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Abstract

The traditional approaches to building survivable systems assume a framework
of absolute trust requiring a provably impenetrable and incorruptible Trusted Com-
puting Base (TCB). Unfortunately, we don’t have TCB’s, and experience suggests
that we never will.

We must instead concentrate on software systems that can provide useful ser-
vices even when computational resource are compromised. Such a system will 1)
Estimate the degree to which a computational resources may betrustedusing mod-
els of possiblecompromises. 2) Recognize that a resource is compromised by rely-
ing on a system for long termmonitoring and analysisof the computational infras-
tructure. 3) Engage inself-monitoring, diagnosis and adaptationto best achieve its
purposes within the available infrastructure. All this, in turn, depends on the ability
of the application, monitoring, and control systems to engage inrational decision
makingabout what resources they should use in order to achieve the best ratio of
expected benefit to risk.

1 A Scenario

Within the MIT Artificial Intelligence Laboratory an ensemble of com-
puters runs a Visual Surveillance and Monitoring application. On January
12, 2001 several of the machines experience unusual traffic from outside
the lab. Intrusion Detection systems report that several password scans
were observed. Fortunately, after about 3 days of varying levels of such
activity, things seem to return to normal; for another 3 weeks no unusual
activity is noticed. However, at that time, one of the machines (named
Harding) which is crucial to the application begins to experience unusu-
ally high load averages and the application components which run on this
machine begin to receive less than the expected quality of service. The
load average, degradation of service, the consumption of disk space and
the amount of traffic to and from unknown outside machines continue to
increase to annoying levels. Then they level off. On March 2, a second
machine in the ensemble (Grant) crashes; fortunately, the application has
been written in a way which allows it to adapt to unusual circumstances.
The system considers whether it should migrate the computations which
would normally have run on Grant to Harding; however, these computa-
tions are critical to the application. The system decides that in spite of the
odd circumstances noticed on Harding earlier, it is a reasonable choice.
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Did the system make a good choice? It turns out it did. The system needed to
run those computations somewhere; even though Harding was loaded more heavily
than expected, it still represented the best pool of available computational resources,
other machines were even more heavily loaded with other critical computations of the
application. But what about all the unusual activity that had been noticed on Harding?
It turns out that what had, in fact, transpired is that hackers had gained access to Harding
by correctly guessing a password; using this they had set up a public FTP site containing
among other things pirated software and erotic imagery. They had not, in fact, gained
root access. There was, therefore, no worry that the critical computations migrated
to Harding would experience any further compromise. (Note: the adaptive system in
this story is fictional, the compromised computers reflect an amalgam of several real
incidents).

Let’s suppose instead that (1) the application was being run to protect a US embassy
in Africa during a period of international tension (2) that we had observed a variety of
information attacks being aimed at Harding earlier on (3) that at least some of these
attacks are of a type known to be occasionally effective in gaining root access to a ma-
chine like Harding and that (4) they are followed by a period of no anomalous behavior
other than a periodic low volume communication with an unknown outside host. When
Grant crashes, should Harding be used as the backup? In this case, the answer might
well be the opposite; for it is quite possible that an intruder has gained root access to
Harding; it is also possible that the intent of the intrusion is malicious and political.
It is less likely, but still possible, that the periodic communication with the unknown
outside host is an attempt to contact an outside control source for a “go signal” that will
initiate serious spoofing of the application. Under these circumstance, it is wiser to shift
the computations to a different machine in the ensemble even though it is considerably
more overloaded than Harding.

What can we learn from these examples?

1. It is crucial to estimate to what degree and for what purposes a computer (or other
computational resource) may betrusted, as this influences decisions about what
tasks should be assigned to them, what contingencies should be provided for, and
how much effort to spend watching over them.

2. Making this estimate depends in turn on having a model of the possible ways in
which a computational resource may becompromised.

3. This in turn depends on having in place a system for long termmonitoring and
analysisof the computational infrastructure which can detect patterns of activ-
ity such as “a period of attacks followed by quiescence followed by increasing
degradation of service”. Such a system must be capable of assimilating infor-
mation from a variety of sources including both self-checking observation points
within the application itself and intrusion detection systems.

