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Abstract: Although many have proposed formal characterizations of belief structures
as bases for rational action, the problem of characterizing rational desires has attracted
little attention. AI relies heavily on goal conditions interpreted (apparently) as absolute
expressions of desirability, but these cannot express varying degrees of goal satisfaction
or preferences among alternative goals. Our previous work provided a relative interpre-
tation of goals as qualitative statements about preferability, all else equal. We extend
that treatment to the comparison of arbitrary propositions, and develop a propositional
logic of relative desire suitable for formalizing properties of planning and problem-solving
methods.

1 Introduction

Question your desires.—William Shakespeare

Standard theories of rational action take decisions of the agent to depend on beliefs

about the relative desirability of the results of its available actions [2, 3]. The predominant

approach to planning in artificial intelligence represents desires by conditions on the state

of the world called goals. Each goal represents a partition of possible states into those

satisfying and those not satisfying the goal. Goals serve a dual role in most planning
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systems, capturing aspects of intentions as well as desires [1]. Besides expressing the

desirability of a state, adopting a goal typically represents some commitment to pursuing

that state.

In perhaps the simplest interpretation of goals as desires, the states satisfying the goal

are considered desirable in an absolute sense. That is, goal conditions define a partition

of states into the desirable and the undesirable. However, this crude binary distinction

proves inadequate in realistic situations. These satisfy objectives to varying degrees,

and an absolute notion of desire cannot distinguish among alternative plans that ensure

achievement of goals, nor among plans that fail to guarantee goal achievement.

We can support finer distinctions by expressing the relative desirability of alternate

states. For example, we might hold that achieving conditions p and q would be more

desirable than achieving neither, but that if we can achieve only one we would prefer to

achieve p. Decision-theoretic preference orders express exactly these sorts of comparisons,

and in related work [7], we provide a decision-theoretic semantics for goals in terms of

preference orders and multiattribute outcome spaces. In our semantics, we relativize

the notion of goal by restricting preference comparisons to fixed contexts. Specifically,

we call a condition p a goal or desire if and only if (iff) p is preferred to ¬p, holding all

other properties constant. Unlike the absolute interpretation, this relative concept admits

multiple desires or goals. That is, desiring both p and q means preferring each one to its

negation, holding the other constant.

In this paper, we extend our previous work in two primary directions. First, we con-

sider relative desire between arbitrary conditions, in addition to that between a goal con-

dition and its negation. Second, we formalize the concept of relative desire over conditions

expressed in a propositional language. The resulting logic provides a general framework

for representing and reasoning about desires. While such frameworks are common for

beliefs, formal theories of desires have heretofore been conspicuously absent in artificial

intelligence as well as philosophy [4].

We begin by introducing the basic notion of preference over models, which serves as

the fundamental concept underlying our definition of relative desire over logical sentences.

We follow by developing a collection of inference rules by which relative desires among

some sentences entail desires over related sentences. We further extend the formalism by

considering restrictions imposed by knowledge or constitution on preferences, and how

relative desire varies with these restrictions.
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2 Preference over models

Let L denote a logical language over a set of atoms A and the standard connectives ¬,

∧, ∨, →, and ↔. The literals of L consist of just the atoms and their negations, that is,

A ∪ {¬a | a ∈ A}. More generally, we write literals(A), for any subset A ⊆ A, to mean

A ∪ {¬a | a ∈ A}. In the following, we write a, a′, . . . to denote atoms; l, l′, . . . to denote

literals; c, c′, d, . . . to denote conjunctions of literals; and p, q, r, . . . to denote sentences in

L. We write true and false to denote arbitrary formulas of the form p ∨ ¬p and p ∧ ¬p,

respectively.

A model of L assigns truth values to all atoms of L, and so, by the usual logical

rules, to all sentences in L. We represent models by complete consistent sets of literals.

Thus m ⊂ literals(A) represents a model just in case exactly one of a and ¬a is in m

for each a ∈ A, and we say that m makes a true (resp. false) just in case a ∈ m (resp.

¬a ∈ m). (We may thus view a conjunction c of literals over different atoms as a sentence

representing a partial model.) We write M to mean the set of all models of L, and write

m, m′, . . . to denote individual models.

Following the standard definition, we say that a model m satisfies a sentence p, written

m |= p, if the truth values it assigns to the atoms in p make p true; that is, m |= a iff

a ∈ m; m |= p∧ q iff m |= p and m |= q; m |= ¬p iff m 6|= p, etc. As usual, we write p |= q

to mean that every model satisfying p also satisfies q. If every model in M satisfies p, we

write |= p and say that p is valid.

