
Reset reproduction of CMU Computer Science report CMU-CS-83-126. Published in IJCAI’83, pp. 349–351.

Reprinted July 1994. Reprinting c© Copyright 1983, 1994 by Jon Doyle. Current address: MIT Laboratory for

Computer Science, Cambridge, Massachusetts.

The Ins and Outs of
Reason Maintenance

Jon Doyle

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213
U.S.A.

Abstract: To progress significantly beyond current reason maintenance systems, we must formulate their
structure and intended behavior precisely enough to analyze computational complexities and tradeoffs
independently of the current set of limited implementation proposals. This paper summarizes one such
formulation, and indicates some unsolved practical problems for investigation in future reason maintenance
systems.

This paper will be presented at IJCAI-83.
c© Copyright 1983 by Jon Doyle.

This research was supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539. The views
and conclusions contained in this document are those of the author, and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the Government of the United States of America.



§1. Reason maintenance systems (a less deceptive name than the original “truth maintenance systems”)
have been studied by a variety of authors and have gained currency in artificial intelligence in spite of
rather unwieldy descriptions in terms of complex procedures. (See [Doyle 1979], [Stallman and Suss-
man 1977], [London 1978], [McAllester 1980], [Charniak, Riesbeck, and McDermott 1980],
[Thompson 1979], [Gärdenfors 1980], [Steele 1980], [de Kleer and Doyle 1982], [McDer-
mott 1982], [Goodwin 1982], and [Martins 1983].) There is little hope for improving on existing
RMS implementations without clearer statements of their intended behaviors and better analyses of their
performance (see [Martins 1983]). These goals require mathematical formulations that clearly capture
our intuitions, formulations that enable calculation of complexity-theoretic tradeoffs to guide and justify
choices of implementation. [Doyle 1982] develops exact theories and initial analyses of several issues
arising in reason maintenance systems and in “non-monotonic logic.” This paper summarizes portions of
those theories and some of the questions they raise.

§2. Reason maintenance systems revise database states using records of inferences or computations,
records called reasons or justifications, to trace the consequences of initial changes. By keeping track of
what information has been computed from what, such a system can reconstruct the information “derivable”
from given information. Although it is often convenient to think of such bits of information as beliefs and
such derivations as arguments, the notion is much more general, applicable instead to all sorts of mental
structures. For concreteness, we focus on RMS, the particular reason maintenance system developed by
the author [Doyle 1979]. The following treatment does not require intimate familiarity with any reason
maintenance system, although in the interest of brevity we omit motivating discussion and examples, so
passing acquaintance with the basic idea stated above is valuable. Here we only mention that, contrary to
the impression held by some, RMS does not maintain consistency of beliefs in any important sense. RMS
ensures that the set of “beliefs” held are acceptable with respect to the justifications held, or in other,
looser terminology, that the assumptions made by the system are consistent with the justifications guiding
their adoption. Logical notions of consistency play no role here, as the following treatment illustrates. The
mistaken impression may stem from the contrasting importance of logical consistency in “non-monotonic
logic” [McDermott and Doyle 1980]. (See [Doyle 1982] for further discussion.)

§3. States of RMS contain a variety of elements or components. We let D denote the domain of all
possible elements of states, so that states of RMS are sets S ⊆ D. Not every subset of D is “admissible”
as a state of RMS. We define which sets are so in a moment.

Let N be a finite set of elements called nodes. These are the fundamental components of states
of RMS. Nodes are usually used to represent (within RMS) the database elements (beliefs, desires, rules,
procedures, etc.) of significance to the external system using RMS, but we ignore those external meanings
here since they have no bearing on the operation of RMS. Each set N generates a state-domain D(N ) as
follows. We define

SL(N ) = PN × PN ×N

CP(N ) = SL(N ) ×N

D(N ) = N ∪ SL(N ) ∪ CP(N ).

(P means power set.) The elements of SL(N ) are called SL-justifications (for “support list”), and are
written A \\ B ‖− c for A, B ⊆ N and c ∈ N . The elements of CP(N ) are called CP-justifications (for
“conditional proof”), and are written (A \\ B ‖− c) ‖− d for A, B ⊆ N and c, d ∈ N . SL-justifications will
be interpreted as rules for making “non-monotonic” inferences, and CP-justifications as arguments based
on “conditional-proofs” of nodes. The formal definitions of these terms follow. Note that if N ⊆ N ′, then
D(N ) ⊆ D(N ′). In fact, all of our definitions will be conservative in the sense that additions to the set of
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nodes do not change the meaning of previous conclusions or representations in important ways. Henceforth
we hold the set of nodes constant and ignore the dependence of the domain on the set of nodes, writing
simply D instead of D(N ).