4. The application itself must be capable ofself-monitoring and diagnosisand ca-
pable ofadaptationso that it can best achieve its purposes with the available
infrastructure.
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5. This, in turn, depends on the ability of the application, monitoring, and control
systems to engage inrational decision makingabout what resources they should
use in order to achieve the best ratio of expected benefit to risk.

Systems that can do the above things can be resilient in the face of concerted infor-
mation attacks. They can carry on through non-malicious intrusions; that is they can
figure out when compromises within the infrastructure can’t actually hurt them.

Our claim is simple but revolutionary: “Survivable systems make careful judgments
about the trustworthiness of their computational environment and make rational re-
source allocation decisions accordingly.”

The claim is deceptively simple: To make it real one needs to develop serious repre-
sentations of the types of compromises, of the trustworthiness of a resource, and of the
goals and purposes of the computational modules within an application. One also needs
to build monitoring, analysis and trend detection tools and adaptive computational ar-
chitectures. Finally, one needs to find a way to make the required rational decision
making computationally tractable. None of this is easy, but we have ideas and ongoing
projects addressing each of these issues.

2 Trust in Survivable Systems

Traditional approaches to building survivable systems assume a framework of absolute
trust. In this view, survivable systems require a provably impenetrable and incorruptible
Trusted Computing Base (TCB). Unfortunately, we don’t have TCB’s, and experience
suggests that we never will.

Instead, we will need to develop systems that can survive in an imperfect environ-
ment in which any resource may have been compromised to some extent. We believe
that such systems can be built by restructuring the ways in which systems organize and
perform computations. The central thrust of this approach is a radically different view-
point of the trust relationships that a software system must bear to the computational
resources it needs.

The traditional TCB-based approach takes a binary view of trust; computational
resources either merit trust or not, and non-trusted resources should not be used. The
traditional view also considers trustworthiness as a nearly static property of a resource:
trust lost is never regained, short of major system reconstruction. Consequently, these
systems wire decisions about how and where to perform computations into the code,
making these decisions difficult to understand, and preventing the system from adapting
to a changing runtime environment.

We agree with this viewpoint on the crucial role of the assessment and management
of trust, but reject the assumptions about the binary, static nature of trust relationships
as poor approximations to real-life computing situations. We instead base our approach
on a different, more realistic set of assumptions:

1. All computational resources must be considered suspect to some degree, but the
degree of trust that should be accorded to a computational resource is not static,
absolute, or known with full certainty. In particular, the degree of trustworthiness
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may change with further compromises or efforts at amelioration in ways that can
only be estimated on the basis of continuing experience. The system must thus
continuously and actively monitor the computational environment at runtime to
gather evidence about trustworthiness and to update its trust assessments.

2. Exploiting assessments of trustworthiness requires structuring computations into
layers of abstract services, with many distinct instantiations of each service.
These specific instantiations of a service may vary in terms of the fidelity of
the answers that they provide, the conditions under which they are appropriate,
and the computational resources they require. But since the resources required by
each possible instantiation have varying degrees of trustworthiness, each different
way of rendering the service also has a specific risk associated with it.

3. The best method for exploiting assessments of trustworthiness requires making
explicit the information underlying decisions about how (and where) to perform
a computation, and on formalizing this information and the method used to make
the decision in a decision-theoretic framework. The overall system adapts to the
dynamism of the environment and to the changing degrees of compromise in
its components by deciding dynamically which approach to rendering a service
provides the best likelihood of achieving the greatest benefit for the smallest risk.
We do not require that the system uses explicit decision-theoretic calculations of
maximal expected utility to make runtime decisions; the system may instead use
the decision-theoretic formalizations to decide on policies and policy changes,
which then are used to compile new code governing the relevant behaviors.

4. The system must consider selected components to be fallible, even if it currently
regards them as trustworthy, and must monitor its own and component behaviors
to assure that the goals of computations are reached. In the event of a breakdown,
the system must first update its assessments of the trustworthiness of the compu-
tational resources employed and then select an alternative approach to achieving
the goal.

