 — x) on [0, 1] cluster near the
endpoints, a result that Lasota and Mackey [9] confirm by analytic means. In contrast,
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a | Markov prediction Observed time % error
4.1 6.40 6.49 1.4
4.2 4.58 4.58 0.0
4.5 3.00 2.98 0.6

) 2.24 2.22 0.9

6 1.73 1.75 1.1

Figure 12: Stochastically predicted time for the quadratic map to leave [0, 1] compared with
the average observed time for 20000 pseudorandom starting points.

the chaotic behavior of the quadratic map implies that some trajectories cross between ev-
ery pair of regions, thus reducing its qualitative dynamics to a complete graph, devoid of
predictive power.

6 Conclusions and future work

We apply the theory of Markov chains to estimate the relative likelihoods of possible be-
haviors of a system, thereby filling a serious gap in the predictions of qualitative simulation.
Our method provides a formal justification and an efficient algorithm for commonsense and
quantitative reasoning about relative likelihoods. It enables us to draw the best possible
conclusions from the available information. We can determine the possible long term be-
haviors of a system directly from its qualitative dynamics in a simple qualitative analysis
that runs in linear time. More detailed information, such as the likelihoods of the possible
behaviors and the expected settling times for each initial state, requires estimates of the
transition probabilities between qualitative states. The estimates can be numeric or sym-
bolic; the analysis is formally identical in both cases, but has O(n?) time-complexity in the
former and exponential time-complexity in the latter. We exhibit the utility of our method
in several examples, and analyze the robustness of its conclusions to perturbations in the
transition probabilities. The likelihoods of the long term behaviors are never sensitive to
perturbations in the transition probabilities, whereas the expected settling times can be
sensitive.

Markov analysis of dynamical systems has also been pursued by Hsu [7], whose analysis
of “generalized cell-to-cell mappings” is similar to our analysis of dynamics over qualitative
states. Hsu develops algorithms which yield the same numerical information as ours for
numerically formulated systems. These algorithms are more limited than ours, however, in
that they cannot provide purely qualitative or symbolic conclusions from purely qualitative
or symbolic information about the dynamic system.

Our current analysis is only a first step towards full exploitation of the stochastic ap-
proach to qualitative reasoning. We have not fully explored the potential of Markov theory.
Further investigation may yield simple ways of determining other qualitative properties
of systems through application of known techniques, or purely qualitative algorithms for
obtaining qualitative predictions of relative likelihoods. One might also relax the chain as-
sumption underlying our treatment and instead view the qualitative dynamics as describing
a more general Markov process in which transitions depend on past states. There is a rich
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theory of these processes which may support many of the same conclusions as above in the
more general setting.

Incorporating global properties of flows into stochastic analysis is another topic for fu-
ture research. Our current analysis derives the qualitative dynamics of a system from local
properties of its flow: where it vanishes and whether it crosses certain curves. Sacks [13]
shows how to increase the accuracy of the qualitative dynamics by ruling out locally consis-
tent behaviors that violate global constraints, thus reducing the size of a transition graph.
For example, his program uses an energy argument to prove that a pendulum cannot spin
forever. One could make this argument within the qualitative dynamics by partitioning
phase space along level curves of the pendulum’s total energy. Energy conservation then
rules out transitions from a region to higher energy regions. This dynamics eliminates the
spurious behaviors of wobbling and unbounded oscillation, which the original dynamics
permits. It facilitates stochastic analysis by reducing the size of the transition graph and
by providing trapping regions for sinks without the estimation problems discussed in Sec-
tion 5.2. Energy conservation also implies that the pendulum cannot spin forever without
resort to the chain assumption, thus lightening the burden on stochastic analysis. Deriving
and exploiting the relations between the stochastic model and the global phase flow is a
more ambitious task.

Incorporating global analysis [15] with stochastic analysis is another direction for future
research. Global analysis considers not just one flow, but a class of flows. This is useful
when we do not know the exact equations describing a system, and wish to make predictions
based on what we do know about them. One global concept is that of structurally stable
system, all of whose perturbations have the same qualitative behavior. Global analysis
formalizes such notions by considering measures over classes of flows. When the measures
considered are probability densities over systems, the stochastic analysis presented above
can be directly extended to the case of indeterminate dynamics. For example, the set of
flows for the Lottka-Volterra model of population sizes of competing species divides into
four classes of flows, each with qualitatively different dynamics [6]. Each of these has a
small number of attractors, and can be analyzed for expected asymptotic behavior just as
was done with the charged pendulum in Section 5.2. If we can estimate (by some means)
the probability that the actual system falls into each class, we can then calculate the overall
probability of each possible asymptotic behavior in each of the different dynamics.

Automating the model refinement procedure for stochastic qualitative analysis is a major
challenge. To do so requires answering some fundamental questions about the stability of the
stochastic predictions under changes in the underlying qualitative graph, such as dividing
phase space into overly-fine regions. Yip [16] presents some methods for sampling and
observing the behaviors of dynamical systems. Perhaps they can be extended to the model
construction task. Machine learning techniques may also prove relevant.
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