A proposition is a set of models. We define [[p]], the proposition corresponding to p,

by

[[p]]
def
= {m ∈ M | m |= p}.

For a literal l, therefore, [[l ∈ M]] = {m | l ∈ m}.

Decision theory builds on the notion of preferences over outcomes or possible states of

the world. It captures a notion of ideal rationality by requiring complete and consistent

preferences, and by requiring that the agent always chooses actions leading to the most

preferred outcomes.

In the logic of relative desire, we represent outcomes or states of the world by models,

and so consider preferences over M. We represent the agent’s preferences by a preorder

(a reflexive and transitive relation) ∼� over M, called the preference order. (We do not

require here decision theory’s standard assumption making ∼� complete.) When m ∼� m′

we say that m is weakly preferred to m′, which means that m is at least as desirable as

m′. The strict preference order � consists of the irreflexive part of ∼�, that is, m � m′ (m
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is preferred to m′) iff m ∼� m′ but m′ 6∼� m. When both m ∼� m′ and m′

∼� m, we say the

two models are indifferent, and write m ∼ m′.

Much work in decision theory concerns conditions under which one can represent ∼�

by order-preserving, real-valued utility functions, and with identifying regularities in pref-

erences that justify utility functions with convenient structural properties [3]. Although

we expect that utility theory will have much to offer for a calculus of desires for reasoning

systems, our logic relies only on the ordinal preference relation, not on any numerical

representations.

We may lift the preference order over models to the set of propositions 2M by defining

P ∼� Q, for P, Q ⊆ M, to hold iff m ∼� m′ for each m ∈ P and m′ ∈ Q, and by defining

the lifted relations � and ∼ similarly. Clearly, if P � Q, then P and Q must be disjoint.

We may further translate the preference order into an order over sentences by saying that

p ∼� q holds iff [[p]] ∼� [[q]].

The relation over propositions or sentences defined by simply lifting and translating

the fundamental preference order, however, fails to support useful ways of combining

multiple preferences, and hence cannot provide an adequate semantics for relative desires.

For example, suppose we represent the desirability of p by the relation p ∼� ¬p. Then

having several desirable sentences prevents us from distinguishing all but the extreme

cases, as shown by the following result.

Theorem 1 (No tradeoffs) Suppose pi ∼� ¬pi for 0 ≤ i ≤ n, with pi and pj logically

independent for i 6= j. Then

1. Any model that satisfies every pi is weakly preferred to any model that does not,

2. Any model that satisfies at least one pi is weakly preferred to any model that falsifies

every pi, and

3. All models that satisfy some pi and falsify some pj are indifferent.

Proof: By definition, the hypothesis entails [[pi]] ∼� [[¬pi]] for 0 ≤ i ≤ n.

1. Let m satisfy all pi and m′ falsify sentence pj. Therefore m ∈ [[pj ]] and m′ ∈ [[¬pj ]], so

m ∼� m′.

2. Let m satisfy sentence pj and m′ falsify all pi. Therefore m ∈ [[pj ]] and m′ ∈ [[¬pj ]], so

m ∼� m′.

3. By pairwise logical independence, we may find a model mi,j satisfying sentence pi

and falsifying pj for any 0 ≤ i, j ≤ n, i 6= j. Because mi,j ∈ [[pi]] and mk,i ∈ [[¬pi]], we
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conclude mi,j ∼� mk,i for all k 6= i. Similarly, mk,i ∼� ml,k for all l 6= k. By transitivity of

weak preference, we have mi,j ∼� ml,k. A symmetric argument yields ml,k ∼� mi,j, hence

mi,j ∼ ml,k. 2

This result means that the simplistic translation of preference over models to desirability

of sentences distinguishes only three degrees of multiple goal satisfaction: total success,

partial success, and total failure. While one often wishes to consider tradeoffs among

partial successes, this interpretation makes them preferentially indistinguishable.

3 Relative desire

To obtain a semantic account of desire that permits differentiation of partial satisfactions

of multiple desires, we relativize the absolute interpretation to specific contexts and say

that a sentence represents a desire if it is preferred to its contrary, other things equal.

Understood in this way, worlds corresponding to a desire need not be preferred no matter

what, only within each fixed context.

The support of a sentence p, denoted support(p), consists of the minimal set of atoms

determining the truth value of p, for example, the atoms appearing in an irredundant sum-

of-products sentence logically equivalent to p (that is, a sentence in which each product

term is a prime implicant of p and in which removing any product term destroys the

logical equivalence with p). We say that specific sentences have disjoint support if their

respective supports do not overlap.