2.1 How Active Trust Management can support Autonomous Adap-
tive Survivable Systems

These considerations motivate an architecture both for the overall computational envi-
ronment (Active Trust Management) and for the application systems which run within
it (Autonomous Adaptive Survivable Systems). The environment as a whole must con-
stantly collect and analyze data from a broad variety of sources, including the applica-
tion systems, intrusion detection systems, system logs, network traffic analyzers, etc.
The results of these analyses inform a “Trust Model”, a probabilistic representation of
the trustworthiness of each computational resource in the environment. The application
systems use this trust model to help decide which resources should be used to perform
each major computational step; in particular, they try to choose that resource which will
maximize the ratio of expected benefit to risk. This “rational decision making” facility
is provided as a standard utility within the environment. The application systems also
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monitor the execution of their own major components, checking that expected post-
conditions are achieved. If these conditions fail to hold, diagnostic services are invoked
to determine the most likely cause of the failures and thereby to determine the most
promising way to recover. In addition to localizing the failure, the diagnostic services
can also infer that underlying elements of the computational infrastructure are likely to
have been compromised and these deductions are forwarded to the monitoring and anal-
ysis components of the environment to help inform its assessments of trustworthiness.
Finally, having accumulated sufficient evidence, the monitoring and analysis systems
may decide that it is likely that some resource has, in fact, been compromised. This will
have an immediate impact if the resource is being used to perform a computation which
would be damaged by that specific form of compromise; in such cases, the monitoring
and analysis components transmit “alarms” into the running application, causing it to
abandon its work and to immediately initiate recovery efforts.

Thus the application system forms a tight feedback control loop whose goal is to
guarantee the best possible progress towards providing the services the application is
intended to provide to its users (i.e. the applications are Autonomous Adaptive Sur-
vivable Systems “AASS’s”). The computational infrastructure also forms a feedback
control loop whose goal is to maintain an accurate assessment of the trustworthiness
of the computational resources; this assessment can then inform the application sys-
tems’ decision making and self-monitoring which in turn helps inform the long-term
assessments of trustworthiness (Active Trust Management “ATM”).

This vision leads us to focus our efforts in four major areas:

1. Models of Trust and Compromise

2. Perpetual Analytic Monitoring

3. Autonomous Adaptive Survivable Systems

4. Rational Decision Making in a Trust-Driven Environment

3 Models of Trust and Compromise

Making rational decisions about how to use resources in an environment of imper-
fect trust requires information about what resources can be trusted, and for what pur-
poses. We are developing models of trust states that go beyond mere information about
whether or how a system has been subject to attack to represent whether or how differ-
ent properties of the system have been compromised, and finally to represent whether
they can be trusted for a particular purpose even if compromised. We also represent the
degree to which these judgments should be suspected or monitored.

These models provide the point of intersection among all the other elements of the
proposed approach. Trust plays a central role in resource allocation decisions. All deci-
sions about what to do must be based on beliefs about the situation in which the action
is to be taken. We can think of the degree of trust one places in a system as the degree
to which one is willing to rely on the proper functioning of the system without also
dedicating unusual effort to preparing for the contingency of failure. Since preparations
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for contingencies consume resources, this makes trust management a central resource
allocation issue.

The trust model is organized into three levels above that of raw behavior:
The lowest level of the trust model represents the results of initial interpretations

such asattacksandanomalous behavior. At this level we collect, filter and organize
the necessary information so that it can trigger trend templates and feed into Bayesian
inference networks. As we saw in our scenarios, we are not primarily interested in what
attacks or anomalous behaviors have taken place, but rather in what they imply about
what compromises might actually be present.

The middle level of the trust model deals withcompromises. The attack level only
tells us that malicious or anomalous activity has taken place. But what we are interested
in is whether someone has actually succeeded in an attack and has used that to exploit
or corrupt resources. That such a compromise has occurred can be inferred by match-
ing the temporal patterns of activity to a template for a particular compromise. In the
scenario we saw an example of this in which the gaining of unauthorized user level ac-
cess was indicated by the temporal pattern of password sweeps followed by quiescence
followed by increasing resource consumption.