§4. Each state component is interpreted as a restriction on the states in which it may admissibly occur.
Formally, we define an interpretation function I : D → PPD, where if d ∈ D, then I(d) ⊆ PD is the set
of potential states sanctioned by d. The set 6S of admissible states of RMS is defined to contain just those
sets of components which are completely self-satisfying, specifically,

6S = {S ⊆ D | S ∈
⋂

d∈S

I(d)}.

We define interpretations for nodes, SL-justifications, and CP-justifications as follows.

There are two sorts of nodes: ordinary nodes, and contradiction nodes. The user of RMS stipulates
the sort of each node explicitly by labelling contradiction nodes as such. Ordinary nodes have no special
meaning to RMS, except that they are distinct from other nodes. Contradiction nodes, in contrast, do
have special meaning: RMS avoids including them in states. We name these two sets of nodes N> and
N⊥ respectively, so that N = N>∪N⊥. If n ∈ N>, then I(n) = PD, the “trivial” specification on states
which rules out no potential states. If n ∈ N⊥, then I(n) = ∅, the “contradictory” specification which
accepts no states.

If e = A \\ B ‖− c is a SL-justification, then

I(e) = {S ⊆ D | A ⊆ S ⊆ Bc ⊃ c ∈ S}.

(Bc = D − B.) That is, e specifies that if S contains every element of A and contains no element of B,
then S must also contain c in order to be admissible. In RMS parlance, we say that if every element of A
is in and every element of B is out, then c must be in as well.

If e = (A \\ B ‖− c) ‖− d is a CP-justification, then intuitively, the CP-justification is satisfied if
d is in S whenever c is in all admissible states as close as possible to S that contain all elements of A and
none of B. We express this formally by defining

I(e) = {S ⊆ D | [∀S′ ∈ η(S, A, B) c ∈ S′]⊃ d ∈ S}

where
η(S, A, B) = ν(S, {S′ ∈ 6S | A ⊆ S′ ⊆ Bc}),

and
ν(S, X) = {S′ ∈ X | ∀S′′ ∈ X [S 4 S′′ ⊆ S 4 S′]⊃[S′′ = S′]}.

For this definition, we measure closeness of a state to S in terms of the set of elements by which the two
differ, namely the symmetric difference S 4 S′ = (S − S′) ∪ (S′ − S). Other notions of closeness may be
used instead if desired, but we cannot pursue them here.

§5. Given a set of nodes and justifications S ⊆ D, the action of RMS is to derive an admissible state
E containing S by adding additional nodes to S. Since E is admissible, it satisfies all the specifications
represented by the elements of S. However, we do not accept every admissible superset of S as a rea-
sonable solution to the requirements posed by S, since some of these supersets may introduce nodes and
justifications completely unrelated to those mentioned in S. (Analogously, in logic the set of theorems of
a set of axioms is the deductive closure of the axioms. The theorems form a deductively closed set, but
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there may be larger deductively closed sets containing the axioms whose extra elements have nothing to do
with the axioms.) To avoid unwarranted additions to the initial set S, we define the admissible extensions

of S, written AExts(S), to be the admissible sets E ⊃ S finitely grounded with respect to S, where E is
finitely grounded with respect to S if and only if for every e ∈ E there is a finite sequence 〈g0, . . . , gn〉 of
elements of E such that e = gn and for each i ≤ n, either

(1) gi ∈ S, or
(2) there is some j < i such that

(a) gj = A \\ B ‖− gi,
(b) for each a ∈ A, a = gk for some k < j, and
(c) b /∈ E for each b ∈ B, or

(3) there is some j < i such that
(a) gj = (A \\ B ‖− c) ‖− gi and
(b) c ∈ E′ for each E′ ∈ η(E, A, B).

In other words, E is finitely grounded with respect to S if every element of E has a non-circular argument
from S in terms of valid justifications in E. In general a set S ⊆ D may have any number (0 or more) of
admissible extensions. Note that while the antecedents of SL-justifications must occur in such arguments,
valid CP-justifications are simply looked on as “oracles” about other admissible states. RMS actually
employs an approximation scheme instead of oracles, but it is too complicated to present here.