Definition 1 (Model equivalence) We say that m and m′ are equivalent modulo p,

written m ≡ m′ mod p, iff they are the same outside of support(p), or formally

m \ (literals(support(p)) = m′ \ (literals(support(p)).

Definition 2 (Model modification) The set of modifications of a model m making p

true, written m[p], is the set of models of p which assign the same truth values as m to

all atoms other than those on which p depends, or formally,

m[p]
def
= {m′ ∈ [[p]] | m ≡ m′ mod p}.

Definition 3 (Relative desire) We say that p is desired over q, written p ≥ q and

read briefly as “p over q,” iff for each m ∈ M, m′ ∈ m[p ∧ ¬q], and m′′ ∈ m[¬p ∧ q] we

have m′

∼� m′′. We say that p is strictly desired over q, written p > q, iff p ≥ q but not

q ≥ p.
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That is, p is desired over q just in case any model making p true and q false is weakly

preferred to any model making p false and q true, whenever the two models assign the

same truth values to all atoms not relevant to those supporting p and q. Furthermore, p

is strictly desired over q just in case this preference is strict for some pair of models.

Theorem 2 (Logical invariance) If |= p ↔ p′, then m[p] = m[p′], and if |= q ↔ q′ as

well, then p ≥ q iff p′ ≥ q′.

We omit the obvious proof and a few other proofs due to space limitations.

Theorem 3 (General contraposition) If p ∧ r ≥ q ∧ r, then ¬q ∧ r ≥ ¬p ∧ r.

Theorem 4 (General reflexivity) If |= p → p′, then p ≥ p′ and p′ ≥ p.

This means that relative desire does not distinguish sentences from stronger or weaker

conditions (including true and false), so the interesting cases of relative desire all concern

relations among logically independent conditions.

We extend the model modification operation to sets of models M ⊆ M by defining

M [p]
def
=

⋃

m∈M

m[p].

We may thus write serial modifications by left-associating the modification operator, with

m[p][q] = (m[p])[q].

Lemma 5 (Covering) If support(p) ⊆ support(q) and m ≡ m′ mod p, then m ≡

m′ mod q and m[q] = m′[q].

Proof: Suppose support(p) ⊆ support(q). Since

m \ literals(support(p)) = m′ \ literals(support(p)),

it follows that

m \ literals(support(q)) = m′ \ literals(support(q)),

hence m[q] = m′[q]. 2

Lemma 6 (Reduction) support(p) ⊆ support(q) iff for all m, m[p][q] = m[q].
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Lemma 7 (Conjunctive decomposition) If p and p′ have disjoint support, then

m[p ∧ p′] = m[p][p′] = m[p′][p].

Proof: Expanding the definitions yields

m[p ∧ p′] = {m′ ∈ [[p]] ∩ [[p′]] | m ≡ m′ mod p ∧ p′}, and

m[p][p′] = {m′′ | m′ ∈ [[p]] ∧ m′′ ∈ [[p′]] ∧ m ≡ m′ mod p ∧ m′ ≡ m′′ mod p′}.

Because p and p′ have disjoint support, the conditions in the second expression entail

m′′ ∈ [[p]] and m ≡ m′′ mod p ∧ p′, making the two expressions equivalent. A symmetric

argument yields equality with m[p′][p]. 2

One cannot drop the hypothesis of disjoint support since the equalities fail when p = ¬p′

or when p = l ∨ l′ and p′ = l ∨ l′′.

Lemma 8 (Disjunctive decomposition) If p and p′ have disjoint support, then

m[p ∨ p′] = m[p ∧ p′] ∪ m[p ∧ ¬p′] ∪ m[¬p ∧ p′].

Proof: According to the definition,

m[p ∨ p′] = {m′ ∈ [[p]] ∪ [[p′]] | m ≡ m′ mod p ∨ p′}.

By the assumption of disjoint support and Lemma 5, model equivalence modulo p ∨ p′ is

identical to equivalence modulo p∧ p′, as well as equivalence modulo p∧¬p′ and ¬p ∧ p′.

Noting that

[[p]] ∪ [[p′]] = ([[p]] ∩ [[p′]]) ∪ ([[p]] ∩ [[¬p′]]) ∪ ([[¬p]] ∩ [[p′]]),

we can decompose the expression for m[p∨p′] into three conjunctive parts as required. 2

One cannot drop the hypothesis of disjoint support since the equality fails when p = ¬p′.

Lemma 9 (Unique modification) If p and c have disjoint support and m |= c, then

m[p ∧ c] = m[p].