The highest level of the trust model deals withtrustworthiness. The fact that a
resource has been compromised does not in and of itself imply that it is totally un-
safe to utilize it. That conclusion depends on the precise way in which the consumer
wants to utilize the resource as well as on assessments of theintentionof the compro-
miser. In our scenarios, we presented two different examples: in the first the system
was compromised by “teenaged hackers” looking for free resources, in the second it
was compromised by state-sponsored malicious agents. Clearly, we should generally
be more wary of using a resource in the second case than the first; but if we are not very
sensitive to quality of service and perhaps only care about the integrity of our data, then
the first case is not all that risky.

Knowledge of attack types guides the organization’s attempts to defend against fu-
ture attacks. Knowledge of compromises indicates the threats to operations. Knowledge
of trust states guides how the organization carries on in the face of partially-understood
compromises. Because intent plays a central role, it too must be modeled throughout
the three layers, moving from raw reports about behavior at the base level, to statements
about intent in the middle layer and finally entering into assessments of trustworthiness
at the highest level.

4 Perpetual Analytic Monitoring keeps the Trust Model
current by detecting Trend Patterns which are indica-
tive of compromise

The Perpetual Analytic Monitoring component of our project is based onthe MAITA
system which consists of a library of monitoring methods, an architecture for operating
networks of monitoring processes, and a flexible, display-oriented control system for
quickly constructing, composing, modifying, inspecting, and controlling monitoring
networks [3, 2, 1].
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The goal of Perpetual Analytic Monitoring is to assess the trustworthiness of the
computational resources in the environment. The scenario illustrates that building a
trust model involves more than just detecting an intrusion. Indeed, what was important
was a template of activity patterns consisting of several temporal regions: First there
was a period of attacks (particularly password scans). Then there was a “quiescent
period”. Then there was a period of increasing degradation of service. Finally, there
was a leveling off of the degradation but at the existing high level. We call such a
temporal pattern a “trend template”.

A trend template has a temporal component and a value component. The tempo-
ral component includes landmark time points and intervals. Landmark points represent
significant events in the lifetime of the monitored process. They may be uncertain in
time, and so are represented with time ranges. Intervals represent periods of the pro-
cess that during which constant dynamics obtain. Value changes are described in terms
of various standard curves. The value component characterizes constraints on individ-
ual data values and specifies constraints that must hold among different data streams.
The representation is supported by a temporal utility package (TUP) that propagates
temporal bound inferences among related points and intervals [12, 11].

The MAITA monitoring method library includes entries at varying levels of com-
putational detail. For example, the most abstract levels speaks of constructing and
comparing a set of hypotheses about what is going on, without providing any details
about how the hypotheses are constructed or compared. The intermediate level, uses
the TrenDx [8, 7, 13, 10, 6] trend monitoring system to recognize trend templates.

Trend templates are necessary, but not sufficient in themselves. We also need to
make inferences about the factual situation at hand (e.g., are international tensions ris-
ing?) and about the intentions, and states of mind of significant players (e.g., would
it be likely that they are trying to attack me?). All of these inferences involve the
combining of evidence to provide assessments of the likelihood of certain propositions.
Bayesian networks provide a convenient formalism for representing and reasoning with
basic probabilistic information.

The principal goal of our Monitoring and Analysis tools is to keep the Trust Model
current. However, when these tools have achieved a high degree of confidence that a
compromise has occurred, the monitoring and analysis system must generate an alarm
asking currently executing application components to rollback and attempt to use alter-
native strategies and resources.

5 Autonomous Adaptive Survivable Systems use Trust
Models and and Self Reflection to select computational
strategy and to recover from compromise

Autonomous Adaptive Survivable Systems have the goal of adapting to the variations in
their environment so as to render useful services under all conditions. In the context of
Information Survivability, this means that useful services must be provided even when
there have been successful information attacks.
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AASS’s achieve adaptivity in two ways: First, they include many alternative imple-
mentations of the major computational steps, each of which achieves the same goal but
in different ways. An AASS is therefore a Domain Architecture; it capitalizes on the
“variability within commonality” which is typical of the service layers in any software
domain. Each service is annotated with specifications and is provided with multiple
instantiations optimized for different purposes.