§6. In [Doyle 1982] we develop at length the theory of this formulation of nodes and SL-justifications,
leaving aside CP-justifications. That treatment is too long to reproduce here, but we can sketch a few
of the principal results. First, one can stratify by construction every admissible extension into a series of
levels Λi(S, E) corresponding to the the lengths of the shortest arguments for elements of E from S, with
Λ0(S, E) = S and Λω(S, E) =

⋃∞

i=0
Λi(S, E). The first main result turns the same construction around

to show that any set constructed in this way must be an admissible extension. This fact is important in
proof of correctness of RMS algorithms.

(6.1) Theorem (Fixed Point). E ∈ AExts(S) iff E = Λω(S, E).

A corollary of this is that admissible extensions are set-inclusion minimal.

(6.2) Corollary (Minimality). If E, E′ ∈ AExts(S) and E ⊆ E′, then E = E′.

A related result is that distinct admissible extensions must share some SL-justification that supports
conclusions in one extension but not in the other, and so represent incompatible interpretations of the
common justifications.

(6.3) Theorem (Strong Validity-Optimality). If E, E′ ∈ AExts(S) and E 6= E′, then there is

some e ∈ E ∩E′ such that e = A \\ B ‖− c and either A ⊆ E ⊆ Bc but not A ⊆ E′ ⊆ Bc, or A ⊆ E′ ⊆ Bc

but not A ⊆ E ⊆ Bc.

In the longer treatment we also show that E ∈ AExts(S) can be checked in time O(|D|3). I do not
know if one can construct admissible extensions in polynomial time. Admissibility of states can also be
checked in polynomial time. I do not yet know how bad the complexities become when CP-justifications
are considered.

§7. RMS not only constructs admissible extensions of sets of nodes and justifications, it also updates the
state whenever reasons are added to or deleted from a “kernel” set. After RMS leaves the database in state
S, the external program using RMS computes a new kernel set ∂(S) of justifications from S. We write ∆(S)
to mean the set of admissible transitions from (or successors of) S, the intent being that RMS revise the
state to be an admissible extension of the new kernel. If we allow any revision, then ∆(S) = AExts(∂(S)),
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so the complexity questions mentioned earlier about constructing admissible extensions have considerable
practical importance. A more interesting possibility is to require ∆ to be conservative, that is, to allow only
transitions to those states in AExts(∂(S)) which are as close as possible to S. Here we again draw on the
symmetric difference comparison of states introduced earlier, and define the conservative transition table
∆

ν by ∆
ν(S) = ν(S,AExts(∂(S))). It would be very valuable to have conservative versions of RMS, since

then successor states would look as much like their predecessors as possible. Unfortunately, the efficient
mechanizability of conservative transitions is an open question. Because of this, RMS was implemented
to “approximate” conservative revisions in the sense of probabilistic algorithms. These “approximations”
are always admissible extensions, but sometimes may fail to be minimal transitions due to the limited
information used in the “local” choices made by the revision algorithm.

§8. If ∆(S) = ∅ because the external program includes in ∂(S) a contradiction node or a justification to
support a contradiction node, then RMS must perform “backtracking” to find a new state not containing
any contradiction node. (One limitation of RMS corrected in some of its relatives is abnormal failure if
∆(S) = ∅ without S containing any contradictions.) RMS backtracks by adding some new justifications A
to the kernel ∂(S) in hopes that ∂(S)∪A will have admissible extensions. RMS chooses new justifications
to add so as to find a previously bypassed admissible transition as close as possible to the current state.
Specifically, if 〈Si〉ni=0 is the sequence of previous states, we can treat the intended behavior of RMS as
that of retreating to some state in ν(S,

⋃n

i=0
(∆(Si) − {Si+1}) ). However, I cannot exactly characterize

the “nearness” relation actually realized by RMS as ν, because RMS only uses a heuristic choice based
on the structure of the arguments which support contradiction nodes. Can RMS be improved to employ
the same conservation principles in both backtracking and ordinary state transitions? It may be that
McAllester’s and Goodwin’s improvements to RMS do so, but I have not yet been able to perform
the necessary analysis. See [Doyle 1982] for a discussion of a variety of possible backtracking schemes
from this point of view.

§9. The preceding presents an exact specification for many aspects of RMS, and specifications of ideal
behavior for other aspects, such as interpretation of CP-justifications, where RMS employs half-measures.
Unfortunately, unanswered questions of computational feasibility and RMS’s informal historical develop-
ment prevent the actual program from living up to the full set of ideal specifications. With these exact
specifications, can we now do better? And if the particular characterizations of conservative transitions
and CP-justification satisfiability are provably intractable (or more likely, provably NP-hard), are there
efficiently computable relations that approximate these well in some (perhaps probabilistic) sense?
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