Proof: By Lemma 7, we have m[p ∧ c] = m[p][c]. Since m′[c] consists of a singleton

for every m′ ∈ M, and since c ⊆ m for every m ∈ [[c]], we have m′ ∈ m[p] iff m′[c] =

{m′}. 2

Using these results, we can derive a canonical expression for any model modifications

over a sentence expressed as a disjunction of conjunctions with disjoint support.
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Theorem 10 (Amalgamation) Suppose p and q have support disjoint from r. If p∧r ≥

q ∧ r and p ∧ ¬r ≥ q ∧ ¬r, then p ≥ q.

Proof: By Lemma 7 and disjoint support, the hypothesized relative desires imply, for

all m, that m[r][p ∧ ¬q] ∼� m[r][¬p ∧ q] and m[¬r][p ∧ ¬q] ∼� m[¬r][¬p ∧ q]. Then given

m′, choose m such that m′ ∈ m[r] (if m′ ∈ [[r]]) or m′ ∈ m[¬r] (if m′ ∈ [[¬r]]). In either

case, m′[p ∧ ¬q] ∼� m′[¬p ∧ q], and so p ≥ q. 2

Theorem 11 (Refinement) If p, q, and c have disjoint support, then p ∧ c ≥ q ∧ c

whenever p ≥ q.

Proof: The relation p ∧ c ≥ q ∧ c holds if m[p ∧ ¬q ∧ c] ∼� m[¬p ∧ q ∧ c] for each m.

By Lemma 7 and disjoint support, this condition reduces to m[c][p ∧ ¬q] ∼� m[c][¬p ∧ q].

Because c is a conjunction of literals, Lemma 9 indicates the modification m[c] is unique

for any m; let that model be m′. The hypothesis p ≥ q entails that for all m′, m′[p∧¬q] ∼�

m′[¬p ∧ q], and hence the conclusion is established. 2

Theorem 12 (Conditional transitivity) Assuming that c, c′, and p have disjoint sup-

port, if c ≥ p and p ≥ c′, then c ∧ p ≥ c′ ∧ p.

Proof: By Theorem 11, c ≥ p entails c ∧ c′ ≥ p ∧ c′, and p ≥ c′ entails p ∧ c ≥ c′ ∧ c.

Thus for all m, m[c ∧ c′ ∧ ¬p] ∼� m[¬c ∧ c′ ∧ p] and m[c ∧ ¬c′ ∧ p] ∼� m[c ∧ c′ ∧ ¬p], so by

transitivity of ∼�, we have m[c ∧ ¬c′ ∧ p] ∼� m[¬c ∧ c′ ∧ p], exactly the condition needed

for c ∧ p ≥ c′ ∧ p. 2

Theorem 13 (Literal transitivity) Assuming that l, l′, and p have disjoint support, if

l ≥ p and p ≥ l′, then l ≥ l′.

Proof: Assume that l ≥ p and p ≥ l′. By Theorem 12, l ∧ p ≥ l′ ∧ p. By applying

the same theorem to the contraposition of the hypothesized desires, we obtain ¬l′∧¬p ≥

¬l ∧ ¬p. By Theorem 3, this yields l ∧ ¬p ≥ l′ ∧ ¬p. Amalgamating these two cases by

Theorem 10 results in l ≥ l′. 2

Note that transitivity does not hold in general. For example, by Theorem 4, we have

p ≥ true and true ≥ q for any p and q. But if A = {p, q} and {¬p, q} � {p,¬q}, then

p ≥ q is false. (Assuming p ≥ (p ∨ r) ∧ q and (p ∨ r) ∧ q ≥ r provides a less trivial

example.)
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We obtain transitivity in Theorems 12 and 13 by restricting the form and interrelations

of the sentences involved. The proofs of these results exploit such restrictions to ensure

the uniqueness of modifications to a given model. We impose similar restrictions in

application of the inference rules sanctioned by Theorem 11 and other results below.

In [8] we present an alternative formalization which requires that modifications of

models minimize the changes made in the initial model. In the simplest case, this means

using a model rather than its modifications when the model already makes the sentence

true. In more complex cases, we want to pick out worlds in the modification that change

as small a set of literals as possible (small in the set inclusion sense). More generally,

we employ comparative similarity orders like those used in theories of counterfactuals

and belief revision. Elsewhere, we relate the notion of relative desire to formalizations of

conditional and deontic logics.

4 Propositional desires

In our semantics for goals viewed as desires [7], we represent states as vectors of attributes.

We designate particular conditions as binary attributes, and define goalhood as preference

for those conditions, holding all other attributes constant. We may reformulate that

semantics in the logic of relative desire to obtain meanings for individual propositional

desires, which we represent as sentences desired over their negations.