AASS’s are implemented in aDynamicDomain Architecture: all the alternative in-
stantiations of each service, plus the annotations describing them are present in the run-
time environment; the decision of which alternative instantiation of a service to employ
is made dynamically and as late as necessary. Before each step is actually initiated, the
system first assesses which of these is most appropriate in light of what the trust model
tells it about compromises and trustability. We may view this as an extremely dynamic
and information rich version of Object-Oriented Programming in which method invo-
cation is done in decision-theoretic terms, i.e., we invoke that method most likely to
succeed given the current trust state.

The second way in which AASS’s achieve adaptivity is by noticing when a com-
ponent fails to achieve the conditions relied on by other modules, initiating diagnostic,
rollback and recovery services. This depends on effective monitoring of system per-
formance and trustworthiness which in turn requires a structured view of the system
as decomposed into modules, together with teleological annotations that identify pre-
requisites, post-conditions and invariant conditions of the modules. These teleological
models also include links describing how the post-conditions of the modules interact
to achieve the goals of the main system and the prerequisites of modules further down-
stream. Tools in the development environment use these representations to generate
run-time monitors that invoke error-handling services if the conditions fail to be true.
The exception-management service is informed by the Dynamic Domain Architecture’s
models of the executing software system and by a catalog of breakdown conditions and
their repairs; using these it diagnoses the breakdown, determines an appropriate scope
of repair; possibly selects an alternative to that invoked already and then restarts the
computation.

Thus, we remove exception handling from the purview of the programmer, instead
treating the management of exceptional conditions as a special service provided by co-
operating services in both the run-time and development environments. Model-based
diagnostic services [4, 9, 5, 14] play a key role in an AASS’s ability to recover from a
failure. This is done by providing models not only of the intended behavior of a com-
ponent but also of its likely failure modes. These application-layer models are linked
to models of the behavior of the computational infrastructure on which the application
components execute. Again these include models both of expected and compromised
behavior. The diagnostic task then is to identify the most likely set of such models
which is consistent with the observed behavior. This helps the application decide how to
recover from the failure and restore normal functioning. It also provides evidence to the
overall monitoring environment about the trustworthiness of the underlying computa-
tional resources, particularly when the most likely diagnosis is that one of the resources
has been compromised.

In summary, a dynamic domain architecture provides the following services that
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enable Autonomy, Adaptivity and Survivability in the applicatino System:

1. Synthesis of code that selects which variant of an abstract operator is appropriate
in light of run-time conditions.

2. Synthesis of monitors that check whether conditions expected to be true at various
points in the execution of a computation are in fact true.

3. Diagnosis and isolation services that locate the cause of an exceptional condition,
and characterize the form of the breakdown which has transpired.

4. Selection of alternative methods that achieve the goal of the failed computation
using different means (either by trying repairs or by trying alternative implemen-
tations, or both).

5. Rollback and recovery services that establish a consistent state of the computation
from which to attempt the alternative strategy.

6. Reallocation and re-optimization of resource allocations in light of the resources
remaining after the breakdown and the priorities obtaining at that point. These
services may optimize the system in a new way in light of the new allocations
and priorities.

6 Rational Decision Making uses decision-theoretic mod-
els and the Trust Model to control decisions about
component selection and resource allocation

We assess system trustworthiness and performance according to the trust and teleolog-
ical models in order to make decisions about how to allocate computational resources.
To ensure that these decisions represent a good basis for system operation, we are de-
veloping detailed decision-theoretic models of trustworthiness, suspicion, and related
concepts as applied to information systems and their components. These models will
relate notions such as attractiveness of a system as a target, likelihood of being attacked,
likelihood of being compromised by an attack, riskiness of use of the system, impor-
tance or criticality of the system for different purposes, etc.

The models will also relate estimates of system properties to an adaptive system
of decision-theoretic preferences that express the values guiding the operation of both
system modules and the system as a whole. We are develop mechanisms that use these
elements to allocate system resources optimally given task demands, trustworthiness
judgments, and the resources available.

We believe that the combination of these ideas will lead to systems that can adapt
to and survive infomation attacks.
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