Definition 4 (Propositional desire) We say that p is a desire, and write desire(p),

just in case p ≥ ¬p. We say that p is a strict desire, and write DESIRE(p), just in case

p > ¬p.

Thus this definition picks out desires by comparing all of the possible ways of making

sentences true and false while holding all else equal.

Corollary 14 (Logical invariance) If |= p ↔ q, then desire(p) iff desire(q).

Corollary 15 (Negation of desires) If desire(p), then not DESIRE(¬p).

Corollary 16 (Trivial desires) The extremal sentences p ∨ ¬p and p ∧ ¬p are desires

but not strict desires.

It remains to be seen whether any reasonable semantics can be found which does not

make desires of true and false.
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Theorem 17 (Sets of desires) Suppose p̂ = {p0, . . . , pn} and desire(pi) (or equiva-

lently, pi ≥ ¬pi) for 0 ≤ i ≤ n, where pi and pj have disjoint support for i 6= j. Then

1. Any model m is weakly preferred to any m′ obtained by modifying m to falsify some

desires (i.e., if p̂′ ⊆ p̂ and m′ ∈ m[¬
∨

p̂′], then m ∼� m′), and

2. For any pair of models m and m′ not related by such a modification (i.e., if p̂′ ⊆ p̂,

then m′ 6∈ m[¬
∨

p̂′]), there is some preference order ∼� compatible with the desires

such that m � m′.

Proof: 1. We proceed by induction on the size of p̂′. In the base case, |p̂′| = 0, so m′ =

m, and hence m ∼� m′ by the reflexive property of weak preference. For the inductive step,

suppose the result holds for |p̂′| ≤ k ≤ n. Choose a set p̂′ of size k, and an element p∗ from

p̂ \ p̂′. Let p̂′′ = p̂′ ∪ {p∗}, and note that m[¬
∨

p̂′′] = m[(¬
∨

p̂′) ∧¬p∗], which, by disjoint

support and Lemma 7, is equivalent to m[¬
∨

p̂′][¬p∗]. Therefore, for any m′′ ∈ m[¬
∨

p̂′′],

there is some m′ ∈ m[¬
∨

p̂′] such that m′′ ∈ m′[¬p∗]. Because m′ ∈ m′[p∗] (since p∗ is

satisfied in m and not falsified by p̂′), m′′ ∈ m′[¬p∗], and m′ ≡ m′′ mod p∗, desire(p∗)

directly entails m′

∼� m′′. By the inductive step we have m ∼� m′, and so by transitivity

m ∼� m′′.

2. We show that the first part of the theorem exhausts the requirements on ∼�. The

conditions desire(pi) require that m′

∼� m′′ whenever m′ ∈ m[pi], m′′ ∈ m[¬pi], and

m′ ≡ m′′ mod pi. But in this case, m′′ ∈ m′[¬pi], and so this requirement is covered

by the modification relation. To account for the reflexive property of weak preference,

note that m ∈ m[¬
∨
∅], and hence this is also covered by the condition. Finally, we

consider transitivity. If m′′ ∈ m′[¬
∨

p̂′′] and m′ ∈ m[¬
∨

p̂′], then m′′ ∈ m[¬
∨

(p̂′ ∪

p̂′′)]. Thus, no new preferences are drawn from transitivity, and the consequences are

exhausted. Therefore we are free to order arbitrarily any pair of models m, m′ such that

m′ 6∈ m[¬
∨

p̂′]. 2

Comparing this result with Theorem 1 highlights the difference between relative desire and

absolute preference among model sets. Whereas absolute preference collapses partially

satisfied models into a single indifference class, relative desire allows for finer distinctions.

The weak constraints placed by desires on preference orders mean that desires do not, by

themselves, prescribe a unique choice of action in all circumstances. If one seeks to ensure

unique rational choices, one must augment the desires with more detailed specifications

of relative desires among propositions.

Theorem 18 (Entailment of desires) If desire(l) and l′ ≥ l, then desire(l′).
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Proof: If l = l′ or l = ¬l′, the result holds trivially. Otherwise, l and l′ have disjoint

support. By Lemma 7, m[l ∧ l′] = m[l′][l], and m[¬l ∧ l′] = m[l′][¬l]. Since m[l′] is

unique, from desire(l) it follows that m[l′][l] ∼� m[l′][¬l]. From l′ ≥ l (and Lemma 7), we

have m[l′][¬l] ∼� m[¬l′][l]. A transitive combination of these preferences yields m[l′][l] ∼�

m[¬l′][l], and rearranging, m[l][l′] ∼� m[l][¬l′]. A symmetric argument, exploiting the

uniqueness of m[¬l′], yields m[¬l][l′] ∼� m[¬l][¬l′]. Since for every m′ there is some m

such that m′ ∈ m[l] or m′ ∈ m[¬l], the two cases entail desire(l′). 2

One may use the logic of relative desire to investigate principles for designing and an-

alyzing planning systems. For example, many planners produce new goals by introducing

and eliminating conjunctions and disjunctions of existing goals. Given the logic of rela-

tive desire, we may ask whether such operations are sound with respect to our semantics,

when goals are interpreted as desires. In fact, the logic reveals that these operations are

not always valid. For example, if A = {p, q} and {p, q} � {¬p,¬q} � {p,¬q} � {¬p, q},

then desire(p ∧ q) but neither desire(p) nor desire(q) holds. If the planner uses unsound

operations on goals, then either it risks making choices during plan execution that con-

flict with the underlying preferences, or its operations introduce new assumptions that

implicitly change the underlying preference order.

Theorem 19 (Combination) If c, l, and d have disjoint support, c ≥ d, l ≥ d, and

desire(c), then c ∧ l ≥ d.

Proof: By definition, c∧l ≥ d holds iff m[c∧l∧¬d] ∼� m[¬(c∧l)∧d] for all m. According

to Lemma 8, the latter expression can be decomposed into the union of m[¬c ∧ l ∧ d],

m[c ∧ ¬l ∧ d], and m[¬c ∧ ¬l ∧ d]. We establish the preference of m[c ∧ l ∧ ¬d] over each

of these. First,

m[c ∧ l ∧ ¬d] = m[l][c ∧ ¬d] ∼� m[l][¬c ∧ d] = m[¬c ∧ l ∧ d],

by c ≥ d, disjoint support, Lemma 7, and the uniqueness of m[l]. Similarly,

m[c ∧ l ∧ ¬d] = m[c][l ∧ ¬d] ∼� m[c][¬l ∧ d] = m[c ∧ ¬l ∧ d],

by l ≥ d, disjoint support, Lemma 7, and the uniqueness of m[c]. Chaining this result

with

m[c ∧ ¬l ∧ d] = m[¬l ∧ d][c] ∼� m[¬l ∧ d][¬c] = m[¬c ∧ ¬l ∧ d],

which holds by virtue of desire(c), disjoint support, Lemma 7, and the uniqueness of

m[¬l ∧ d], yields m[c ∧ l ∧ ¬d] ∼� m[¬c ∧ ¬l ∧ d], the final condition we require. 2

Theorem 20 (Conjunction of desires) If c and c′ have disjoint support, desire(c),

and desire(c′), then desire(c ∧ c′).
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Proof: We need to show that m[c∧c′] is preferred to any model in m[c∧¬c′], m[¬c∧c′],

or m[¬c ∧ ¬c′]. First,

m[c ∧ c′] = m[c][c′] ∼� m[c][¬c′] = m[c ∧ ¬c′],

by desire(c′), disjoint support, Lemma 7, and the uniqueness of m[c]. A symmetric

argument with c and c′ switched yields m[c ∧ c′] ∼� m[¬c ∧ c′]. Finally, let m′ ∈ m[c ∧ c′]

and m′′ ∈ m[¬c∧¬c′]. Note that m ≡ m′ mod c∧c′, and thus by Lemma 5, m[¬c∧¬c′] =

m′[¬c ∧ ¬c′]. Therefore, m′′ ∈ m′[¬c ∧ ¬c′], and thus by the first part of Theorem 17,

m′

∼� m′′. 2

Theorem 21 (Disjunction of desires) If p and p′ have disjoint support, desire(p), and

desire(p′), then desire(p ∨ p′).

Proof: The disjunctive desire holds iff m[p ∨ p′] ∼� m[¬p ∧ ¬p′] holds for all m. Let

m′ ∈ m[p∨p′] and m′′ ∈ m[¬p∧¬p′]. Note that m ≡ m′ mod p∨p′, and thus by Lemma 5

and disjoint support, m[¬p ∧ ¬p′] = m′[¬p ∧ ¬p′]. Therefore, m′′ ∈ m′[¬p ∧ ¬p′], and so

m′

∼� m′′ by the first part of Theorem 17. 2

Theorems 20 and 21 provide conditions under which conjoining and disjoining de-

sires produces more complex desires. However, their converses do not generally hold.

Thus subgoaling on conjunctions and disjunctions in AND/OR search need not always

produce bona fide desires. Viewed semantically, the subgoals may have undesirable prop-

erties (“side-effects”) in addition to their relation to the compound desire. In general,

preferences over complex sentences tell us little about preferences over their constituent

parts.

Although one cannot usually justify common goal manipulations due to the many pref-

erence orders compatible with desires alone, these operations can sometimes be validated

conditional on additional restrictions, such as assumptions of preferential independence

given combinations of conditions.

5 Restricted relative desire

We have defined relative desire in terms of preferences over the set of all models M, but

in many cases the knowledge available to the planner or used in the planner’s construction

rules out the occurrence of some of these interpretations. That is, some logically possible

models may be epistemically or constitutionally impossible. In such cases, we should

not demand that the planner express preferences over the irrelevant logically possible
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models, but only require a preference order over the models that represent epistemically

or constitutionally possible situations or outcomes.

To make the logic of relative desire more practical in this way, we restrict all the

previous definitions to a set M ⊆ M representing the epistemically or constitutionally

possible models. We define m[p]M , the modifications of m by p restricted to M , by

m[p]M
def
= m[p] ∩ M,

and define restricted relative desire among sentences as follows.

Definition 5 (Restricted relative desire) We say that p is desired over q when re-

stricted to M , written p ≥M q and read briefly as “p over q in M ,” iff for each m ∈ M ,

m′ ∈ m[p ∧ ¬q]M , and m′′ ∈ m[¬p ∧ q]M we have m′

∼� m′′. We say that p is strictly

desired over q when restricted to M , written p >M q, iff p ≥M q but not q ≥M p.

This definition characterizes restricted relative desire in exactly the same way as relative

desire, except that one considers only models and modifications in M rather than M. In

other words, p ≥ q just means p ≥M q.

We further extend the preceding definition by defining relative desire restricted by

sentences and theories. We write p ≥r q, read “p over q given r”, to mean p ≥[[r]] q, and

p ≥T q to mean p ≥[[T ]] q, where [[T ]] =
⋂

r∈T [[r]]. Thus p ≥ q iff p ≥true q.

Theorem 22 (Strengthening) If |= r′ → r, then p ≥r q implies p ≥r′ q.

Proof: Suppose |= r′ → r and p ≥r q. Let m ∈ [[r′]], m′ ∈ m[p ∧ ¬q] ∩ [[r′]], and

m′′ ∈ m[¬p∧q]∩ [[r′]]. Since |= r′ → r, [[r′]] ⊆ [[r]], so m ∈ [[r]]. Since m[p∧¬q] ∼� m[¬p∧q]

by hypothesis, we have m′

∼� m′′. 2

Corollary 23 (Arbitrary restrictions) p ≥ q iff p ≥r q for every r.

Theorem 24 (Incompatible restrictions) If |= p → ¬r or |= q → ¬r, then p ≥r q

Proof: If |= p → ¬r, then m[p∧¬q]∩[[r]] = ∅, while if |= q → ¬r, then m[¬p∧q]∩[[r]] = ∅.

In either case, the stated relation holds trivially. 2

In particular, p ≥false q for all p, q.
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Lemma 25 (Restricted modifications) If p and r have disjoint support, it follows

that m[p]r ⊆ m[p ∧ r].

Proof: Assuming disjoint support, support(p) ⊆ support(p ∧ r). If m′ ∈ m[p]r, then

m′ |= p ∧ r and m ≡ m′ mod p ∧ r, so m′ ∈ m[p ∧ r]. 2

Theorem 26 (Explicit restriction) If p∧ r ≥ q ∧ r and r has support disjoint from p

and from q, then p ≥r q.

Proof: Assume p ∧ r ≥ q ∧ r and disjoint support. By simplifying the definition, we

obtain m[p∧¬q ∧ r] ∼� m[¬p∧ q ∧ r] for each m ∈ M. To show that p ≥r q, assume that

m ∈ [[r]], m′ ∈ m[p∧¬q]r, and m′′ ∈ m[¬p∧q]r. By Lemma 25, m[p∧¬q]r ⊆ m[p∧¬q∧r]

and m[¬p ∧ q]r ⊆ m[¬p ∧ q ∧ r], so m′

∼� m′′, as desired. 2

The converse does not hold. To see this, suppose that p, q, r1, r2 ∈ A and r = r1 ∨ r2.

The assumption that p ≥r q amounts to requiring that {p,¬q, r1, r2} ∼� {¬p, q, r1, r2},

{p,¬q, r1,¬r2} ∼� {¬p, q, r1,¬r2}, and {p,¬q,¬r1,¬r2} ∼� {¬p, q,¬r1,¬r2}. If we have

{¬p, q, r1,¬r2} � {p,¬q, r1, r2} in addition, then p ∧ r ≥ q ∧ r does not hold.

Restricted relative desire captures part of the notion of framing defined in [7]. Rather

than beginning by supposing a set of atomic sentences and their models, our treatment

there follows decision theory by supposing a set Ω of possible outcomes and then repre-

senting these outcomes as vectors of attributes by means of a one-to-one framing function

φ : Ω →
∏n

i=1 Ai. The image φ(Ω) of outcomes under the framing constitutes the set

of possible attribute vectors. The logical formalization of relative desire presented here

specializes the original semantics by representing outcomes by vectors of binary attributes

rather than by vectors of arbitrary attributes, that is, choosing φ : Ω → M. Restricting

relative desire to a set of models M then corresponds to choosing the framing so that

φ(Ω) = M .

Framings and their corresponding restrictions on possible outcomes play important

roles in reasoning because they can, in some cases, determine which sentences represent

desires. In other words, the set of sentences representing desires can change as one changes

knowledge or constitution to make different outcomes possible. For example, suppose that

A consists of the two independent sentences: p, “I wear a raincoat”, and q, “I stand in

the rain.” We assume that ¬q is preferred to q, all else equal, and that p is preferred to

¬p given q, but the preference is reversed given ¬q, again all else equal. We then have the

intuitive result that ¬q represents a desire, but neither p nor ¬p does. Yet p represents a

desire if we assume q holds; that is, p ≥q ¬p. This relativity of desire occurs quite easily,

as shown by the following result.
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Theorem 27 (Relativity of desire) If p ≥ q does not hold, then q >r p for some r.

Proof: Suppose that p ≥ q does not hold. By Corollary 23, choose r so that p ≥r q

does not hold. We may then find m ∈ [[r]], m′ ∈ m[p ∧ ¬q], and m′′ ∈ m[¬p ∧ q] so that

m′′ � m′. Let r′ = (
∧

m′) ∨ (
∧

m′′), and verify that q >r′ p, as desired. 2

In particular, if p is not a desire, then ¬p is sometimes a strict desire, and if neither p nor

¬p are desires, then one can find different restrictions making each a strict desire.

6 Conclusion

We have presented a logic of relative desire in which desires have a nontrivial semantics in

terms of preferences over models, and in which one may construct preferences correspond-

ing to specific sets of desires. The definition of desires formalizes the intuition that goals

are propositions that are preferred to their opposites, other things being equal. The logic

extends our previous work [7] by considering relative desire between arbitrary conditions

expressed in a propositional language, and we provided a collection of inference rules that

support reasoning about relative desire. We showed that while this logic displays some

intuitive properties, it also reveals that desirability sometimes depends on knowledge or

the possible states of the world, and that some common and seemingly natural goal op-

erations are not always valid. Designers of planning architectures wishing to justify the

behavior of their systems must therefore either provide further constraints on the mean-

ing of desires, find other means for expressing preference information, or justify unsound

manipulations on heuristic grounds. This highlights the importance of developing more

refined languages for specifying the objectives of planning agents.

Ordinary desires can depend on probability judgments as well as preferences. Unlike

other approaches to reasoning about desirability (e.g., Jeffrey’s [2]), our inference rules

do not depend on probability distributions. We could strengthen these rules to take

advantage of probabilistic information when available, but some situations call for an

ability to reason about desires separate from beliefs.

Further work will focus on strengthening and expanding the set of inference rules.

The numerous restrictions on the form and and interrelations among sentences limit the

applicability of the initial inference rules presented here. We expect that some of these re-

strictions may be alleviated by applying less ambiguous model modification rules, perhaps

based on minimality criteria from the theory of conditionals and belief revision.

The logic presented here constitutes part of a comprehensive decision-theoretic account
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of planning (see also [6]), and a more thorough treatment of the issue of goals and utilities

is in preparation [8]. The formal treatment of desire also plays an important role in the

framework of agent-oriented programming (AOP), proposed in [5]. AOP—a specializa-

tion of object-oriented programming—views agents as modifying their mental states as

a result of informing one another, requesting information, and performing other kinds

of communicative acts. In current AOP setups, the mental state of an agent consists of

“motivation-free” components: beliefs, commitments, choices, and capabilities. The logic

of relative desire positions us to enrich the mental state of agents, thus expanding the

AOP framework. In general, we expect that much might be learned by developing plan-

ning architectures which combine desires and goals with other preferences in a manner

faithful to the logic of relative desire.
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